Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ...

24
WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW

Transcript of Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ...

Page 1: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

WAumlRTSILAuml RT‑FLEX96C AND WAumlRTSILAuml RTA96C TECHNOLOGY REVIEW

WAumlRTSILAuml RT‑FLEX96C AND WAumlRTSILAuml RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical features and benefits of Waumlrtsilauml RT‑flex96C and RTA96C low‑speed marine diesel engines

INTRODUCTION 4

RTA96C

WASTEHEATRECOVERY

DEVELOPMENTBACKGROUND 6

RT‑FLEXCONCEPTANDBENEFITS 8

RT‑FLEXCOMMON‑RAILSYSTEMAPPLIED 8

RT‑FLEXREALIN‑SERVICEFUELECONOMY 10

RT‑FLEXCLEANERINTHEENVIRONMENT 10

THETRADITIONALCAMSHAFTARRANGEMENT 11

ENGINESTRUCTURE 13

RUNNINGGEAR 14

COMBUSTIONCHAMBER 17

PISTON‑RUNNINGBEHAVIOUR 17

TURBOCHARGINGANDSCAVENGEAIRSYSTEM 18

INSTALLATIONARRANGEMENTS 19

FUELSAVINGWITHREDUCEDEMISSIONS 20

MAINTENANCE 21

SHIPREFERENCES 22

MAINTECHNICALDATA 23

1‑cylinder Waumlrtsilauml RT‑flex96C engine giving 68640 kW (960 bhp)

INTRODUCTION TheWaumlrtsilaumlRT‑flex96CandRTA96Clowshy

speedmarinedieselengineswithapower

rangeof24000to80080kWaretailorshy

madefortheeconomicreliablepropulsionof

largefastcontainerlinersTheyofferclear

substantialbenefits

bull Highpoweroutputsatoptimumshaft

speeds

bull Reliabilityandprovendesign

bull Competitivefirstcost

bull Economicalfuelconsumptionoverthe

wholeoperatingrange

bull Lowcylinderoilfeedrate

bull Threeyearsbetweenoverhauls

bull Lowmaintenancecosts

bull FullcompliancewiththeNOXemission

regulationofAnnexeVIoftheMARPOL

197378convention

TheWaumlrtsilaumlRT‑flex96Chasadditional

benefits

bull Smokelessoperationatallrunningspeeds

bull Betterfueleconomyinthepart‑loadrange

bull Lowersteadyrunningspeeds

bull Reducedmaintenancerequirementswith

simplerenginesettingandextendabletime

betweenoverhauls

TheWaumlrtsilaumlRTA96Ctwo‑strokedieselengine

wasintroducedinDecember1994tomeet

thedemandforevenhigherpoweroutputsto

propelthethencominggenerationoflarger

andfastercontainershipsItfollowedina

longlineofRTA‑seriesengineswitheach

generationbringinghigherpoweroutputsto

caterforeverincreasingshipsizes

TheRTA96Cwasreadilyacceptedinthe

marketItsreliabilitywasacknowledgedvery

quicklybythecontainershipoperatorsandled

toaverygoodreputationfurtherapplications

andrepeatorders

TheWaumlrtsilaumlRT‑flex96Ctwo‑strokediesel

enginewasintroducedin2003bycombining

thelatestcommon‑railtechnologyforfuel

injectionandvalveactuationwithfullyshy

4

Principal parameters of Waumlrtsilauml RT‑flex96C and RTA96C engines

Bore mm 960

Stroke mm 2500

OutputMCRR1 kWcyl 5720

bhpcyl 7780

SpeedrangeR1‑R3 rpm 102ndash92

BMEPatR1 bar 186

Pmax bar 145

MeanpistonspeedatR1 ms 85

Numberofcylinders 6ndash14

BSFCatfullloadR1 gkWh 171

gbhph 126

1‑ and 14‑cylinder engines only in RT‑flex version

Output kW

80 000

60 000

50 000

40 000

30 000

20 000

10 000

8 000

6 000

4 000

revmin

Output bhp

100 000

80 000

60 000

40 000

20 000

10 000

8 000

6 000

60 70 80 90 100 120 140

Engine speed

RTA72U-B

RT-flex84T-D RTA84T-D

RT-flex68-D RTA68-D

RT-flex58T-B RTA58T-B

RTA48T-B

RT-flex96C RTA96C

RT-flex60C-B

RT-flex50-B RTA50-B

RTA52U

RTA62U-B

RT-flex82T RTA82T

RT-flex82C RTA82C

integratedelectroniccontrolandthewellshy

establishedRTA96Cengine

The14‑cylinderRT‑flex96Cenginesextend

thepowerspectrumoftheRTAseriesupto

80800kW(108920bhp)Thuswithwaste

heatrecoverysystemswhichcanaddupto12

percentofenginepowerRT‑flex96Cengines

canmeetthepropulsionrequirementsoflarge

fastcontainershipsfromuptoaround12000

TEUcapacityatservicespeedsofaround25

knots

DEVELOPMENT BACKGROUND Waumlrtsilaumlhasapolicyofcontinuouslyupdating

itsengineprogrammeandenginedesignsto

adaptthemtothelatestmarketrequirements

andtodeliverthebenefitsoftechnical

improvementsTheWaumlrtsilaumlRT‑flex96Cand

RTA96Cenginetypesaregoodexamplesof

thispolicy

WhenthedesignoftheRTA96Cwas

introducedin1994itwasbasedfullyonthe

well‑establishedRTA84Ctotakeadvantageof

thewealthofexperienceintheoreticaldesign

testbedresearchandoperatingservicefrom

theRTA84CandotherpreviousRTA‑series

enginesThefirstRTA96Cenginesentered

servicein1997

In2000thecylinderpoweroftheRTA96C

wasraisedbysomefourpercentbyutilising

potentialalreadyinthedesignA14‑cylinder

modelwasalsoaddedtobringthemaximum

poweruptotodayrsquos80080kW(108920

bhp)Theincreasedpoweroutputwasmade

possiblebytheverysatisfactoryservice

experiencewiththeenginesinservice

Furtherimprovementsweresubsequently

achievedbytheintroductionofvariousdesign

measurestoimprovepiston‑runningbehaviour

Theseimprovementsreducewearratesof

cylinderlinersandpistonringsextendtimes

betweenoverhaulsandallowreducedcylinder

oilfeedrates

Amajorstepforwardwasachievedwhen

theRTA96CwascombinedwiththeRT‑flex

electronically‑controlledcommon‑railtechnology

forfuelinjectionandvalveactuationtocreate

theRT‑flex96Cengineintroducedin2003At

thesametimethedecisionwastakenthatthe

13‑and14‑cylinderengineswouldonlybebuilt

inRT‑flexform

TheRT‑flexcommon‑railtechnologyhad

beenintroducedfirstintheRT‑flex58T‑B

engineServiceresultswiththisenginewhich

enteredserviceinSeptember2001were

excellentclearlydemonstratingthatthenew

RT‑flexsystemoffersdistinctiveoperational

benefitswhicharenotpossiblewithcamshaft

enginesThustheexperiencefromthe

RT‑flex58T‑BenginetypetheRT‑flex60C

enginefirstbuiltin2002andthefull‑sized

RT‑flex58TresearchenginesinceJune1998

wereemployedinthedevelopmentofthe

RT‑flex96Cengine

ThefirstRT‑flex96Cengineswereshop

testedinApril2004(eight‑cylinderengine)

andJune2004(12‑cylinderengine)These

subsequentlyenteredserviceinNovemberand

December2004respectively

6

Waumlrtsilauml RT‑flex96C

RT‑FLEX CONCEPT AND BENEFITS TheWaumlrtsilaumlRT‑flexsystemistheresultofa

longprojectsincethe1980stodeveloplowshy

speedmarineengineswithouttheconstraints

imposedbymechanicaldriveoffuelinjection

pumpsandvalveactuationpumpsbutwith

fargreaterflexibilityinenginesettingtoreach

futurerequirementsTheobjectiveistodeliver

operationalbenefitstotheshipowners

TheWaumlrtsilaumlRT‑flex96Cisbasicallya

standardWaumlrtsilaumllow‑speedtwo‑strokemarine

dieselengineexceptthatinsteadoftheusual

camshaftanditsgeardrivefuelinjectionpumps

exhaustvalveactuatorpumpsandreversing

servomotorsitisequippedwithacommon‑rail

systemforfuelinjectionexhaustvalveactuation

andairstartingandfullelectroniccontrolofthese

enginefunctions

Thecommon‑railinjectionsystemoperates

withjustthesamegradesofheavyfueloilas

arealreadystandardforWaumlrtsilaumllow‑speed

engines

TheRT‑flexenginesofferanumberof

interestingbenefitstoshipownersandoperators

bull Smokelessoperationatalloperatingspeeds

bull Lowersteadyrunningspeedsintherange

of10‑15percentnominalspeedobtained

smokelesslythroughsequentialshut‑off

ofinjectorswhilecontinuingtorunonall

cylinders

bull Reducedrunningcoststhroughlowerpartshy

loadfuelconsumptionandlongertimes

betweenoverhauls

bull Reducedmaintenancerequirementswith

simplersettingoftheengineThelsquoasshy

newrsquorunningsettingsareautomatically

maintained

bull Reducedmaintenancecoststhroughprecise

volumetricfuelinjectioncontrolleadingto

extendabletimesbetweenoverhaulsThe

common‑railsystemwithitsvolumetric

controlgivesexcellentbalanceinengine

powerdevelopedbetweencylindersand

betweencycleswithpreciseinjectiontiming

andequalisedthermalloads

bull Reliabilityisgivenbylong‑termtestingof

common‑railhardwareincomponenttestrigs

bull Higheravailabilityowingtotheintegrated

monitoringfunctions

bull Highavailabilityalsogivenbythebuilt‑in

redundancyprovidedbytheamplecapacity

andduplicationinthesupplypumpsmain

deliverypipescrank‑anglesensorselectronic

controlunitsandotherkeyelements

RT‑FLEX COMMON‑RAIL SYSTEM APPLIED Thecommonrailforfuelinjectionisamanifold

runningthelengthoftheengineatjustbelow

thecylindercoverlevelThecommonrailand

otherrelatedpipeworkareneatlyarranged

beneaththetopengineplatformandreadily

accessiblefromabove

Thecommonrailisfedwithheatedfueloil

attheusualhighpressure(nominally1000

bar)readyforinjectionThesupplyunithasa

numberofhigh‑pressurepumpsrunningon

multi‑lobecams

Fuelisdeliveredfromthiscommonrail

throughaseparateinjectioncontrolunit

foreachenginecylindertothestandard

fuelinjectionvalveswhicharehydraulically

operatedintheusualwaybythehigh‑pressure

fueloilThecontrolunitsusingquick‑acting

Waumlrtsilaumlrailvalvesregulatethetimingoffuel

injectioncontrolthevolumeoffuelinjected

andsettheshapeoftheinjectionpattern

Thethreefuelinjectionvalvesineachcylinder

coverareseparatelycontrolledsothat

althoughtheynormallyactinunisontheycan

alsobeprogrammedtooperateseparatelyas

necessary

ThekeyfeaturesoftheWaumlrtsilaumlRT‑flex

common‑railsystemare

bull Precisevolumetriccontroloffuelinjection

withintegratedflow‑outsecurity

bull Variableinjectionrateshapingandfree

selectionofinjectionpressure

bull Stablepressurelevelsincommonrailand

supplypipes

bull Possibilityforindependentcontroland

shuttingoffofindividualfuelinjectionvalves

bull Ideallysuitedforheavyfueloilthroughclear

separationofthefueloilfromthehydraulic

pilotvalves

bull Well‑provenstandardfuelinjectionvalves

bull Provenhigh‑efficiencycommon‑railfuel

pumps

TheRT‑flexsystemalsoencompassesexhaust

Rail unit at the cylinder top level of the RT‑flex96C engine with electronic control units on the front of the rail unit for good access

valveactuationandstartingaircontrolThe

exhaustvalvesareoperatedinmuchthesame

wayasinexistingRTAenginesbyahydraulic

pushrodbutwiththeactuatingenergynow

comingfromaservooilrailat200barpressure

Theservooilissuppliedbyhigh‑pressure

hydraulicpumpsincorporatedinthesupplyunit

withthefuelsupplypumpsTheelectronicallyshy

controlledactuatingunitforeachcylindergives

fullflexibilityintimingforvalveopeningand

closing

AllfunctionsintheRT‑flexsystemare

controlledandmonitoredthroughthe

integratedWaumlrtsilaumlWECS‑9520electronic

controlsystemThisisamodularsystemwith

separatemicroprocessorcontrolunitsforeach

cylinderandoverallcontrolandsupervision

byduplicatedmicroprocessorcontrolunits

Thelatterprovidetheusualinterfaceforthe

electronicgovernorandtheshipboardremote

controlandalarmsystems

8

Various RT‑flex equipment on the lower platform of a 1RT‑flex96C engine From left to right these include (A) the local engine control panel (B) the automatic fine filter for servo and control oil (C) the two electrically‑driven control oil pumps and (D) the supply unit

