ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S....

12
Reviews in Mineralogy and Geochemistry Volume 53 2003 ZIRCON SUB G8ttingen 7 r 1Y1342 442 / •Illlllllllll L 2004 A 17111 John M. Hanchar The George Washington University Washington, D.C. Paul W.O. Hoskin Albert-Ludwigs-Universitat Freiburg Freiburg im Breisgau, Germany Front cover: Cathodoluminescence photomicrograph of zircon crystals from the Old Woman granodiorite, southeastern California. The crystals were mounted in epoxy and polished to reveal interiors of the crystal. The blue-luminescing cen- tral regions are inherited Proterozoic cores, and the fine-scale zoned yellow-lumi- nescing rims are magmatic overgrowths of Mesozoic age. Similar zircon crystals from this sample have been dated using the Sensitive High Resolution Ion Micro Probe (SHRIMP) at the Australian National University. Ages of inherited cores range from 1.8-1.4 Ga; magmatic overgrowths are -72 Ma (Foster et al. 1989, Miller et al. 1992). This image was recorded on Kodak Ektachrome 200 film. Conditions used: 12 kV, 0.7 mA with a cold-cathode PATCO ELM-3 Luminoscope; 180 s ex- posure. The field of view along the width of the photograph is approximately 770 um. Courtesy of J.M. Hanchar (The George Washington University) and C.F. Miller (Vanderbilt University). References: Foster DA, Harrison TM, Miller CF (1989) Age, inheritance, and uplift of the Old Woman-Piute batholith, California, and implications for K-feldspar age spectra. J Geol 97 232-243. Miller CF, Hanchar JM, Wooden JL, Bennett VC, Harrison TM, Wark DA, Foster DA (1992) Source regions of a granite batholith: Evidence from lower crustal xeno- liths and inherited accessory minerals. Trans Roy Soc Edinburgh: Earth Sci 83:49-62. [Also published in Geological Society ofAmerica Special Paper 272 (1992)]. Series Editors: PaulH. Ribbe & Jodi Rosso MINERALOGICAL SOCIETY OF AMERICA GEOCHEMICAL SOCIETY

Transcript of ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S....

Page 1: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

Reviews in Mineralogy and GeochemistryVolume 53 2003

ZIRCONSUB G8ttingen 7 r1Y1342 442 /

• I l l l l l l l l l l l L

2004 A 17111John M. Hanchar The George Washington University

Washington, D.C.Paul W.O. Hoskin Albert-Ludwigs-Universitat Freiburg

Freiburg im Breisgau, Germany

Front cover: Cathodoluminescence photomicrograph of zircon crystals fromthe Old Woman granodiorite, southeastern California. The crystals were mountedin epoxy and polished to reveal interiors of the crystal. The blue-luminescing cen-tral regions are inherited Proterozoic cores, and the fine-scale zoned yellow-lumi-nescing rims are magmatic overgrowths of Mesozoic age. Similar zircon crystalsfrom this sample have been dated using the Sensitive High Resolution Ion MicroProbe (SHRIMP) at the Australian National University. Ages of inherited coresrange from 1.8-1.4 Ga; magmatic overgrowths are -72 Ma (Foster et al. 1989, Milleret al. 1992). This image was recorded on Kodak Ektachrome 200 film. Conditionsused: 12 kV, 0.7 mA with a cold-cathode PATCO ELM-3 Luminoscope; 180 s ex-posure. The field of view along the width of the photograph is approximately 770um. Courtesy of J.M. Hanchar (The George Washington University) and C.F. Miller(Vanderbilt University).

References: Foster DA, Harrison TM, Miller CF (1989) Age, inheritance, and uplift of theOld Woman-Piute batholith, California, and implications for K-feldspar age spectra. J Geol97 232-243. Miller CF, Hanchar JM, Wooden JL, Bennett VC, Harrison TM, Wark DA,Foster DA (1992) Source regions of a granite batholith: Evidence from lower crustal xeno-liths and inherited accessory minerals. Trans Roy Soc Edinburgh: Earth Sci 83:49-62.[Also published in Geological Society of America Special Paper 272 (1992)].

