Document

1
www-g.eng.cam.ac.uk/cosmos COSMOS is a Basic Technology Research Grant funded by the EPSRC, EP/D04894X Photonic band gap tuning in chiral nematic LCs S. S. Choi 1 , S.M. Morris 1 , W.T.S. Huck 2 , H.J. Coles 1 1 Centre of Molecular Materials for Photonics and Electronics (CMMPE), Department of Engineering, University of Cambridge 2 Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge The Concept 0 5 10 15 20 0 10 20 30 40 A verage sw itching angle, av (D eg) E lectric F ield (V m -1 ) Further reading: S.S. Choi, S. M. Morris, W.T.S. Huck, H.J. Coles, Appl. Phys. Lett, 91 , pp.231110(1)-231110(3), (2007). L. Komitov, B. Helgee, J. Felix, A. Matharu, Appl. Phys. Lett. 86, 023502 (2005) The Command Surfaces Results – Bandgap tuning • Continuous control of the PBG due to the in-plane rotation of the command surfaces. • Fine tuning using both frequency and electric field strength variation. Fig.1. Schematic of the cell structure and the wavelength tuning mechanism using electrically commanded surface of an FLC Fig.2. Continuous gold stone mode switching of the FLC material. Fig.4. (Right) Tuning results of the photonic band gap (PBG) using electrically commanded FLC surfaces. (a) The PBG as a function of electric field strength at a constant frequency of 1 kHz; (b) The PBG as a function of frequency at a constant electric field amplitude of 20.8 Vμm -1 at 25 o C; (c) The long-photonic band edge ( L ) as a function of electric field strength at different frequencies; (d) Comparison of the shift of the PBG for no, single, and dual command surfaces with a constant electric field of 20.8Vμm -1 at 1kHz. Fig.3. (Above) Average switching angle as a function of electric field strength. E-O FF E-O N Rubbing direction Rubbing direction ITO Polyimide Polyimide ITO G lass G lass FLC surface Bulk N *LC ( ε<0) FLC surface E-O FF E-O N Rubbing direction Rubbing direction ITO Polyimide Polyimide ITO G lass G lass FLC surface Bulk N *LC ( ε<0) FLC surface 1 2 3 4 5 1 2 34 5 Increase E-field strength (c) (d) 500 550 600 650 40 50 60 70 80 90 100 T ransm ittance (% ) W avelength (nm ) 0 V m -1 7.5 V m -1 15.7 V m -1 20.8 V m -1 (a) 500 550 600 650 40 50 60 70 80 90 100 T ransm ittance (% ) W avelen gth (n m ) O FF 5 kH z 3 kH z 1 kH z 400 H z (b) 0 5 10 15 20 590 595 600 605 610 615 L ong-P B E (nm ) E lectric F ield (V m -1 ) 1 kH z 2 kH z 3 kH z 4 kH z 5 kH z 500 550 600 650 30 40 50 60 70 80 90 100 2 1 3 T ransm ittance (% ) W avelen gth (n m ) 1 O N :N o FLC surface 2 O N :S ingle FL C surface 3 O N :D ualFLC surfaces (c) (d) 500 550 600 650 40 50 60 70 80 90 100 T ransm ittance (% ) W avelength (nm ) 0 V m -1 7.5 V m -1 15.7 V m -1 20.8 V m -1 (a) 500 550 600 650 40 50 60 70 80 90 100 T ransm ittance (% ) W avelen gth (n m ) O FF 5 kH z 3 kH z 1 kH z 400 H z (b) 0 5 10 15 20 590 595 600 605 610 615 L ong-P B E (nm ) E lectric F ield (V m -1 ) 1 kH z 2 kH z 3 kH z 4 kH z 5 kH z 500 550 600 650 30 40 50 60 70 80 90 100 2 1 3 T ransm ittance (% ) W avelen gth (n m ) 1 O N :N o FLC surface 2 O N :S ingle FL C surface 3 O N :D ualFLC surfaces • Passive switching mechanism of the chiral nematic liquid crystal (N*LC). Rotation of molecules at the surface generate a pitch contraction of the helix. • Continuous gold stone mode switching of a ferroelectric liquid crystal (FLC). 100nm thick coated FLC layers at the glass substrates. FLC layers respond to electric fields resulting in an in-plane rotation.

description

1. 5. 2. 3. 4. 5. 4. 3. 1. 2. Increase E-field strength. Photonic band gap tuning in chiral nematic LCs S. S. Choi 1 , S.M. Morris 1 , W.T.S. Huck 2 , H.J. Coles 1 - PowerPoint PPT Presentation