Inside the rail unit of an RT‑flex96C engine during assembly The exhaust valve actuator (A) is mounted on the servo oil rail and the injection control unit (B) is on the fuel rail Next to the fuel rail is the smaller control oil rail (C) and the return pipe for servo and control oil (D)

Supply unit for a 1RT‑flex96C engine with the fuel pumps in Vee‑form arrangement on the left and the servo pumps on the right of the central gear drive

Volumetric fuel injection control unit

Fuel injectors

Exhaust valve actuator

Exhaust valve actuating unit

Crank angle

sensor

WECS control system

30bar starting air

200bar servo oil

1000bar fuel HFO MDO

Schematic of the Waumlrtsilauml RT‑flex system with electronically‑controlled common‑rail systems for fuel injection exhaust valve operation and starting air

9

RT‑FLEX REAL IN‑SERVICE FUEL ECONOMY

WhereasWaumlrtsilaumlRTA‑seriesengines

haveexcellentfuelconsumptionin

generaltheRT‑flexsystemenablesfurther

improvementstobeachievedinthepartshy

loadrangeThisisbecauseofthefreedom

allowedbytheRT‑flexsysteminselecting

optimuminjectionpressurefuelinjection

timingandexhaustvalvetimingatallengine

loadsorspeedswhileensuringefficient

combustionatalltimesevenduringdead

slowrunning

Similarfreedominexhaustvalve

timingallowstheRT‑flexsystemtokeep

combustionairexcesshighbyearliervalve

closingastheloadspeedisreducedThisis

notonlyadvantageousforfuelconsumption

butalsolimitscomponenttemperatures

whichwouldnormallyincreaseatlowload

Lowerturbochargerefficienciesatpartload

normallyresultinlowexcesscombustionair

withfixedvalvetiming

Anotherimportantcontributiontofuel

economyoftheRT‑flex96Cenginesisthe

capabilitytoadapteasilytheinjectiontiming

tovariousfuelpropertieshavingapoor

combustionbehaviour

DELTA TUNING A FUEL EFFICIENCY ALTERNATIVE Throughtheirflexibilityinenginesetting

RT‑flexenginesalsohaveanalternativefuel

consumptioncurveasstandardtogivelower

BSFC(brakespecificfuelconsumption)in

whatisformanyshipsthemainoperating

rangeThroughDeltaTuningtheBSFCis

loweredinthemid‑andlow‑loadoperating

rangeatlessthan90percentenginepower

TheconsequentincreaseinNOXinthat

operatingrangeiscompensatedbyreducing

NOXemissionsinthehighloadrangeWith

bothBSFCcurvestheenginescomplywith

theNOXregulationoftheMARPOL7378

convention

The new alternative BSFC curve for RT‑flex96C engines given by Delta Tuning compared with the original BSFC curves All curves shown are for engines complying with the IMO NOX regulation

Smoke emission measurements for RT‑flex96C engines compared with the RTA96C engines both using marine diesel oil

RT‑FLEX CLEANER IN THE ENVIRONMENT Exhaustgasemissionshavebecomean

importantaspectofmarinedieselenginesAll

WaumlrtsilaumlRTAandRT‑flexenginescomplywith

theNOXemissionslimitofAnnexVIofthe

MARPOL7378conventionasstandard

RT‑flexengineshowevercome

comfortablybelowthisNOXlimitbyvirtueof

theirextremelywideflexibilityinoptimising

thefuelinjectionandexhaustvalve

processes

ThemostvisiblebenefitofRT‑flexengines

isofcoursetheirsmokelessoperationatall

shipspeedsThesuperiorcombustionwith

thecommon‑railsystemislargelybecause

thefuelinjectionpressureismaintainedat

theoptimumlevelirrespectiveofengine

speedInadditionatverylowspeeds

individualfuelinjectorsareselectivelyshut

offandtheexhaustvalvetimingadaptedto

helptokeepsmokeemissionsbelowthe

visiblelimit

Yettheenvironmentalbenefitsof

RT‑flexenginesneednotberestrictedby

thecurrentstate‑of‑the‑artAsallsettings

andadjustmentswithinthecombustion

andscavengingprocessesaremade

electronicallyfutureadaptationswill

bepossiblesimplythroughchangesin

softwarewhichcouldbereadilyretrofitted

toexistingRT‑flexengines

Amajorreductioninallexhaust

emissionsincludingCO2canbeobtained

withRT‑flex96Cenginesbycombiningthe

enginewithahigh‑efficiencywasteheat

recoveryplant(seepage20)

Aswellasinvestigatingthescopeof

possibilitiesoftheRT‑flexsystemWaumlrtsilauml

iscarryingoutalong‑termresearch

programmetodeveloptechniquesfor

furtherreducingexhaustemissions

includingNOXSOXandCO2inbothRTA

andRT‑flexengines

10

1‑cylinder Waumlrtsilauml RTA96C engine giving 68640 kW

RTA96C THE TRADITIONAL CAMSHAFT ARRANGEMENT TheWaumlrtsilaumlRTA96Cretainsthetraditional

mechanicalcamshaftarrangementforfuel

injectionpumpsandvalvedrives

Thecamshaft‑drivenfuelinjectionpumps

areofthewell‑provendouble‑valvecontrolled

typethathasbeentraditionalinWaumlrtsilaumllowshy

speedenginesInjectiontimingiscontrolled

byseparatesuctionandspillvalvesregulated

througheccentricsonhydraulically‑actuated

layshaftsConsequentlygreatflexibilityin

timingispossiblethroughthevariablefuel

injectiontiming(VIT)systemforimprovedpartshy

loadfuelconsumptionandforthefuelquality

setting(FQS)levertoadjusttheinjectiontiming

accordingtothefueloilquality

Thevalve‑controlledfuelinjectionpump

incomparisonwithahelixtypehasaplunger

withasignificantlygreatersealinglength

Thehighervolumetricefficiencyreducesthe

torqueinthecamshaftAdditionallyinjection

fromavalve‑controlledpumpisfarmore

stableatverylowloadsandrotationalshaft

speedsdownto15percentoftherated

speedareachievedValvecontrolalsohas

benefitsoflessdeteriorationoftimingover

theyearsowingtolesswearandtofreedom

fromcavitation

Thecamshaftisassembledfromanumber

ofsegmentsoneforeachpumphousingThe

segmentsareconnectedthroughSKFsleeve

couplingsEachsegmenthasanintegral

hydraulicreversingservomotorlocatedwithin

thepumphousing

Thecamshaftdriveusesthewellshy

provenarrangementofgearwheels

housedinadoublecolumnlocated

atthedrivingendinthecentreof

theenginedependinguponnumber

ofcylindersTherearethreegear

wheelsinthecamshaftdriveThemaingear

wheelonthecrankshaftisinonepieceand

flange‑mounted

Fuel injection pump with double control valves

Pump housing with fuel injection pumps and exhaust‑valve actuator pumps

11

1

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 2: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

WAumlRTSILAuml RT‑FLEX96C AND WAumlRTSILAuml RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical features and benefits of Waumlrtsilauml RT‑flex96C and RTA96C low‑speed marine diesel engines

INTRODUCTION 4

RTA96C

WASTEHEATRECOVERY

DEVELOPMENTBACKGROUND 6

RT‑FLEXCONCEPTANDBENEFITS 8

RT‑FLEXCOMMON‑RAILSYSTEMAPPLIED 8

RT‑FLEXREALIN‑SERVICEFUELECONOMY 10

RT‑FLEXCLEANERINTHEENVIRONMENT 10

THETRADITIONALCAMSHAFTARRANGEMENT 11

ENGINESTRUCTURE 13

RUNNINGGEAR 14

COMBUSTIONCHAMBER 17

PISTON‑RUNNINGBEHAVIOUR 17

TURBOCHARGINGANDSCAVENGEAIRSYSTEM 18

INSTALLATIONARRANGEMENTS 19

FUELSAVINGWITHREDUCEDEMISSIONS 20

MAINTENANCE 21

SHIPREFERENCES 22

MAINTECHNICALDATA 23

1‑cylinder Waumlrtsilauml RT‑flex96C engine giving 68640 kW (960 bhp)