Series Editors: PaulH. Ribbe & Jodi Rosso

MINERALOGICAL SOCIETY OF AMERICA

GEOCHEMICAL SOCIETY

Page 2: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

Table of ContentsZircon

Reviews in Mineralogy and Geochemistry, Vol. 53

1 Structure and Chemistry of Zircon and Zircon-Group MineralsRobert J. Finch, John M. Hanchar

INTRODUCTION ; 1STRUCTURE OF ZIRCON 2

Cation polyhedra 2Interstitial sites • 3

ZIRCON-GROUP MINERALS 4Silicates 7Actinide silicates 7Phosphates 8Borates 8Vanadates 8Arsenates 9Chromates 10Related structures 10

STRUCTURAL EFFECTS OF TEMPERATURE, PRESSURE AND COMPOSITION 13Temperature 13Pressure 14Composition 19

ACKNOWLEDGMENTS , 20REFERENCES 21

2 The Composition of Zircon and Igneous and Metamorphic PetrogenesisPaul W. O. Hoskin, Urs Schaltegger

INTRODUCTION.: 27Analytical techniques 28

ZIRCON AND IGNEOUS PETROGENESIS 29Saturation, crystallization, occurrences and zoning of igneous zircon 29Major-element composition of igneous zircon 32Trace-element composition of igneous zircon 34Zircon composition and investigations of igneous processes 42Provenance-indicator studies using igneous zircon composition 43

ZIRCON AND METAMORPHIC PETROGENESIS 45Textural characterization of metamorphic zircon ; 45The growth of new zircon during metamorphism and its composition 46Solid-state recrystallization and dissolution-reprecpitation of protolith zircon and composi-tional changes 48

HYDROTHERMAL ZIRCON 52CONCLUSIONS AND OUTLOOK 54ACKNOWLEDGMENTS 55REFERENCES, 55

IX

Page 3: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

3 Melt Inclusions in ZirconJ. B. Thomas, R. J. Bodnar, N. Shimizu, C. A. Chesner

INTRODUCTION 63PREVIOUS INVESTIGATIONS 65METHODOLOGY 66

Petrography of melt inclusions hosted in zircon 67Heating and homogenization of crystalline melt inclusions in zircon 69Major and trace element compositions of melt inclusions in zircon 69

DETERMINING ZIRCON/MELT TRACE ELEMENT PARTITION COEFFICIENTS USINGMELT INCLUSIONS IN ZIRCON 72

Trace element partitioning data and interpretations 72Petrogenetic implications 77Summary of trace element partitioning by the MIM technique 78

ARE MI COMPOSITIONS REPRESENTATIVE OF THE BULK MELT? 79Boundary layer effects 79Re-equilibration of melt inclusions 81Potential errors during homogenization and analysis 82

FUTURE DIRECTIONS 82ACKNOWLEDGMENTS 83REFERENCES 83

4 Zircon Saturation ThermometryJohn M. Hanchar, E. Bruce Watson

INTRODUCTION 89ZIRCON SATURATION THERMOMETRY 90

Historical development 90APPLICATIONS OF ZIRCON SATURATION THERMOMETRY 96

Background 96Selected examples of studies that used zircon saturation thermometry 97

CALCULATION OF ZIRCON SATURATION TEMPERATURES 102Considerations for using zircon saturation thermometry with plutonic rocks 102Bulk sample or in situ analyses? 103Calculation of M for geologic samples 104Worked example to determine M and Zr content and zircon saturation temperature 105

SUMMARY : 109ACKNOWLEDGMENTS 110REFERENCES 110

5 Diffusion in ZirconDaniele J. Cherniak, E. Bruce Watson

INTRODUCTION 113HISTORY—A BRIEF REVIEW OF BULK-RELEASE AND EARLY LOWER-RESOLUTION

DIFFUSION MEASUREMENTS 113

Page 4: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

CATIONS 114Pb „ 115Substitutional processes involving Pb 118Diffusion systematics of trivalent cations 119Substitutional processes for trivalent cations 122Tetravalent cations 123Cation diffusion in zircon—a general summary 125