Transcript of Document

Page 1: Document

www-g.eng.cam.ac.uk/cosmos

COSMOS is a Basic Technology Research Grant funded by the EPSRC, EP/D04894X

Photonic band gap tuning in chiral nematic LCsS. S. Choi 1, S.M. Morris 1, W.T.S. Huck 2, H.J. Coles 1

1 Centre of Molecular Materials for Photonics and Electronics (CMMPE),Department of Engineering, University of Cambridge

2 Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge

The Concept

0 5 10 15 200

10

20

30

40

Ave

rage

switc

hing

ang

le, av

(Deg

)Electric Field (Vm-1)

Further reading: S.S. Choi, S. M. Morris, W.T.S. Huck, H.J. Coles, Appl. Phys. Lett, 91 , pp.231110(1)-231110(3), (2007).L. Komitov, B. Helgee, J. Felix, A. Matharu, Appl. Phys. Lett. 86, 023502 (2005)

The Command Surfaces

Results – Bandgap tuning• Continuous control of the PBG due to the in-plane rotation of the command surfaces.

• Fine tuning using both frequency and electric field strength variation.

Fig.1. Schematic of the cell structure and the wavelength tuning mechanism using electrically commanded surface of an FLC

Fig.2. Continuous gold stone mode switching of the FLC material.

Fig.4. (Right) Tuning results of the photonic band gap (PBG) using electrically commanded FLC surfaces.

(a) The PBG as a function of electric field strength at a constant frequency of 1 kHz;

(b) The PBG as a function of frequency at a constant electric field amplitude of 20.8 Vμm-1 at 25oC;

(c) The long-photonic band edge (L) as a function of electric field strength at different frequencies;

(d) Comparison of the shift of the PBG for no, single, and dual command surfaces with a constant electric field of 20.8Vμm-1 at 1kHz.

Fig.3. (Above) Average switching angle as a function of electric field strength.

E-OFF E-ON

Rubbing direction

Rubbing direction

ITOPolyimide

Polyimide

ITOGlass

Glass

FLC surface

Bulk N*LC(ε<0)

FLC surface

E-OFF E-ON

Rubbing direction

Rubbing direction

ITOPolyimide

Polyimide

ITOGlass

Glass

FLC surface

Bulk N*LC(ε<0)

FLC surface

1 2 3 4 5

12 3 4

5

Increase E-field strength

(c) (d)

500 550 600 65040

50

60

70

80

90

100

Tran

smitt

ance

(%)

Wavelength (nm)

0 Vm-1

7.5 Vm-1

15.7 Vm-1

20.8 Vm-1

(a)

500 550 600 65040

50

60

70

80

90

100

T

rans

mitt

ance

(%)

Wavelength (nm)

OFF 5 kHz 3 kHz 1 kHz 400 Hz

(b)

0 5 10 15 20590

595

600

605

610

615

Lon

g-PB

E (n

m)

Electric Field (V m-1)

1 kHz 2 kHz 3 kHz 4 kHz 5 kHz

500 550 600 65030

40

50

60

70

80

90

100

2 13

Tra

nsm

ittan

ce (%

)

Wavelength (nm)

1 ON:No FLC surface 2 ON:Single FLC surface 3 ON:Dual FLC surfaces

(c) (d)

500 550 600 65040

50

60

70

80

90

100

Tran

smitt

ance

(%)

Wavelength (nm)

0 Vm-1

7.5 Vm-1

15.7 Vm-1

20.8 Vm-1

(a)

500 550 600 65040

50

60

70

80

90

100

T

rans

mitt

ance

(%)

Wavelength (nm)

OFF 5 kHz 3 kHz 1 kHz 400 Hz

(b)

0 5 10 15 20590

595

600

605

610

615

Lon

g-PB

E (n

m)

Electric Field (V m-1)

1 kHz 2 kHz 3 kHz 4 kHz 5 kHz

500 550 600 65030

40

50

60

70

80

90

100

2 13

Tra

nsm

ittan

ce (%

)

Wavelength (nm)

1 ON:No FLC surface 2 ON:Single FLC surface 3 ON:Dual FLC surfaces

• Passive switching mechanism of the chiral nematic liquid crystal (N*LC).

• Rotation of molecules at the surface generate a pitch contraction of the helix.

• Continuous gold stone mode switching of a ferroelectric liquid crystal (FLC).

• 100nm thick coated FLC layers at the glass substrates.

• FLC layers respond to electric fields resulting in an in-plane rotation.