INTRODUCTION TheWaumlrtsilaumlRT‑flex96CandRTA96Clowshy

speedmarinedieselengineswithapower

rangeof24000to80080kWaretailorshy

madefortheeconomicreliablepropulsionof

largefastcontainerlinersTheyofferclear

substantialbenefits

bull Highpoweroutputsatoptimumshaft

speeds

bull Reliabilityandprovendesign

bull Competitivefirstcost

bull Economicalfuelconsumptionoverthe

wholeoperatingrange

bull Lowcylinderoilfeedrate

bull Threeyearsbetweenoverhauls

bull Lowmaintenancecosts

bull FullcompliancewiththeNOXemission

regulationofAnnexeVIoftheMARPOL

197378convention

TheWaumlrtsilaumlRT‑flex96Chasadditional

benefits

bull Smokelessoperationatallrunningspeeds

bull Betterfueleconomyinthepart‑loadrange

bull Lowersteadyrunningspeeds

bull Reducedmaintenancerequirementswith

simplerenginesettingandextendabletime

betweenoverhauls

TheWaumlrtsilaumlRTA96Ctwo‑strokedieselengine

wasintroducedinDecember1994tomeet

thedemandforevenhigherpoweroutputsto

propelthethencominggenerationoflarger

andfastercontainershipsItfollowedina

longlineofRTA‑seriesengineswitheach

generationbringinghigherpoweroutputsto

caterforeverincreasingshipsizes

TheRTA96Cwasreadilyacceptedinthe

marketItsreliabilitywasacknowledgedvery

quicklybythecontainershipoperatorsandled

toaverygoodreputationfurtherapplications

andrepeatorders

TheWaumlrtsilaumlRT‑flex96Ctwo‑strokediesel

enginewasintroducedin2003bycombining

thelatestcommon‑railtechnologyforfuel

injectionandvalveactuationwithfullyshy

4

Principal parameters of Waumlrtsilauml RT‑flex96C and RTA96C engines

Bore mm 960

Stroke mm 2500

OutputMCRR1 kWcyl 5720

bhpcyl 7780

SpeedrangeR1‑R3 rpm 102ndash92

BMEPatR1 bar 186

Pmax bar 145

MeanpistonspeedatR1 ms 85

Numberofcylinders 6ndash14

BSFCatfullloadR1 gkWh 171

gbhph 126

1‑ and 14‑cylinder engines only in RT‑flex version

Output kW

80 000

60 000

50 000

40 000

30 000

20 000

10 000

8 000

6 000

4 000

revmin

Output bhp

100 000

80 000

60 000

40 000

20 000

10 000

8 000

6 000

60 70 80 90 100 120 140

Engine speed

RTA72U-B

RT-flex84T-D RTA84T-D

RT-flex68-D RTA68-D

RT-flex58T-B RTA58T-B

RTA48T-B

RT-flex96C RTA96C

RT-flex60C-B

RT-flex50-B RTA50-B

RTA52U

RTA62U-B

RT-flex82T RTA82T

RT-flex82C RTA82C

integratedelectroniccontrolandthewellshy

establishedRTA96Cengine

The14‑cylinderRT‑flex96Cenginesextend

thepowerspectrumoftheRTAseriesupto

80800kW(108920bhp)Thuswithwaste

heatrecoverysystemswhichcanaddupto12

percentofenginepowerRT‑flex96Cengines

canmeetthepropulsionrequirementsoflarge

fastcontainershipsfromuptoaround12000

TEUcapacityatservicespeedsofaround25

knots

DEVELOPMENT BACKGROUND Waumlrtsilaumlhasapolicyofcontinuouslyupdating

itsengineprogrammeandenginedesignsto

adaptthemtothelatestmarketrequirements

andtodeliverthebenefitsoftechnical

improvementsTheWaumlrtsilaumlRT‑flex96Cand

RTA96Cenginetypesaregoodexamplesof

thispolicy

WhenthedesignoftheRTA96Cwas

introducedin1994itwasbasedfullyonthe

well‑establishedRTA84Ctotakeadvantageof

thewealthofexperienceintheoreticaldesign

testbedresearchandoperatingservicefrom

theRTA84CandotherpreviousRTA‑series

enginesThefirstRTA96Cenginesentered

servicein1997

In2000thecylinderpoweroftheRTA96C

wasraisedbysomefourpercentbyutilising

potentialalreadyinthedesignA14‑cylinder

modelwasalsoaddedtobringthemaximum

poweruptotodayrsquos80080kW(108920

bhp)Theincreasedpoweroutputwasmade

possiblebytheverysatisfactoryservice

experiencewiththeenginesinservice

Furtherimprovementsweresubsequently

achievedbytheintroductionofvariousdesign

measurestoimprovepiston‑runningbehaviour

Theseimprovementsreducewearratesof

cylinderlinersandpistonringsextendtimes

betweenoverhaulsandallowreducedcylinder

oilfeedrates

Amajorstepforwardwasachievedwhen

theRTA96CwascombinedwiththeRT‑flex

electronically‑controlledcommon‑railtechnology

forfuelinjectionandvalveactuationtocreate

theRT‑flex96Cengineintroducedin2003At

thesametimethedecisionwastakenthatthe

13‑and14‑cylinderengineswouldonlybebuilt

inRT‑flexform

TheRT‑flexcommon‑railtechnologyhad

beenintroducedfirstintheRT‑flex58T‑B

engineServiceresultswiththisenginewhich

enteredserviceinSeptember2001were

excellentclearlydemonstratingthatthenew

RT‑flexsystemoffersdistinctiveoperational

benefitswhicharenotpossiblewithcamshaft

enginesThustheexperiencefromthe

RT‑flex58T‑BenginetypetheRT‑flex60C

enginefirstbuiltin2002andthefull‑sized

RT‑flex58TresearchenginesinceJune1998

wereemployedinthedevelopmentofthe

RT‑flex96Cengine

ThefirstRT‑flex96Cengineswereshop

testedinApril2004(eight‑cylinderengine)

andJune2004(12‑cylinderengine)These

subsequentlyenteredserviceinNovemberand

December2004respectively

6

Waumlrtsilauml RT‑flex96C

RT‑FLEX CONCEPT AND BENEFITS TheWaumlrtsilaumlRT‑flexsystemistheresultofa

longprojectsincethe1980stodeveloplowshy

speedmarineengineswithouttheconstraints

imposedbymechanicaldriveoffuelinjection

pumpsandvalveactuationpumpsbutwith

fargreaterflexibilityinenginesettingtoreach

futurerequirementsTheobjectiveistodeliver

operationalbenefitstotheshipowners

TheWaumlrtsilaumlRT‑flex96Cisbasicallya

standardWaumlrtsilaumllow‑speedtwo‑strokemarine

dieselengineexceptthatinsteadoftheusual

camshaftanditsgeardrivefuelinjectionpumps

exhaustvalveactuatorpumpsandreversing

servomotorsitisequippedwithacommon‑rail

systemforfuelinjectionexhaustvalveactuation

andairstartingandfullelectroniccontrolofthese

enginefunctions

Thecommon‑railinjectionsystemoperates

withjustthesamegradesofheavyfueloilas

arealreadystandardforWaumlrtsilaumllow‑speed

engines

TheRT‑flexenginesofferanumberof

interestingbenefitstoshipownersandoperators

bull Smokelessoperationatalloperatingspeeds

bull Lowersteadyrunningspeedsintherange

of10‑15percentnominalspeedobtained

smokelesslythroughsequentialshut‑off

ofinjectorswhilecontinuingtorunonall

cylinders

bull Reducedrunningcoststhroughlowerpartshy

loadfuelconsumptionandlongertimes

betweenoverhauls

bull Reducedmaintenancerequirementswith

simplersettingoftheengineThelsquoasshy

newrsquorunningsettingsareautomatically

maintained

bull Reducedmaintenancecoststhroughprecise

volumetricfuelinjectioncontrolleadingto

extendabletimesbetweenoverhaulsThe

common‑railsystemwithitsvolumetric

controlgivesexcellentbalanceinengine

powerdevelopedbetweencylindersand

betweencycleswithpreciseinjectiontiming

andequalisedthermalloads

bull Reliabilityisgivenbylong‑termtestingof

common‑railhardwareincomponenttestrigs

bull Higheravailabilityowingtotheintegrated

monitoringfunctions

bull Highavailabilityalsogivenbythebuilt‑in

redundancyprovidedbytheamplecapacity

andduplicationinthesupplypumpsmain

deliverypipescrank‑anglesensorselectronic

controlunitsandotherkeyelements

RT‑FLEX COMMON‑RAIL SYSTEM APPLIED Thecommonrailforfuelinjectionisamanifold

runningthelengthoftheengineatjustbelow

thecylindercoverlevelThecommonrailand

otherrelatedpipeworkareneatlyarranged

beneaththetopengineplatformandreadily

accessiblefromabove

Thecommonrailisfedwithheatedfueloil

attheusualhighpressure(nominally1000

bar)readyforinjectionThesupplyunithasa

numberofhigh‑pressurepumpsrunningon

multi‑lobecams

Fuelisdeliveredfromthiscommonrail

throughaseparateinjectioncontrolunit

foreachenginecylindertothestandard

fuelinjectionvalveswhicharehydraulically

operatedintheusualwaybythehigh‑pressure

fueloilThecontrolunitsusingquick‑acting

Waumlrtsilaumlrailvalvesregulatethetimingoffuel

injectioncontrolthevolumeoffuelinjected

andsettheshapeoftheinjectionpattern

Thethreefuelinjectionvalvesineachcylinder

coverareseparatelycontrolledsothat

althoughtheynormallyactinunisontheycan

alsobeprogrammedtooperateseparatelyas

necessary

ThekeyfeaturesoftheWaumlrtsilaumlRT‑flex

common‑railsystemare

bull Precisevolumetriccontroloffuelinjection

withintegratedflow‑outsecurity

bull Variableinjectionrateshapingandfree

selectionofinjectionpressure

bull Stablepressurelevelsincommonrailand

supplypipes

bull Possibilityforindependentcontroland

shuttingoffofindividualfuelinjectionvalves

bull Ideallysuitedforheavyfueloilthroughclear

separationofthefueloilfromthehydraulic

pilotvalves

bull Well‑provenstandardfuelinjectionvalves

bull Provenhigh‑efficiencycommon‑railfuel

pumps

TheRT‑flexsystemalsoencompassesexhaust

Rail unit at the cylinder top level of the RT‑flex96C engine with electronic control units on the front of the rail unit for good access

valveactuationandstartingaircontrolThe

exhaustvalvesareoperatedinmuchthesame

wayasinexistingRTAenginesbyahydraulic

pushrodbutwiththeactuatingenergynow

comingfromaservooilrailat200barpressure

Theservooilissuppliedbyhigh‑pressure

hydraulicpumpsincorporatedinthesupplyunit

withthefuelsupplypumpsTheelectronicallyshy

controlledactuatingunitforeachcylindergives

fullflexibilityintimingforvalveopeningand

closing

AllfunctionsintheRT‑flexsystemare

controlledandmonitoredthroughthe

integratedWaumlrtsilaumlWECS‑9520electronic

controlsystemThisisamodularsystemwith

separatemicroprocessorcontrolunitsforeach

cylinderandoverallcontrolandsupervision

byduplicatedmicroprocessorcontrolunits

Thelatterprovidetheusualinterfaceforthe

electronicgovernorandtheshipboardremote

controlandalarmsystems

8

Various RT‑flex equipment on the lower platform of a 1RT‑flex96C engine From left to right these include (A) the local engine control panel (B) the automatic fine filter for servo and control oil (C) the two electrically‑driven control oil pumps and (D) the supply unit

Inside the rail unit of an RT‑flex96C engine during assembly The exhaust valve actuator (A) is mounted on the servo oil rail and the injection control unit (B) is on the fuel rail Next to the fuel rail is the smaller control oil rail (C) and the return pipe for servo and control oil (D)

Supply unit for a 1RT‑flex96C engine with the fuel pumps in Vee‑form arrangement on the left and the servo pumps on the right of the central gear drive

Volumetric fuel injection control unit

Fuel injectors

Exhaust valve actuator

Exhaust valve actuating unit

Crank angle

sensor

WECS control system

30bar starting air

200bar servo oil

1000bar fuel HFO MDO

Schematic of the Waumlrtsilauml RT‑flex system with electronically‑controlled common‑rail systems for fuel injection exhaust valve operation and starting air

9

RT‑FLEX REAL IN‑SERVICE FUEL ECONOMY

WhereasWaumlrtsilaumlRTA‑seriesengines

haveexcellentfuelconsumptionin

generaltheRT‑flexsystemenablesfurther

improvementstobeachievedinthepartshy

loadrangeThisisbecauseofthefreedom

allowedbytheRT‑flexsysteminselecting

optimuminjectionpressurefuelinjection

timingandexhaustvalvetimingatallengine

loadsorspeedswhileensuringefficient

combustionatalltimesevenduringdead

slowrunning

Similarfreedominexhaustvalve

timingallowstheRT‑flexsystemtokeep

combustionairexcesshighbyearliervalve

closingastheloadspeedisreducedThisis

notonlyadvantageousforfuelconsumption

butalsolimitscomponenttemperatures

whichwouldnormallyincreaseatlowload

Lowerturbochargerefficienciesatpartload

normallyresultinlowexcesscombustionair

withfixedvalvetiming

Anotherimportantcontributiontofuel

economyoftheRT‑flex96Cenginesisthe

capabilitytoadapteasilytheinjectiontiming

tovariousfuelpropertieshavingapoor

combustionbehaviour

DELTA TUNING A FUEL EFFICIENCY ALTERNATIVE Throughtheirflexibilityinenginesetting

RT‑flexenginesalsohaveanalternativefuel

consumptioncurveasstandardtogivelower

BSFC(brakespecificfuelconsumption)in

whatisformanyshipsthemainoperating

rangeThroughDeltaTuningtheBSFCis

loweredinthemid‑andlow‑loadoperating

rangeatlessthan90percentenginepower

TheconsequentincreaseinNOXinthat

operatingrangeiscompensatedbyreducing

NOXemissionsinthehighloadrangeWith

bothBSFCcurvestheenginescomplywith

theNOXregulationoftheMARPOL7378

convention

The new alternative BSFC curve for RT‑flex96C engines given by Delta Tuning compared with the original BSFC curves All curves shown are for engines complying with the IMO NOX regulation

Smoke emission measurements for RT‑flex96C engines compared with the RTA96C engines both using marine diesel oil