OXYGEN DIFFUSION .....~' 126Experimental results 126Diffusion mechanisms 128

IMPLICATIONS AND APPLICATIONS OF DIFFUSION FINDINGS 129Diffusive fractionation 129Closure temperatures 129The preservation of zoning in zircon 130Pbloss 132Preservation of oxygen isotope signatures 13418Q/16Q retention in zircon cores and rims 135Retention at rim and core centers during cooling 138

FUTURE DIRECTIONS 139ACKNOWLEDGMENTS 139REFERENCES 139

6 Historical Development of Zircon GeochronologyDonald W. Davis, Ian S. Williams, Thomas E. Krogh

INTRODUCTION ". 145PRELUDE .' 146ISOTOPIC DATING OF ZIRCON — 1955 TO 1973 148ADVANCES IN TECHNIQUE — 1973 TO 1982 154RESOLUTION OF THE PB LOSS PROBLEM — 1982 TO THE PRESENT 159

Further advances in ID-TIMS methods 159The Sensitive High-Resolution Ion Micro-Probe (SHRIMP) 164The zircon evaporation method 171Other developments 171

THE LEGACY OF ZIRCON DATING 171ACKNOWLEDGMENTS 173REFERENCES 173

7 Zircon U-Th-Pb Geochronology by Isotope Dilution — ThermalIonization Mass Spectrometry (ID-TIMS)

Randall R. Parrish, Stephen R. Noble

INTRODUCTION ; 183METHODS AND DATA PRESENTATION 184

Background 184Evolution of analytical methods 184Mass spectrometry 187

XI

Page 5: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

CATIONS 114Pb , 115Substitutional processes involving Pb 118Diffusion systematics of trivalent cations 119Substitutional processes for trivalent cations 122Tetravalent cations 123Cation diffusion in zircon—a general summary 125

OXYGEN DIFFUSION ...~ 126Experimental results 126Diffusion mechanisms 128

IMPLICATIONS AND APPLICATIONS OF DIFFUSION FINDINGS 129Diffusive fractionation 129Closure temperatures 129The preservation of zoning in zircon 130Pbloss 132Preservation of oxygen isotope signatures 13418O/'6O retention in zircon cores and rims 135Retention at rim and core centers during cooling 138

FUTURE DIRECTIONS 139ACKNOWLEDGMENTS 139REFERENCES 139

6 Historical Development of Zircon GeochronologyDonald W. Davis, Ian S. Williams, Thomas E. Krogh

INTRODUCTION '. 145PRELUDE .' 146ISOTOPIC DATING OF ZIRCON — 1955 TO 1973 148ADVANCES IN TECHNIQUE — 1973 TO 1982 154RESOLUTION OF THE PB LOSS PROBLEM — 1982 TO THE PRESENT 159

Further advances in ID-TIMS methods 159The Sensitive High-Resolution Ion Micro-Probe (SHRIMP) 164The. zircon evaporation method 171Other developments 171

THE LEGACY OF ZIRCON DATING 171ACKNOWLEDGMENTS , , 173REFERENCES 173

7 Zircon U-Th-Pb Geochronology by Isotope Dilution — ThermalIonization Mass Spectrometry (ID-TIMS)

Randall R. Parrish, Stephen R. Noble

INTRODUCTION 183METHODS AND DATA PRESENTATION 184

Background 184Evolution of analytical methods 184Mass spectrometry 187

XI

Page 6: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

Advances in chemical procedures and tracers 187Standards, reproducibility, corrections, errors, and presentation 190

OTHER METHODS OF ID OR TIMS 191Pb evaporation (TIMS but no ID) 191ID-PIMMS (ID but no TIMS) 191

THE MAPPING OF U-TH-PB DATA ONTO DIAGRAMS 192Age equations „ 192Wetherill Concordia diagram 192Tera-Wasserburg diagram : 194Isochron diagram 194The interpreted age of crystallization 194

ZIRCON DATING APPLICATIONS AND U-TH-PB SYSTEMATICS 195High precision dating of igneous zircon across the scope of geological time 195Difficulties with igneous U-Pb zircon geochronology 199Dating of metamorphic zircon 200Baddeleyite-zircon reactions in coronitic gabbro 200Growth of zircon in granulites and upper amphibolite facies rocks 200Metamorphic growth of zircon in amphibolite facies 201The dating of zircon in eclogite and other UHP rocks 203Th and Pa chemical partitioning in zircon and its implications 204Other examples where ID-TIMS data has proved effective 207

SUMMARY 210ACKNOWLEDGMENTS 210REFERENCES ; 210

8 Considerations in Zircon Geochronology by SIMSTrevor R. Ireland, Ian S. Williams

INTRODUCTION 215SELECTED APPLICATIONS 216

Oldest zircon in the solar system 216Development of fractionated lunar crust 217The oldest-known terrestrial rocks 218Detrital-zircon age spectra 218Analysis of thin rims and near-surface concentration gradients (depth profiles) 219The youngest zircons .7..'. :. 219Timescale 219

INSTRUMENTAL AND ANALYTICAL APPROACHES 220SHRIMP 221Cameca 1270 221Operational comparison 222

ZIRCON ANALYSIS , 222Pb isotopes...; r. 223Correction for common Pb 224U/Pb calibration 225

OTHER MINERALS 227Monazite ...; 227Xenotime 227Apatite (+whitlockite) 227

XII

Page 7: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

Titanite 228Baddeleyite '. 228Rutile 228Perovskite ., 228Allanite * 228

DATA ANALYSIS 229Analytical uncertainties . 230207Pb/206Pb ratio 230

. U-Pb ratio 230Standards .' 231Data assessment 233

COMPARISON OF DIFFERENT ANALYTICAL SESSIONS 234FUTURE DEVELOPMENTS 236ACKNOWLEDGMENTS 238REFERENCES , 238

9 Present Trends and the Future of Zircon in Geochronology:Laser Ablation ICPMS

Jan Kosler, Paul J. Sylvester

INTRODUCTION 243LASER ABLATION : 244

Laser principles 244Laser ablation system ...245Interaction of laser radiation with solid samples 246Choice of laser ablation parameters 247

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY 249Inductively coupled plasma as ion source 249Quadrupole ICPMS 250Magnetic sector ICPMS 251Time-of-flight ICPMS 252Mass discrimination (bias) and fractionation of isotopes and elements 252

DATING OF ZIRCON BY LASER ABLATION ICPMS : 253Past studies of U-Pb zircon dating by laser ablation ICPMS 254Elemental fractionation of Pb and U and methods of correction 254Sampling strategies 256Spatial resolution 257Correction for instrument mass bias (standardization) 258Correction for initial common-Pb 260Precision and accuracy 261Strategies for data acquisition and reduction 262

LASER ABLATION ICPMS DATING IN PRACTICE 264Laser ablation ICPMS dating of zircon for sedimentary provenance studies 264Dating magmatic events by laser ablation ICPMS 265Application of laser ablation ICPMS to fission track dating of zircon 266In situ dating of accessory minerals by laser ablation ICPMS 268

FUTURE PROSPECTS OF LASER ABLATION ICPMS DATING 269Quadrupole vs. magnetic sector and single- vs. multi-collector comparisons 270New applications in laser ablation ICPMS dating of zircon 271

XIII

Page 8: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

Titanite 228Baddeleyite 228Rutile 228Perovskite ..„ ., 228Allanite ?. 228

DATA ANALYSIS 229Analytical uncertainties ; •. 230207Pb/206Pb ratio 230U-Pb ratio 230Standards .' 231Data assessment 233

COMPARISON OF DIFFERENT ANALYTICAL SESSIONS 234FUTURE DEVELOPMENTS 236ACKNOWLEDGMENTS ; 238REFERENCES ; 238

9 Present Trends and the Future of Zircon in Geochronology:Laser Ablation ICPMS

Jan Kosler, Paul J. Sylvester

INTRODUCTION 243LASER ABLATION 244

Laser principles 244Laser ablation system ...245Interaction of laser radiation with solid samples 246Choice of laser ablation parameters :.. 247

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY 249Inductively coupled plasma as ion source .249Quadrupole ICPMS 250Magnetic sector ICPMS 251Time-of-flight ICPMS 252Mass discrimination (bias) and fractionation of isotopes and elements 252

DATING OF ZIRCON BY LASER ABLATION ICPMS 253Past studies of U-Pb zircon dating by laser ablation ICPMS 254Elemental fractionation of Pb and U and methods of correction 254Sampling strategies 256Spatial resolution 257Correction for instrument mass bias (standardization) 258Correction for initial common-Pb 260Precision and accuracy 261Strategies for data acquisition and reduction 262