RT‑FLEX CLEANER IN THE ENVIRONMENT Exhaustgasemissionshavebecomean

importantaspectofmarinedieselenginesAll

WaumlrtsilaumlRTAandRT‑flexenginescomplywith

theNOXemissionslimitofAnnexVIofthe

MARPOL7378conventionasstandard

RT‑flexengineshowevercome

comfortablybelowthisNOXlimitbyvirtueof

theirextremelywideflexibilityinoptimising

thefuelinjectionandexhaustvalve

processes

ThemostvisiblebenefitofRT‑flexengines

isofcoursetheirsmokelessoperationatall

shipspeedsThesuperiorcombustionwith

thecommon‑railsystemislargelybecause

thefuelinjectionpressureismaintainedat

theoptimumlevelirrespectiveofengine

speedInadditionatverylowspeeds

individualfuelinjectorsareselectivelyshut

offandtheexhaustvalvetimingadaptedto

helptokeepsmokeemissionsbelowthe

visiblelimit

Yettheenvironmentalbenefitsof

RT‑flexenginesneednotberestrictedby

thecurrentstate‑of‑the‑artAsallsettings

andadjustmentswithinthecombustion

andscavengingprocessesaremade

electronicallyfutureadaptationswill

bepossiblesimplythroughchangesin

softwarewhichcouldbereadilyretrofitted

toexistingRT‑flexengines

Amajorreductioninallexhaust

emissionsincludingCO2canbeobtained

withRT‑flex96Cenginesbycombiningthe

enginewithahigh‑efficiencywasteheat

recoveryplant(seepage20)

Aswellasinvestigatingthescopeof

possibilitiesoftheRT‑flexsystemWaumlrtsilauml

iscarryingoutalong‑termresearch

programmetodeveloptechniquesfor

furtherreducingexhaustemissions

includingNOXSOXandCO2inbothRTA

andRT‑flexengines

10

1‑cylinder Waumlrtsilauml RTA96C engine giving 68640 kW

RTA96C THE TRADITIONAL CAMSHAFT ARRANGEMENT TheWaumlrtsilaumlRTA96Cretainsthetraditional

mechanicalcamshaftarrangementforfuel

injectionpumpsandvalvedrives

Thecamshaft‑drivenfuelinjectionpumps

areofthewell‑provendouble‑valvecontrolled

typethathasbeentraditionalinWaumlrtsilaumllowshy

speedenginesInjectiontimingiscontrolled

byseparatesuctionandspillvalvesregulated

througheccentricsonhydraulically‑actuated

layshaftsConsequentlygreatflexibilityin

timingispossiblethroughthevariablefuel

injectiontiming(VIT)systemforimprovedpartshy

loadfuelconsumptionandforthefuelquality

setting(FQS)levertoadjusttheinjectiontiming

accordingtothefueloilquality

Thevalve‑controlledfuelinjectionpump

incomparisonwithahelixtypehasaplunger

withasignificantlygreatersealinglength

Thehighervolumetricefficiencyreducesthe

torqueinthecamshaftAdditionallyinjection

fromavalve‑controlledpumpisfarmore

stableatverylowloadsandrotationalshaft

speedsdownto15percentoftherated

speedareachievedValvecontrolalsohas

benefitsoflessdeteriorationoftimingover

theyearsowingtolesswearandtofreedom

fromcavitation

Thecamshaftisassembledfromanumber

ofsegmentsoneforeachpumphousingThe

segmentsareconnectedthroughSKFsleeve

couplingsEachsegmenthasanintegral

hydraulicreversingservomotorlocatedwithin

thepumphousing

Thecamshaftdriveusesthewellshy

provenarrangementofgearwheels

housedinadoublecolumnlocated

atthedrivingendinthecentreof

theenginedependinguponnumber

ofcylindersTherearethreegear

wheelsinthecamshaftdriveThemaingear

wheelonthecrankshaftisinonepieceand

flange‑mounted

Fuel injection pump with double control valves

Pump housing with fuel injection pumps and exhaust‑valve actuator pumps

11

1

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 3: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

1‑cylinder Waumlrtsilauml RT‑flex96C engine giving 68640 kW (960 bhp)

INTRODUCTION TheWaumlrtsilaumlRT‑flex96CandRTA96Clowshy

speedmarinedieselengineswithapower

rangeof24000to80080kWaretailorshy

madefortheeconomicreliablepropulsionof

largefastcontainerlinersTheyofferclear

substantialbenefits

bull Highpoweroutputsatoptimumshaft

speeds

bull Reliabilityandprovendesign

bull Competitivefirstcost

bull Economicalfuelconsumptionoverthe

wholeoperatingrange

bull Lowcylinderoilfeedrate

bull Threeyearsbetweenoverhauls

bull Lowmaintenancecosts

bull FullcompliancewiththeNOXemission

regulationofAnnexeVIoftheMARPOL

197378convention

TheWaumlrtsilaumlRT‑flex96Chasadditional

benefits

bull Smokelessoperationatallrunningspeeds

bull Betterfueleconomyinthepart‑loadrange

bull Lowersteadyrunningspeeds

bull Reducedmaintenancerequirementswith

simplerenginesettingandextendabletime

betweenoverhauls

TheWaumlrtsilaumlRTA96Ctwo‑strokedieselengine

wasintroducedinDecember1994tomeet

thedemandforevenhigherpoweroutputsto

propelthethencominggenerationoflarger

andfastercontainershipsItfollowedina

longlineofRTA‑seriesengineswitheach

generationbringinghigherpoweroutputsto

caterforeverincreasingshipsizes

TheRTA96Cwasreadilyacceptedinthe

marketItsreliabilitywasacknowledgedvery

quicklybythecontainershipoperatorsandled

toaverygoodreputationfurtherapplications

andrepeatorders

TheWaumlrtsilaumlRT‑flex96Ctwo‑strokediesel

enginewasintroducedin2003bycombining

thelatestcommon‑railtechnologyforfuel

injectionandvalveactuationwithfullyshy

4

Principal parameters of Waumlrtsilauml RT‑flex96C and RTA96C engines

Bore mm 960

Stroke mm 2500

OutputMCRR1 kWcyl 5720

bhpcyl 7780

SpeedrangeR1‑R3 rpm 102ndash92

BMEPatR1 bar 186

Pmax bar 145

MeanpistonspeedatR1 ms 85

Numberofcylinders 6ndash14

BSFCatfullloadR1 gkWh 171

gbhph 126

1‑ and 14‑cylinder engines only in RT‑flex version

Output kW

80 000

60 000

50 000

40 000

30 000

20 000

10 000

8 000

6 000

4 000

revmin

Output bhp

100 000

80 000

60 000

40 000

20 000

10 000

8 000

6 000

60 70 80 90 100 120 140

Engine speed

RTA72U-B

RT-flex84T-D RTA84T-D

RT-flex68-D RTA68-D

RT-flex58T-B RTA58T-B

RTA48T-B

RT-flex96C RTA96C

RT-flex60C-B

RT-flex50-B RTA50-B

RTA52U

RTA62U-B

RT-flex82T RTA82T

RT-flex82C RTA82C

integratedelectroniccontrolandthewellshy

establishedRTA96Cengine

The14‑cylinderRT‑flex96Cenginesextend

thepowerspectrumoftheRTAseriesupto

80800kW(108920bhp)Thuswithwaste

heatrecoverysystemswhichcanaddupto12

percentofenginepowerRT‑flex96Cengines

canmeetthepropulsionrequirementsoflarge

fastcontainershipsfromuptoaround12000

TEUcapacityatservicespeedsofaround25

knots

DEVELOPMENT BACKGROUND Waumlrtsilaumlhasapolicyofcontinuouslyupdating

itsengineprogrammeandenginedesignsto

adaptthemtothelatestmarketrequirements

andtodeliverthebenefitsoftechnical

improvementsTheWaumlrtsilaumlRT‑flex96Cand

RTA96Cenginetypesaregoodexamplesof

thispolicy

WhenthedesignoftheRTA96Cwas

introducedin1994itwasbasedfullyonthe

well‑establishedRTA84Ctotakeadvantageof

thewealthofexperienceintheoreticaldesign

testbedresearchandoperatingservicefrom

theRTA84CandotherpreviousRTA‑series

enginesThefirstRTA96Cenginesentered

servicein1997

In2000thecylinderpoweroftheRTA96C

wasraisedbysomefourpercentbyutilising

potentialalreadyinthedesignA14‑cylinder

modelwasalsoaddedtobringthemaximum

poweruptotodayrsquos80080kW(108920

bhp)Theincreasedpoweroutputwasmade

possiblebytheverysatisfactoryservice

experiencewiththeenginesinservice

Furtherimprovementsweresubsequently

achievedbytheintroductionofvariousdesign

measurestoimprovepiston‑runningbehaviour

Theseimprovementsreducewearratesof

cylinderlinersandpistonringsextendtimes

betweenoverhaulsandallowreducedcylinder

oilfeedrates

Amajorstepforwardwasachievedwhen

theRTA96CwascombinedwiththeRT‑flex

electronically‑controlledcommon‑railtechnology

forfuelinjectionandvalveactuationtocreate

theRT‑flex96Cengineintroducedin2003At

thesametimethedecisionwastakenthatthe

13‑and14‑cylinderengineswouldonlybebuilt

inRT‑flexform

TheRT‑flexcommon‑railtechnologyhad

beenintroducedfirstintheRT‑flex58T‑B

engineServiceresultswiththisenginewhich

enteredserviceinSeptember2001were

excellentclearlydemonstratingthatthenew

RT‑flexsystemoffersdistinctiveoperational

benefitswhicharenotpossiblewithcamshaft

enginesThustheexperiencefromthe

RT‑flex58T‑BenginetypetheRT‑flex60C

enginefirstbuiltin2002andthefull‑sized

RT‑flex58TresearchenginesinceJune1998

wereemployedinthedevelopmentofthe

RT‑flex96Cengine

ThefirstRT‑flex96Cengineswereshop

testedinApril2004(eight‑cylinderengine)

andJune2004(12‑cylinderengine)These

subsequentlyenteredserviceinNovemberand

December2004respectively

6

Waumlrtsilauml RT‑flex96C

RT‑FLEX CONCEPT AND BENEFITS TheWaumlrtsilaumlRT‑flexsystemistheresultofa

longprojectsincethe1980stodeveloplowshy

speedmarineengineswithouttheconstraints

imposedbymechanicaldriveoffuelinjection

pumpsandvalveactuationpumpsbutwith

fargreaterflexibilityinenginesettingtoreach

futurerequirementsTheobjectiveistodeliver

operationalbenefitstotheshipowners

TheWaumlrtsilaumlRT‑flex96Cisbasicallya

standardWaumlrtsilaumllow‑speedtwo‑strokemarine

dieselengineexceptthatinsteadoftheusual

camshaftanditsgeardrivefuelinjectionpumps

exhaustvalveactuatorpumpsandreversing

servomotorsitisequippedwithacommon‑rail

systemforfuelinjectionexhaustvalveactuation

andairstartingandfullelectroniccontrolofthese

enginefunctions

Thecommon‑railinjectionsystemoperates

withjustthesamegradesofheavyfueloilas

arealreadystandardforWaumlrtsilaumllow‑speed

engines

TheRT‑flexenginesofferanumberof

interestingbenefitstoshipownersandoperators

bull Smokelessoperationatalloperatingspeeds

bull Lowersteadyrunningspeedsintherange

of10‑15percentnominalspeedobtained

smokelesslythroughsequentialshut‑off

ofinjectorswhilecontinuingtorunonall

cylinders

bull Reducedrunningcoststhroughlowerpartshy

loadfuelconsumptionandlongertimes

betweenoverhauls

bull Reducedmaintenancerequirementswith

simplersettingoftheengineThelsquoasshy

newrsquorunningsettingsareautomatically

maintained

bull Reducedmaintenancecoststhroughprecise

volumetricfuelinjectioncontrolleadingto

extendabletimesbetweenoverhaulsThe

common‑railsystemwithitsvolumetric

controlgivesexcellentbalanceinengine

powerdevelopedbetweencylindersand

betweencycleswithpreciseinjectiontiming

andequalisedthermalloads

bull Reliabilityisgivenbylong‑termtestingof

common‑railhardwareincomponenttestrigs

bull Higheravailabilityowingtotheintegrated

monitoringfunctions

bull Highavailabilityalsogivenbythebuilt‑in

redundancyprovidedbytheamplecapacity

andduplicationinthesupplypumpsmain

deliverypipescrank‑anglesensorselectronic

controlunitsandotherkeyelements

RT‑FLEX COMMON‑RAIL SYSTEM APPLIED Thecommonrailforfuelinjectionisamanifold

runningthelengthoftheengineatjustbelow

thecylindercoverlevelThecommonrailand

otherrelatedpipeworkareneatlyarranged

beneaththetopengineplatformandreadily

accessiblefromabove

Thecommonrailisfedwithheatedfueloil

attheusualhighpressure(nominally1000

bar)readyforinjectionThesupplyunithasa

numberofhigh‑pressurepumpsrunningon

multi‑lobecams

Fuelisdeliveredfromthiscommonrail

throughaseparateinjectioncontrolunit

foreachenginecylindertothestandard

fuelinjectionvalveswhicharehydraulically

operatedintheusualwaybythehigh‑pressure

fueloilThecontrolunitsusingquick‑acting

Waumlrtsilaumlrailvalvesregulatethetimingoffuel

injectioncontrolthevolumeoffuelinjected

andsettheshapeoftheinjectionpattern

Thethreefuelinjectionvalvesineachcylinder

coverareseparatelycontrolledsothat

althoughtheynormallyactinunisontheycan

alsobeprogrammedtooperateseparatelyas

necessary

ThekeyfeaturesoftheWaumlrtsilaumlRT‑flex

common‑railsystemare

bull Precisevolumetriccontroloffuelinjection

withintegratedflow‑outsecurity

bull Variableinjectionrateshapingandfree

selectionofinjectionpressure

bull Stablepressurelevelsincommonrailand

supplypipes

bull Possibilityforindependentcontroland

shuttingoffofindividualfuelinjectionvalves

bull Ideallysuitedforheavyfueloilthroughclear

separationofthefueloilfromthehydraulic

pilotvalves

bull Well‑provenstandardfuelinjectionvalves

bull Provenhigh‑efficiencycommon‑railfuel

pumps

TheRT‑flexsystemalsoencompassesexhaust

Rail unit at the cylinder top level of the RT‑flex96C engine with electronic control units on the front of the rail unit for good access

valveactuationandstartingaircontrolThe

exhaustvalvesareoperatedinmuchthesame

wayasinexistingRTAenginesbyahydraulic

pushrodbutwiththeactuatingenergynow

comingfromaservooilrailat200barpressure

Theservooilissuppliedbyhigh‑pressure

hydraulicpumpsincorporatedinthesupplyunit

withthefuelsupplypumpsTheelectronicallyshy

controlledactuatingunitforeachcylindergives

fullflexibilityintimingforvalveopeningand

closing

AllfunctionsintheRT‑flexsystemare

controlledandmonitoredthroughthe

integratedWaumlrtsilaumlWECS‑9520electronic

controlsystemThisisamodularsystemwith

separatemicroprocessorcontrolunitsforeach

cylinderandoverallcontrolandsupervision

byduplicatedmicroprocessorcontrolunits

Thelatterprovidetheusualinterfaceforthe

electronicgovernorandtheshipboardremote

controlandalarmsystems

8

Various RT‑flex equipment on the lower platform of a 1RT‑flex96C engine From left to right these include (A) the local engine control panel (B) the automatic fine filter for servo and control oil (C) the two electrically‑driven control oil pumps and (D) the supply unit

Inside the rail unit of an RT‑flex96C engine during assembly The exhaust valve actuator (A) is mounted on the servo oil rail and the injection control unit (B) is on the fuel rail Next to the fuel rail is the smaller control oil rail (C) and the return pipe for servo and control oil (D)

Supply unit for a 1RT‑flex96C engine with the fuel pumps in Vee‑form arrangement on the left and the servo pumps on the right of the central gear drive

Volumetric fuel injection control unit

Fuel injectors

Exhaust valve actuator

Exhaust valve actuating unit

Crank angle

sensor

WECS control system

30bar starting air

200bar servo oil

1000bar fuel HFO MDO

Schematic of the Waumlrtsilauml RT‑flex system with electronically‑controlled common‑rail systems for fuel injection exhaust valve operation and starting air

9

RT‑FLEX REAL IN‑SERVICE FUEL ECONOMY

WhereasWaumlrtsilaumlRTA‑seriesengines

haveexcellentfuelconsumptionin

generaltheRT‑flexsystemenablesfurther

improvementstobeachievedinthepartshy

loadrangeThisisbecauseofthefreedom

allowedbytheRT‑flexsysteminselecting

optimuminjectionpressurefuelinjection

timingandexhaustvalvetimingatallengine

loadsorspeedswhileensuringefficient

combustionatalltimesevenduringdead

slowrunning

Similarfreedominexhaustvalve

timingallowstheRT‑flexsystemtokeep

combustionairexcesshighbyearliervalve

closingastheloadspeedisreducedThisis

notonlyadvantageousforfuelconsumption

butalsolimitscomponenttemperatures

whichwouldnormallyincreaseatlowload

Lowerturbochargerefficienciesatpartload

normallyresultinlowexcesscombustionair

withfixedvalvetiming

Anotherimportantcontributiontofuel

economyoftheRT‑flex96Cenginesisthe

capabilitytoadapteasilytheinjectiontiming

tovariousfuelpropertieshavingapoor

combustionbehaviour

DELTA TUNING A FUEL EFFICIENCY ALTERNATIVE Throughtheirflexibilityinenginesetting

RT‑flexenginesalsohaveanalternativefuel

consumptioncurveasstandardtogivelower

BSFC(brakespecificfuelconsumption)in

whatisformanyshipsthemainoperating

rangeThroughDeltaTuningtheBSFCis

loweredinthemid‑andlow‑loadoperating

rangeatlessthan90percentenginepower

TheconsequentincreaseinNOXinthat

operatingrangeiscompensatedbyreducing

NOXemissionsinthehighloadrangeWith

bothBSFCcurvestheenginescomplywith

theNOXregulationoftheMARPOL7378

convention

The new alternative BSFC curve for RT‑flex96C engines given by Delta Tuning compared with the original BSFC curves All curves shown are for engines complying with the IMO NOX regulation

Smoke emission measurements for RT‑flex96C engines compared with the RTA96C engines both using marine diesel oil

RT‑FLEX CLEANER IN THE ENVIRONMENT Exhaustgasemissionshavebecomean

importantaspectofmarinedieselenginesAll

WaumlrtsilaumlRTAandRT‑flexenginescomplywith

theNOXemissionslimitofAnnexVIofthe

MARPOL7378conventionasstandard

RT‑flexengineshowevercome

comfortablybelowthisNOXlimitbyvirtueof

theirextremelywideflexibilityinoptimising

thefuelinjectionandexhaustvalve

processes

ThemostvisiblebenefitofRT‑flexengines

isofcoursetheirsmokelessoperationatall

shipspeedsThesuperiorcombustionwith

thecommon‑railsystemislargelybecause

thefuelinjectionpressureismaintainedat

theoptimumlevelirrespectiveofengine

speedInadditionatverylowspeeds

individualfuelinjectorsareselectivelyshut

offandtheexhaustvalvetimingadaptedto

helptokeepsmokeemissionsbelowthe

visiblelimit

Yettheenvironmentalbenefitsof

RT‑flexenginesneednotberestrictedby

thecurrentstate‑of‑the‑artAsallsettings

andadjustmentswithinthecombustion

andscavengingprocessesaremade

electronicallyfutureadaptationswill

bepossiblesimplythroughchangesin

softwarewhichcouldbereadilyretrofitted

toexistingRT‑flexengines

Amajorreductioninallexhaust

emissionsincludingCO2canbeobtained

withRT‑flex96Cenginesbycombiningthe

enginewithahigh‑efficiencywasteheat

recoveryplant(seepage20)

Aswellasinvestigatingthescopeof

possibilitiesoftheRT‑flexsystemWaumlrtsilauml

iscarryingoutalong‑termresearch

programmetodeveloptechniquesfor

furtherreducingexhaustemissions

includingNOXSOXandCO2inbothRTA

andRT‑flexengines

10

1‑cylinder Waumlrtsilauml RTA96C engine giving 68640 kW

RTA96C THE TRADITIONAL CAMSHAFT ARRANGEMENT TheWaumlrtsilaumlRTA96Cretainsthetraditional

mechanicalcamshaftarrangementforfuel

injectionpumpsandvalvedrives

Thecamshaft‑drivenfuelinjectionpumps

areofthewell‑provendouble‑valvecontrolled

typethathasbeentraditionalinWaumlrtsilaumllowshy

speedenginesInjectiontimingiscontrolled

byseparatesuctionandspillvalvesregulated

througheccentricsonhydraulically‑actuated

layshaftsConsequentlygreatflexibilityin

timingispossiblethroughthevariablefuel

injectiontiming(VIT)systemforimprovedpartshy

loadfuelconsumptionandforthefuelquality

setting(FQS)levertoadjusttheinjectiontiming

accordingtothefueloilquality

Thevalve‑controlledfuelinjectionpump

incomparisonwithahelixtypehasaplunger

withasignificantlygreatersealinglength

Thehighervolumetricefficiencyreducesthe

torqueinthecamshaftAdditionallyinjection

fromavalve‑controlledpumpisfarmore

stableatverylowloadsandrotationalshaft

speedsdownto15percentoftherated

speedareachievedValvecontrolalsohas

benefitsoflessdeteriorationoftimingover

theyearsowingtolesswearandtofreedom

fromcavitation

Thecamshaftisassembledfromanumber

ofsegmentsoneforeachpumphousingThe

segmentsareconnectedthroughSKFsleeve

couplingsEachsegmenthasanintegral

hydraulicreversingservomotorlocatedwithin

thepumphousing

Thecamshaftdriveusesthewellshy

provenarrangementofgearwheels

housedinadoublecolumnlocated

atthedrivingendinthecentreof

theenginedependinguponnumber

ofcylindersTherearethreegear

wheelsinthecamshaftdriveThemaingear

wheelonthecrankshaftisinonepieceand

flange‑mounted

Fuel injection pump with double control valves

Pump housing with fuel injection pumps and exhaust‑valve actuator pumps

11

1

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 4: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