LASER ABLATION ICPMS DATING IN PRACTICE 264Laser ablation ICPMS dating of zircon for sedimentary provenance studies 264Dating magmatic events by laser ablation ICPMS 265Application of laser ablation ICPMS to fission track dating of zircon 266In situ dating of accessory minerals by laser ablation ICPMS 268

FUTURE PROSPECTS OF LASER ABLATION ICPMS DATING 269Quadrupole vs. magnetic sector and single- vs. multi-collector comparisons 270New applications in laser ablation ICPMS dating of zircon 271

XIII

Page 9: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

ACKNOWLEDGMENTS ; 271REFERENCES 271

10 Detrital Zircon Analysis of the Sedimentary RecordChristopher M. Fedo, Keith N. Sircombe, Robert H. Rainbird

INTRODUCTION 277STATISTICS AND METHODOLOGY OF SAMPLING 278

Sampling 278Sample preparation 279Analysis 280Data display 281Interpretation . 282

AGE OF STRATIGRAPHIC SUCCESSIONS 284Maximum age and age bracketing 284Direct depositional ages 286Disconformity recognition 287

PROVENANCE ANALYSIS 288Petrographic and petrologic 288Geochemistry 288Fission track (FT) 289Geochronology 289

PALEOGEOGRAPHIC AND TECTONIC RECONSTRUCTIONS 293Introduction 293Initial studies—Shaler Supergroup 294Regional studies—northern Cordillera 294Regional studies—central Cordillera 294Siberia 295Scotland .' 295A cryptic Grenvillian foreland basin in the U.S. mid-continent 296Rodinian paleogeography 296

IMPLICATIONS FOR EARLIEST EARTH HISTORY 297SUMMARY '..'. 297ACKNOWLEDGMENTS 298REFERENCES 298

11 High-Precision U-Pb Zircon Geochronology and theStratigraphic Record

Samuel A. Bowring, Mark D. Schmitz

INTRODUCTION 305THE GEOLOGIC'TIME SCALE 307

Proxies for radiometric geochronology: chemostratigraphy 307GEOCHRONOLOGICAL TECHNIQUES 308

Measurement uncertainty 310Common Pb correction .:? 311Tracer calibration and interlaboratory comparison 312U decay constants 312

XIV

Page 10: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

INTERMEDIATE DAUGHTER PRODUCT DISEQUILIBRIA 313GEOLOGICAL COMPLEXITY AND OPEN SYSTEM BEHAVIOR 313

Crystal inheritance and Pb-loss 313Resolving a geological "age" from a large population of zircon dates 314Sample selection and analytical strategies .- 315

THE NEOPROTEROZOIC-CAMBRIAN TRANSITION 316Triassic-Jurassic boundary 318

THE END-PERMIAN EXTINCTION 320SUMMARY ; 322ACKNOWLEDGMENTS 323REFERENCES 323

12 Lu-Hf and Sm-Nd isotope systems in zirconPeter D. Kinny, Roland Maas

INTRODUCTION 327THE Lu-Hf ISOTOPE SYSTEM IN NATURE 327

Hafnium as a geochemical tracer 328HF ISOTOPES IN ZIRCON '. 329

Measurement techniques 331Studies of magmatic zircons 331Studies of detrital zircon 332Studies of metamorphic zircon 334Studies of mantle zircons 334Concluding remarks: Lu-Hf isotopes and zircon 335

Sm-Nd ISOTOPE STUDIES OF ZIRCON '. 335REE patterns of zircon 336Sm-Nd mineral dating of zircon 336Inherited Nd 338Concluding remarks: Sm-Nd isotopes and zircon 338

OUTLOOK 339ACKNOWLEDGMENTS 339REFERENCES 339

13 Oxygen Isotopes in ZirconJohn W. Valley

INTRODUCTION 343ANALYSIS OF 518O IN ZIRCON 343

Laser fluorination 343Ion microprobe 343Standards 344

ZIRCON SAMPLE PREPARATION 345Mechanical separation of zircons 346Selection of zircons 346Imaging zircons 348