Principal parameters of Waumlrtsilauml RT‑flex96C and RTA96C engines

Bore mm 960

Stroke mm 2500

OutputMCRR1 kWcyl 5720

bhpcyl 7780

SpeedrangeR1‑R3 rpm 102ndash92

BMEPatR1 bar 186

Pmax bar 145

MeanpistonspeedatR1 ms 85

Numberofcylinders 6ndash14

BSFCatfullloadR1 gkWh 171

gbhph 126

1‑ and 14‑cylinder engines only in RT‑flex version

Output kW

80 000

60 000

50 000

40 000

30 000

20 000

10 000

8 000

6 000

4 000

revmin

Output bhp

100 000

80 000

60 000

40 000

20 000

10 000

8 000

6 000

60 70 80 90 100 120 140

Engine speed

RTA72U-B

RT-flex84T-D RTA84T-D

RT-flex68-D RTA68-D

RT-flex58T-B RTA58T-B

RTA48T-B

RT-flex96C RTA96C

RT-flex60C-B

RT-flex50-B RTA50-B

RTA52U

RTA62U-B

RT-flex82T RTA82T

RT-flex82C RTA82C

integratedelectroniccontrolandthewellshy

establishedRTA96Cengine

The14‑cylinderRT‑flex96Cenginesextend

thepowerspectrumoftheRTAseriesupto

80800kW(108920bhp)Thuswithwaste

heatrecoverysystemswhichcanaddupto12

percentofenginepowerRT‑flex96Cengines

canmeetthepropulsionrequirementsoflarge

fastcontainershipsfromuptoaround12000

TEUcapacityatservicespeedsofaround25

knots

DEVELOPMENT BACKGROUND Waumlrtsilaumlhasapolicyofcontinuouslyupdating

itsengineprogrammeandenginedesignsto

adaptthemtothelatestmarketrequirements

andtodeliverthebenefitsoftechnical

improvementsTheWaumlrtsilaumlRT‑flex96Cand

RTA96Cenginetypesaregoodexamplesof

thispolicy

WhenthedesignoftheRTA96Cwas

introducedin1994itwasbasedfullyonthe

well‑establishedRTA84Ctotakeadvantageof

thewealthofexperienceintheoreticaldesign

testbedresearchandoperatingservicefrom

theRTA84CandotherpreviousRTA‑series

enginesThefirstRTA96Cenginesentered

servicein1997

In2000thecylinderpoweroftheRTA96C

wasraisedbysomefourpercentbyutilising

potentialalreadyinthedesignA14‑cylinder

modelwasalsoaddedtobringthemaximum

poweruptotodayrsquos80080kW(108920

bhp)Theincreasedpoweroutputwasmade

possiblebytheverysatisfactoryservice

experiencewiththeenginesinservice

Furtherimprovementsweresubsequently

achievedbytheintroductionofvariousdesign

measurestoimprovepiston‑runningbehaviour

Theseimprovementsreducewearratesof

cylinderlinersandpistonringsextendtimes

betweenoverhaulsandallowreducedcylinder

oilfeedrates

Amajorstepforwardwasachievedwhen

theRTA96CwascombinedwiththeRT‑flex

electronically‑controlledcommon‑railtechnology

forfuelinjectionandvalveactuationtocreate

theRT‑flex96Cengineintroducedin2003At

thesametimethedecisionwastakenthatthe

13‑and14‑cylinderengineswouldonlybebuilt

inRT‑flexform

TheRT‑flexcommon‑railtechnologyhad

beenintroducedfirstintheRT‑flex58T‑B

engineServiceresultswiththisenginewhich

enteredserviceinSeptember2001were

excellentclearlydemonstratingthatthenew

RT‑flexsystemoffersdistinctiveoperational

benefitswhicharenotpossiblewithcamshaft

enginesThustheexperiencefromthe

RT‑flex58T‑BenginetypetheRT‑flex60C

enginefirstbuiltin2002andthefull‑sized

RT‑flex58TresearchenginesinceJune1998

wereemployedinthedevelopmentofthe

RT‑flex96Cengine

ThefirstRT‑flex96Cengineswereshop

testedinApril2004(eight‑cylinderengine)

andJune2004(12‑cylinderengine)These

subsequentlyenteredserviceinNovemberand

December2004respectively

6

Waumlrtsilauml RT‑flex96C

RT‑FLEX CONCEPT AND BENEFITS TheWaumlrtsilaumlRT‑flexsystemistheresultofa

longprojectsincethe1980stodeveloplowshy

speedmarineengineswithouttheconstraints

imposedbymechanicaldriveoffuelinjection

pumpsandvalveactuationpumpsbutwith

fargreaterflexibilityinenginesettingtoreach

futurerequirementsTheobjectiveistodeliver

operationalbenefitstotheshipowners

TheWaumlrtsilaumlRT‑flex96Cisbasicallya

standardWaumlrtsilaumllow‑speedtwo‑strokemarine

dieselengineexceptthatinsteadoftheusual

camshaftanditsgeardrivefuelinjectionpumps

exhaustvalveactuatorpumpsandreversing

servomotorsitisequippedwithacommon‑rail

systemforfuelinjectionexhaustvalveactuation

andairstartingandfullelectroniccontrolofthese

enginefunctions

Thecommon‑railinjectionsystemoperates

withjustthesamegradesofheavyfueloilas

arealreadystandardforWaumlrtsilaumllow‑speed

engines

TheRT‑flexenginesofferanumberof

interestingbenefitstoshipownersandoperators

bull Smokelessoperationatalloperatingspeeds

bull Lowersteadyrunningspeedsintherange

of10‑15percentnominalspeedobtained

smokelesslythroughsequentialshut‑off

ofinjectorswhilecontinuingtorunonall

cylinders

bull Reducedrunningcoststhroughlowerpartshy

loadfuelconsumptionandlongertimes

betweenoverhauls

bull Reducedmaintenancerequirementswith

simplersettingoftheengineThelsquoasshy

newrsquorunningsettingsareautomatically

maintained

bull Reducedmaintenancecoststhroughprecise

volumetricfuelinjectioncontrolleadingto

extendabletimesbetweenoverhaulsThe

common‑railsystemwithitsvolumetric

controlgivesexcellentbalanceinengine

powerdevelopedbetweencylindersand

betweencycleswithpreciseinjectiontiming

andequalisedthermalloads

bull Reliabilityisgivenbylong‑termtestingof

common‑railhardwareincomponenttestrigs

bull Higheravailabilityowingtotheintegrated

monitoringfunctions

bull Highavailabilityalsogivenbythebuilt‑in

redundancyprovidedbytheamplecapacity

andduplicationinthesupplypumpsmain

deliverypipescrank‑anglesensorselectronic

controlunitsandotherkeyelements

RT‑FLEX COMMON‑RAIL SYSTEM APPLIED Thecommonrailforfuelinjectionisamanifold

runningthelengthoftheengineatjustbelow

thecylindercoverlevelThecommonrailand

otherrelatedpipeworkareneatlyarranged

beneaththetopengineplatformandreadily

accessiblefromabove

Thecommonrailisfedwithheatedfueloil

attheusualhighpressure(nominally1000

bar)readyforinjectionThesupplyunithasa

numberofhigh‑pressurepumpsrunningon

multi‑lobecams

Fuelisdeliveredfromthiscommonrail

throughaseparateinjectioncontrolunit

foreachenginecylindertothestandard

fuelinjectionvalveswhicharehydraulically

operatedintheusualwaybythehigh‑pressure

fueloilThecontrolunitsusingquick‑acting

Waumlrtsilaumlrailvalvesregulatethetimingoffuel

injectioncontrolthevolumeoffuelinjected

andsettheshapeoftheinjectionpattern

Thethreefuelinjectionvalvesineachcylinder

coverareseparatelycontrolledsothat

althoughtheynormallyactinunisontheycan

alsobeprogrammedtooperateseparatelyas

necessary

ThekeyfeaturesoftheWaumlrtsilaumlRT‑flex

common‑railsystemare

bull Precisevolumetriccontroloffuelinjection

withintegratedflow‑outsecurity

bull Variableinjectionrateshapingandfree

selectionofinjectionpressure

bull Stablepressurelevelsincommonrailand

supplypipes

bull Possibilityforindependentcontroland

shuttingoffofindividualfuelinjectionvalves

bull Ideallysuitedforheavyfueloilthroughclear

separationofthefueloilfromthehydraulic

pilotvalves

bull Well‑provenstandardfuelinjectionvalves

bull Provenhigh‑efficiencycommon‑railfuel

pumps

TheRT‑flexsystemalsoencompassesexhaust

Rail unit at the cylinder top level of the RT‑flex96C engine with electronic control units on the front of the rail unit for good access

valveactuationandstartingaircontrolThe

exhaustvalvesareoperatedinmuchthesame

wayasinexistingRTAenginesbyahydraulic

pushrodbutwiththeactuatingenergynow

comingfromaservooilrailat200barpressure

Theservooilissuppliedbyhigh‑pressure

hydraulicpumpsincorporatedinthesupplyunit

withthefuelsupplypumpsTheelectronicallyshy

controlledactuatingunitforeachcylindergives

fullflexibilityintimingforvalveopeningand

closing

AllfunctionsintheRT‑flexsystemare

controlledandmonitoredthroughthe

integratedWaumlrtsilaumlWECS‑9520electronic

controlsystemThisisamodularsystemwith

separatemicroprocessorcontrolunitsforeach

cylinderandoverallcontrolandsupervision

byduplicatedmicroprocessorcontrolunits

Thelatterprovidetheusualinterfaceforthe

electronicgovernorandtheshipboardremote

controlandalarmsystems

8

Various RT‑flex equipment on the lower platform of a 1RT‑flex96C engine From left to right these include (A) the local engine control panel (B) the automatic fine filter for servo and control oil (C) the two electrically‑driven control oil pumps and (D) the supply unit

Inside the rail unit of an RT‑flex96C engine during assembly The exhaust valve actuator (A) is mounted on the servo oil rail and the injection control unit (B) is on the fuel rail Next to the fuel rail is the smaller control oil rail (C) and the return pipe for servo and control oil (D)

Supply unit for a 1RT‑flex96C engine with the fuel pumps in Vee‑form arrangement on the left and the servo pumps on the right of the central gear drive

Volumetric fuel injection control unit

Fuel injectors

Exhaust valve actuator

Exhaust valve actuating unit

Crank angle

sensor

WECS control system

30bar starting air

200bar servo oil

1000bar fuel HFO MDO

Schematic of the Waumlrtsilauml RT‑flex system with electronically‑controlled common‑rail systems for fuel injection exhaust valve operation and starting air

9

RT‑FLEX REAL IN‑SERVICE FUEL ECONOMY

WhereasWaumlrtsilaumlRTA‑seriesengines

haveexcellentfuelconsumptionin

generaltheRT‑flexsystemenablesfurther

improvementstobeachievedinthepartshy

loadrangeThisisbecauseofthefreedom

allowedbytheRT‑flexsysteminselecting

optimuminjectionpressurefuelinjection

timingandexhaustvalvetimingatallengine

loadsorspeedswhileensuringefficient

combustionatalltimesevenduringdead

slowrunning

Similarfreedominexhaustvalve

timingallowstheRT‑flexsystemtokeep

combustionairexcesshighbyearliervalve

closingastheloadspeedisreducedThisis

notonlyadvantageousforfuelconsumption

butalsolimitscomponenttemperatures

whichwouldnormallyincreaseatlowload

Lowerturbochargerefficienciesatpartload

normallyresultinlowexcesscombustionair

withfixedvalvetiming

Anotherimportantcontributiontofuel

economyoftheRT‑flex96Cenginesisthe

capabilitytoadapteasilytheinjectiontiming

tovariousfuelpropertieshavingapoor

combustionbehaviour

DELTA TUNING A FUEL EFFICIENCY ALTERNATIVE Throughtheirflexibilityinenginesetting

RT‑flexenginesalsohaveanalternativefuel

consumptioncurveasstandardtogivelower

BSFC(brakespecificfuelconsumption)in

whatisformanyshipsthemainoperating

rangeThroughDeltaTuningtheBSFCis

loweredinthemid‑andlow‑loadoperating

rangeatlessthan90percentenginepower

TheconsequentincreaseinNOXinthat

operatingrangeiscompensatedbyreducing

NOXemissionsinthehighloadrangeWith

bothBSFCcurvestheenginescomplywith

theNOXregulationoftheMARPOL7378

convention

The new alternative BSFC curve for RT‑flex96C engines given by Delta Tuning compared with the original BSFC curves All curves shown are for engines complying with the IMO NOX regulation

Smoke emission measurements for RT‑flex96C engines compared with the RTA96C engines both using marine diesel oil

RT‑FLEX CLEANER IN THE ENVIRONMENT Exhaustgasemissionshavebecomean

importantaspectofmarinedieselenginesAll

WaumlrtsilaumlRTAandRT‑flexenginescomplywith

theNOXemissionslimitofAnnexVIofthe

MARPOL7378conventionasstandard

RT‑flexengineshowevercome

comfortablybelowthisNOXlimitbyvirtueof

theirextremelywideflexibilityinoptimising

thefuelinjectionandexhaustvalve

processes

ThemostvisiblebenefitofRT‑flexengines

isofcoursetheirsmokelessoperationatall

shipspeedsThesuperiorcombustionwith

thecommon‑railsystemislargelybecause

thefuelinjectionpressureismaintainedat

theoptimumlevelirrespectiveofengine

speedInadditionatverylowspeeds

individualfuelinjectorsareselectivelyshut

offandtheexhaustvalvetimingadaptedto

helptokeepsmokeemissionsbelowthe

visiblelimit

Yettheenvironmentalbenefitsof

RT‑flexenginesneednotberestrictedby

thecurrentstate‑of‑the‑artAsallsettings

andadjustmentswithinthecombustion

andscavengingprocessesaremade

electronicallyfutureadaptationswill

bepossiblesimplythroughchangesin

softwarewhichcouldbereadilyretrofitted

toexistingRT‑flexengines

Amajorreductioninallexhaust

emissionsincludingCO2canbeobtained

withRT‑flex96Cenginesbycombiningthe

enginewithahigh‑efficiencywasteheat

recoveryplant(seepage20)

Aswellasinvestigatingthescopeof

possibilitiesoftheRT‑flexsystemWaumlrtsilauml

iscarryingoutalong‑termresearch

programmetodeveloptechniquesfor

furtherreducingexhaustemissions

includingNOXSOXandCO2inbothRTA

andRT‑flexengines

10

1‑cylinder Waumlrtsilauml RTA96C engine giving 68640 kW

RTA96C THE TRADITIONAL CAMSHAFT ARRANGEMENT TheWaumlrtsilaumlRTA96Cretainsthetraditional

mechanicalcamshaftarrangementforfuel

injectionpumpsandvalvedrives

Thecamshaft‑drivenfuelinjectionpumps

areofthewell‑provendouble‑valvecontrolled

typethathasbeentraditionalinWaumlrtsilaumllowshy

speedenginesInjectiontimingiscontrolled

byseparatesuctionandspillvalvesregulated

througheccentricsonhydraulically‑actuated

layshaftsConsequentlygreatflexibilityin

timingispossiblethroughthevariablefuel

injectiontiming(VIT)systemforimprovedpartshy

loadfuelconsumptionandforthefuelquality

setting(FQS)levertoadjusttheinjectiontiming

accordingtothefueloilquality

Thevalve‑controlledfuelinjectionpump

incomparisonwithahelixtypehasaplunger

withasignificantlygreatersealinglength

Thehighervolumetricefficiencyreducesthe

torqueinthecamshaftAdditionallyinjection

fromavalve‑controlledpumpisfarmore

stableatverylowloadsandrotationalshaft

speedsdownto15percentoftherated

speedareachievedValvecontrolalsohas

benefitsoflessdeteriorationoftimingover

theyearsowingtolesswearandtofreedom

fromcavitation

Thecamshaftisassembledfromanumber

ofsegmentsoneforeachpumphousingThe

segmentsareconnectedthroughSKFsleeve

couplingsEachsegmenthasanintegral

hydraulicreversingservomotorlocatedwithin

thepumphousing

Thecamshaftdriveusesthewellshy

provenarrangementofgearwheels

housedinadoublecolumnlocated

atthedrivingendinthecentreof

theenginedependinguponnumber

ofcylindersTherearethreegear

wheelsinthecamshaftdriveThemaingear

wheelonthecrankshaftisinonepieceand

flange‑mounted

Fuel injection pump with double control valves

Pump housing with fuel injection pumps and exhaust‑valve actuator pumps

11

1

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 5: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

DEVELOPMENT BACKGROUND Waumlrtsilaumlhasapolicyofcontinuouslyupdating

itsengineprogrammeandenginedesignsto

adaptthemtothelatestmarketrequirements

andtodeliverthebenefitsoftechnical

improvementsTheWaumlrtsilaumlRT‑flex96Cand

RTA96Cenginetypesaregoodexamplesof

thispolicy

WhenthedesignoftheRTA96Cwas

introducedin1994itwasbasedfullyonthe

well‑establishedRTA84Ctotakeadvantageof

thewealthofexperienceintheoreticaldesign

testbedresearchandoperatingservicefrom

theRTA84CandotherpreviousRTA‑series

enginesThefirstRTA96Cenginesentered

servicein1997

In2000thecylinderpoweroftheRTA96C

wasraisedbysomefourpercentbyutilising

potentialalreadyinthedesignA14‑cylinder

modelwasalsoaddedtobringthemaximum

poweruptotodayrsquos80080kW(108920

bhp)Theincreasedpoweroutputwasmade

possiblebytheverysatisfactoryservice

experiencewiththeenginesinservice

Furtherimprovementsweresubsequently

achievedbytheintroductionofvariousdesign

measurestoimprovepiston‑runningbehaviour

Theseimprovementsreducewearratesof

cylinderlinersandpistonringsextendtimes

betweenoverhaulsandallowreducedcylinder

oilfeedrates

Amajorstepforwardwasachievedwhen

theRTA96CwascombinedwiththeRT‑flex

electronically‑controlledcommon‑railtechnology

forfuelinjectionandvalveactuationtocreate

theRT‑flex96Cengineintroducedin2003At

thesametimethedecisionwastakenthatthe

13‑and14‑cylinderengineswouldonlybebuilt

inRT‑flexform

TheRT‑flexcommon‑railtechnologyhad

beenintroducedfirstintheRT‑flex58T‑B

engineServiceresultswiththisenginewhich

enteredserviceinSeptember2001were

excellentclearlydemonstratingthatthenew

RT‑flexsystemoffersdistinctiveoperational

benefitswhicharenotpossiblewithcamshaft

enginesThustheexperiencefromthe

RT‑flex58T‑BenginetypetheRT‑flex60C

enginefirstbuiltin2002andthefull‑sized

RT‑flex58TresearchenginesinceJune1998

wereemployedinthedevelopmentofthe

RT‑flex96Cengine

ThefirstRT‑flex96Cengineswereshop

testedinApril2004(eight‑cylinderengine)

andJune2004(12‑cylinderengine)These

subsequentlyenteredserviceinNovemberand

December2004respectively

6

Waumlrtsilauml RT‑flex96C

RT‑FLEX CONCEPT AND BENEFITS TheWaumlrtsilaumlRT‑flexsystemistheresultofa

longprojectsincethe1980stodeveloplowshy

speedmarineengineswithouttheconstraints

imposedbymechanicaldriveoffuelinjection

pumpsandvalveactuationpumpsbutwith

fargreaterflexibilityinenginesettingtoreach

futurerequirementsTheobjectiveistodeliver

operationalbenefitstotheshipowners

TheWaumlrtsilaumlRT‑flex96Cisbasicallya

standardWaumlrtsilaumllow‑speedtwo‑strokemarine

dieselengineexceptthatinsteadoftheusual

camshaftanditsgeardrivefuelinjectionpumps

exhaustvalveactuatorpumpsandreversing

servomotorsitisequippedwithacommon‑rail

systemforfuelinjectionexhaustvalveactuation

andairstartingandfullelectroniccontrolofthese

enginefunctions

Thecommon‑railinjectionsystemoperates

withjustthesamegradesofheavyfueloilas

arealreadystandardforWaumlrtsilaumllow‑speed

engines

TheRT‑flexenginesofferanumberof

interestingbenefitstoshipownersandoperators

bull Smokelessoperationatalloperatingspeeds

bull Lowersteadyrunningspeedsintherange

of10‑15percentnominalspeedobtained

smokelesslythroughsequentialshut‑off

ofinjectorswhilecontinuingtorunonall

cylinders

bull Reducedrunningcoststhroughlowerpartshy

loadfuelconsumptionandlongertimes

betweenoverhauls

bull Reducedmaintenancerequirementswith

simplersettingoftheengineThelsquoasshy

newrsquorunningsettingsareautomatically

maintained

bull Reducedmaintenancecoststhroughprecise

volumetricfuelinjectioncontrolleadingto

extendabletimesbetweenoverhaulsThe

common‑railsystemwithitsvolumetric

controlgivesexcellentbalanceinengine

powerdevelopedbetweencylindersand

betweencycleswithpreciseinjectiontiming

andequalisedthermalloads

bull Reliabilityisgivenbylong‑termtestingof

common‑railhardwareincomponenttestrigs

bull Higheravailabilityowingtotheintegrated

monitoringfunctions

bull Highavailabilityalsogivenbythebuilt‑in

redundancyprovidedbytheamplecapacity

andduplicationinthesupplypumpsmain

deliverypipescrank‑anglesensorselectronic

controlunitsandotherkeyelements

RT‑FLEX COMMON‑RAIL SYSTEM APPLIED Thecommonrailforfuelinjectionisamanifold

runningthelengthoftheengineatjustbelow

thecylindercoverlevelThecommonrailand

otherrelatedpipeworkareneatlyarranged

beneaththetopengineplatformandreadily

accessiblefromabove

Thecommonrailisfedwithheatedfueloil

attheusualhighpressure(nominally1000

bar)readyforinjectionThesupplyunithasa

numberofhigh‑pressurepumpsrunningon

multi‑lobecams

Fuelisdeliveredfromthiscommonrail

throughaseparateinjectioncontrolunit

foreachenginecylindertothestandard

fuelinjectionvalveswhicharehydraulically

operatedintheusualwaybythehigh‑pressure

fueloilThecontrolunitsusingquick‑acting

Waumlrtsilaumlrailvalvesregulatethetimingoffuel

injectioncontrolthevolumeoffuelinjected

andsettheshapeoftheinjectionpattern

Thethreefuelinjectionvalvesineachcylinder

coverareseparatelycontrolledsothat

althoughtheynormallyactinunisontheycan

alsobeprogrammedtooperateseparatelyas

necessary

ThekeyfeaturesoftheWaumlrtsilaumlRT‑flex

common‑railsystemare

bull Precisevolumetriccontroloffuelinjection

withintegratedflow‑outsecurity

bull Variableinjectionrateshapingandfree

selectionofinjectionpressure

bull Stablepressurelevelsincommonrailand

supplypipes

bull Possibilityforindependentcontroland

shuttingoffofindividualfuelinjectionvalves

bull Ideallysuitedforheavyfueloilthroughclear

separationofthefueloilfromthehydraulic

pilotvalves

bull Well‑provenstandardfuelinjectionvalves

bull Provenhigh‑efficiencycommon‑railfuel

pumps

TheRT‑flexsystemalsoencompassesexhaust

Rail unit at the cylinder top level of the RT‑flex96C engine with electronic control units on the front of the rail unit for good access

valveactuationandstartingaircontrolThe

exhaustvalvesareoperatedinmuchthesame

wayasinexistingRTAenginesbyahydraulic

pushrodbutwiththeactuatingenergynow

comingfromaservooilrailat200barpressure

Theservooilissuppliedbyhigh‑pressure

hydraulicpumpsincorporatedinthesupplyunit

withthefuelsupplypumpsTheelectronicallyshy

controlledactuatingunitforeachcylindergives

fullflexibilityintimingforvalveopeningand

closing

AllfunctionsintheRT‑flexsystemare

controlledandmonitoredthroughthe

integratedWaumlrtsilaumlWECS‑9520electronic

controlsystemThisisamodularsystemwith

separatemicroprocessorcontrolunitsforeach

cylinderandoverallcontrolandsupervision

byduplicatedmicroprocessorcontrolunits

Thelatterprovidetheusualinterfaceforthe

electronicgovernorandtheshipboardremote

controlandalarmsystems

8

Various RT‑flex equipment on the lower platform of a 1RT‑flex96C engine From left to right these include (A) the local engine control panel (B) the automatic fine filter for servo and control oil (C) the two electrically‑driven control oil pumps and (D) the supply unit

Inside the rail unit of an RT‑flex96C engine during assembly The exhaust valve actuator (A) is mounted on the servo oil rail and the injection control unit (B) is on the fuel rail Next to the fuel rail is the smaller control oil rail (C) and the return pipe for servo and control oil (D)

Supply unit for a 1RT‑flex96C engine with the fuel pumps in Vee‑form arrangement on the left and the servo pumps on the right of the central gear drive