OXYGEN ISOTOPE FRACTIONATION IN ZIRCON •. 348OXYGEN DIFFUSION RATE IN ZIRCON 349ASSIMILATION VS. FRACTIONAL CRYSTALLIZATION 352

XV

Page 11: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

MANTLE ZIRCONS 354PRE-CAMBRIAN ZIRCONS , 355

Archean granitoids 355Volcanogenic massive sulfide deposits 357Hadean detrital zircons 358Mid-Proterozoic 359

CRUSTAL GROWTH AND MATURATION 363Superior vs. Grenville province : 363Evolution of magmatic 818O through time 364

ULTRA-HIGH PRESSURE ECLOGITES, DABIE AND SULU 365FELSIC. VOLCANISM, WESTERN UNITED STATES 365

Low S18O-rhyolites, Yellowstone 365Timber Mountain / Oasis Valley Caldera Complex 368Bishop Tuff, Long Valley caldera 370

PHANEROZOIC GRANITES 371British Tertiary Igneous Province 371Mesozoic and Cenozoic granites of the western United States 374A-type granites, northeastern China 377Cenozoic granitoids of the Antarctic Peninsula 377Fe-oxide melt in syenitic xenoliths 378Magmatic epidote-bearing granitoids 378

ACKNOWLEDGMENTS 380REFERENCES 380

14 Radiation Effects in ZirconRodney C. Ewing, Alkiviathes Meldrum, LuMin Wang,

William J. Weber, L. Rene Corrales

INTRODUCTION 387EXPERIMENTAL RESULTS 389

Bulk properties 390Long range order 392Short-range order : 398Recovery of radiation damage ; 400

MODELS OF DAMAGE ACCUMULATION 405Temperature "'.. 406Ion mass'and energy 410

COMPUTER SIMULATION OF DEFECT FORMATIONAND RADIATION DAMAGE 411

Intrinsic and extrinsic defect energies 412Threshold displacement energies 413Collision cascades '. 414

UNRESOLVED RESEARCH ISSUES 418ACKNOWLEDGMENTS 420REFERENCES : 420

XVI

Page 12: ZIRCON - gbv.de · 6 Historical Development of Zircon Geochronology Donald W. Davis, Ian S. Williams, Thomas E. Krogh INTRODUCTION ". 145 PRELUDE .' 146 ISOTOPIC DATING OF ZIRCON

15 Spectroscopic methods applied to zirconLutz Nasdala, Ming Zhang, Ulf Kempe, Gerard Panczer, Michael Gaft,

Michael Andrut, Michael Plotze

INTRODUCTION 427LUMINESCENCE SPECTROSCOPY OF ZIRCON 428

Cathodoluminescence of zircon 428Laser-induced time-resolved photoluminescence of zircon 435

VIBRATIONAL SPECTROSCOPY OF ZIRCON 438Infrared absorption spectroscopy of zircon 438Raman spectroscopy of zircon 443

OTHER SPECTROSCOPIC TECHNIQUES 449Electronic absorption spectroscopy 449Mbssbauer spectroscopy 455Electron paramagnetic resonance 455Other spectroscopic methods 459

ACKNOWLEDGMENTS 460REFERENCES 460

16 Atlas of Zircon TexturesFernando Corfu, John M. Hanchar, Paul W.O. Hoskin, Peter Kinny

INTRODUCTION 469ZIRCON IMAGING 470MORPHOLOGY OF ZIRCON 472ZONING TEXTURES IN IGNEOUS ZIRCON 476XENOCRYSTIC CORES 478SUBSOLIDUS MODIFICATIONS AND GROWTH OF ZIRCON 480

Late-magmatic phenomena 480Medium to high temperature metamorphism 481High-pressure metamorphism :. 486

HYDROTHERMAL ZIRCON 487KIMBERLITIC AND MANTLE-RELATED ZIRCON 488IMPACT-RELATED TEXTURES 489FRACTURING 489ALTERATION 491INCLUSIONS, INTERGROWTHS AND OVERGROWTHS OF ZIRCON AND OTHER

MINERALS 493CONCLUDING REMARKS 494ACKNOWLEDGMENTS 495REFERENCES 495

XVII