Volumetric fuel injection control unit

Fuel injectors

Exhaust valve actuator

Exhaust valve actuating unit

Crank angle

sensor

WECS control system

30bar starting air

200bar servo oil

1000bar fuel HFO MDO

Schematic of the Waumlrtsilauml RT‑flex system with electronically‑controlled common‑rail systems for fuel injection exhaust valve operation and starting air

9

RT‑FLEX REAL IN‑SERVICE FUEL ECONOMY

WhereasWaumlrtsilaumlRTA‑seriesengines

haveexcellentfuelconsumptionin

generaltheRT‑flexsystemenablesfurther

improvementstobeachievedinthepartshy

loadrangeThisisbecauseofthefreedom

allowedbytheRT‑flexsysteminselecting

optimuminjectionpressurefuelinjection

timingandexhaustvalvetimingatallengine

loadsorspeedswhileensuringefficient

combustionatalltimesevenduringdead

slowrunning

Similarfreedominexhaustvalve

timingallowstheRT‑flexsystemtokeep

combustionairexcesshighbyearliervalve

closingastheloadspeedisreducedThisis

notonlyadvantageousforfuelconsumption

butalsolimitscomponenttemperatures

whichwouldnormallyincreaseatlowload

Lowerturbochargerefficienciesatpartload

normallyresultinlowexcesscombustionair

withfixedvalvetiming

Anotherimportantcontributiontofuel

economyoftheRT‑flex96Cenginesisthe

capabilitytoadapteasilytheinjectiontiming

tovariousfuelpropertieshavingapoor

combustionbehaviour

DELTA TUNING A FUEL EFFICIENCY ALTERNATIVE Throughtheirflexibilityinenginesetting

RT‑flexenginesalsohaveanalternativefuel

consumptioncurveasstandardtogivelower

BSFC(brakespecificfuelconsumption)in

whatisformanyshipsthemainoperating

rangeThroughDeltaTuningtheBSFCis

loweredinthemid‑andlow‑loadoperating

rangeatlessthan90percentenginepower

TheconsequentincreaseinNOXinthat

operatingrangeiscompensatedbyreducing

NOXemissionsinthehighloadrangeWith

bothBSFCcurvestheenginescomplywith

theNOXregulationoftheMARPOL7378

convention

The new alternative BSFC curve for RT‑flex96C engines given by Delta Tuning compared with the original BSFC curves All curves shown are for engines complying with the IMO NOX regulation

Smoke emission measurements for RT‑flex96C engines compared with the RTA96C engines both using marine diesel oil

RT‑FLEX CLEANER IN THE ENVIRONMENT Exhaustgasemissionshavebecomean

importantaspectofmarinedieselenginesAll

WaumlrtsilaumlRTAandRT‑flexenginescomplywith

theNOXemissionslimitofAnnexVIofthe

MARPOL7378conventionasstandard

RT‑flexengineshowevercome

comfortablybelowthisNOXlimitbyvirtueof

theirextremelywideflexibilityinoptimising

thefuelinjectionandexhaustvalve

processes

ThemostvisiblebenefitofRT‑flexengines

isofcoursetheirsmokelessoperationatall

shipspeedsThesuperiorcombustionwith

thecommon‑railsystemislargelybecause

thefuelinjectionpressureismaintainedat

theoptimumlevelirrespectiveofengine

speedInadditionatverylowspeeds

individualfuelinjectorsareselectivelyshut

offandtheexhaustvalvetimingadaptedto

helptokeepsmokeemissionsbelowthe

visiblelimit

Yettheenvironmentalbenefitsof

RT‑flexenginesneednotberestrictedby

thecurrentstate‑of‑the‑artAsallsettings

andadjustmentswithinthecombustion

andscavengingprocessesaremade

electronicallyfutureadaptationswill

bepossiblesimplythroughchangesin

softwarewhichcouldbereadilyretrofitted

toexistingRT‑flexengines

Amajorreductioninallexhaust

emissionsincludingCO2canbeobtained

withRT‑flex96Cenginesbycombiningthe

enginewithahigh‑efficiencywasteheat

recoveryplant(seepage20)

Aswellasinvestigatingthescopeof

possibilitiesoftheRT‑flexsystemWaumlrtsilauml

iscarryingoutalong‑termresearch

programmetodeveloptechniquesfor

furtherreducingexhaustemissions

includingNOXSOXandCO2inbothRTA

andRT‑flexengines

10

1‑cylinder Waumlrtsilauml RTA96C engine giving 68640 kW

RTA96C THE TRADITIONAL CAMSHAFT ARRANGEMENT TheWaumlrtsilaumlRTA96Cretainsthetraditional

mechanicalcamshaftarrangementforfuel

injectionpumpsandvalvedrives

Thecamshaft‑drivenfuelinjectionpumps

areofthewell‑provendouble‑valvecontrolled

typethathasbeentraditionalinWaumlrtsilaumllowshy

speedenginesInjectiontimingiscontrolled

byseparatesuctionandspillvalvesregulated

througheccentricsonhydraulically‑actuated

layshaftsConsequentlygreatflexibilityin

timingispossiblethroughthevariablefuel

injectiontiming(VIT)systemforimprovedpartshy

loadfuelconsumptionandforthefuelquality

setting(FQS)levertoadjusttheinjectiontiming

accordingtothefueloilquality

Thevalve‑controlledfuelinjectionpump

incomparisonwithahelixtypehasaplunger

withasignificantlygreatersealinglength

Thehighervolumetricefficiencyreducesthe

torqueinthecamshaftAdditionallyinjection

fromavalve‑controlledpumpisfarmore

stableatverylowloadsandrotationalshaft

speedsdownto15percentoftherated

speedareachievedValvecontrolalsohas

benefitsoflessdeteriorationoftimingover

theyearsowingtolesswearandtofreedom

fromcavitation

Thecamshaftisassembledfromanumber

ofsegmentsoneforeachpumphousingThe

segmentsareconnectedthroughSKFsleeve

couplingsEachsegmenthasanintegral

hydraulicreversingservomotorlocatedwithin

thepumphousing

Thecamshaftdriveusesthewellshy

provenarrangementofgearwheels

housedinadoublecolumnlocated

atthedrivingendinthecentreof

theenginedependinguponnumber

ofcylindersTherearethreegear

wheelsinthecamshaftdriveThemaingear

wheelonthecrankshaftisinonepieceand

flange‑mounted

Fuel injection pump with double control valves

Pump housing with fuel injection pumps and exhaust‑valve actuator pumps

11

1

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 6: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

Waumlrtsilauml RT‑flex96C

RT‑FLEX CONCEPT AND BENEFITS TheWaumlrtsilaumlRT‑flexsystemistheresultofa

longprojectsincethe1980stodeveloplowshy

speedmarineengineswithouttheconstraints

imposedbymechanicaldriveoffuelinjection

pumpsandvalveactuationpumpsbutwith

fargreaterflexibilityinenginesettingtoreach

futurerequirementsTheobjectiveistodeliver

operationalbenefitstotheshipowners

TheWaumlrtsilaumlRT‑flex96Cisbasicallya

standardWaumlrtsilaumllow‑speedtwo‑strokemarine

dieselengineexceptthatinsteadoftheusual

camshaftanditsgeardrivefuelinjectionpumps

exhaustvalveactuatorpumpsandreversing

servomotorsitisequippedwithacommon‑rail

systemforfuelinjectionexhaustvalveactuation

andairstartingandfullelectroniccontrolofthese

enginefunctions

Thecommon‑railinjectionsystemoperates

withjustthesamegradesofheavyfueloilas

arealreadystandardforWaumlrtsilaumllow‑speed

engines

TheRT‑flexenginesofferanumberof

interestingbenefitstoshipownersandoperators

bull Smokelessoperationatalloperatingspeeds

bull Lowersteadyrunningspeedsintherange

of10‑15percentnominalspeedobtained

smokelesslythroughsequentialshut‑off

ofinjectorswhilecontinuingtorunonall

cylinders

bull Reducedrunningcoststhroughlowerpartshy

loadfuelconsumptionandlongertimes

betweenoverhauls

bull Reducedmaintenancerequirementswith

simplersettingoftheengineThelsquoasshy

newrsquorunningsettingsareautomatically

maintained

bull Reducedmaintenancecoststhroughprecise

volumetricfuelinjectioncontrolleadingto

extendabletimesbetweenoverhaulsThe

common‑railsystemwithitsvolumetric

controlgivesexcellentbalanceinengine

powerdevelopedbetweencylindersand

betweencycleswithpreciseinjectiontiming

andequalisedthermalloads

bull Reliabilityisgivenbylong‑termtestingof

common‑railhardwareincomponenttestrigs

bull Higheravailabilityowingtotheintegrated

monitoringfunctions

bull Highavailabilityalsogivenbythebuilt‑in

redundancyprovidedbytheamplecapacity

andduplicationinthesupplypumpsmain

deliverypipescrank‑anglesensorselectronic

controlunitsandotherkeyelements

RT‑FLEX COMMON‑RAIL SYSTEM APPLIED Thecommonrailforfuelinjectionisamanifold

runningthelengthoftheengineatjustbelow

thecylindercoverlevelThecommonrailand

otherrelatedpipeworkareneatlyarranged

beneaththetopengineplatformandreadily

accessiblefromabove

Thecommonrailisfedwithheatedfueloil

attheusualhighpressure(nominally1000

bar)readyforinjectionThesupplyunithasa

numberofhigh‑pressurepumpsrunningon

multi‑lobecams

Fuelisdeliveredfromthiscommonrail

throughaseparateinjectioncontrolunit

foreachenginecylindertothestandard

fuelinjectionvalveswhicharehydraulically

operatedintheusualwaybythehigh‑pressure

fueloilThecontrolunitsusingquick‑acting

Waumlrtsilaumlrailvalvesregulatethetimingoffuel

injectioncontrolthevolumeoffuelinjected

andsettheshapeoftheinjectionpattern

Thethreefuelinjectionvalvesineachcylinder

coverareseparatelycontrolledsothat

althoughtheynormallyactinunisontheycan

alsobeprogrammedtooperateseparatelyas

necessary

ThekeyfeaturesoftheWaumlrtsilaumlRT‑flex

common‑railsystemare

bull Precisevolumetriccontroloffuelinjection

withintegratedflow‑outsecurity

bull Variableinjectionrateshapingandfree

selectionofinjectionpressure

bull Stablepressurelevelsincommonrailand

supplypipes

bull Possibilityforindependentcontroland

shuttingoffofindividualfuelinjectionvalves

bull Ideallysuitedforheavyfueloilthroughclear

separationofthefueloilfromthehydraulic

pilotvalves

bull Well‑provenstandardfuelinjectionvalves

bull Provenhigh‑efficiencycommon‑railfuel

pumps

TheRT‑flexsystemalsoencompassesexhaust

Rail unit at the cylinder top level of the RT‑flex96C engine with electronic control units on the front of the rail unit for good access

valveactuationandstartingaircontrolThe

exhaustvalvesareoperatedinmuchthesame

wayasinexistingRTAenginesbyahydraulic

pushrodbutwiththeactuatingenergynow

comingfromaservooilrailat200barpressure

Theservooilissuppliedbyhigh‑pressure

hydraulicpumpsincorporatedinthesupplyunit

withthefuelsupplypumpsTheelectronicallyshy

controlledactuatingunitforeachcylindergives

fullflexibilityintimingforvalveopeningand

closing

AllfunctionsintheRT‑flexsystemare

controlledandmonitoredthroughthe

integratedWaumlrtsilaumlWECS‑9520electronic

controlsystemThisisamodularsystemwith

separatemicroprocessorcontrolunitsforeach

cylinderandoverallcontrolandsupervision

byduplicatedmicroprocessorcontrolunits

Thelatterprovidetheusualinterfaceforthe

electronicgovernorandtheshipboardremote

controlandalarmsystems

8

Various RT‑flex equipment on the lower platform of a 1RT‑flex96C engine From left to right these include (A) the local engine control panel (B) the automatic fine filter for servo and control oil (C) the two electrically‑driven control oil pumps and (D) the supply unit

Inside the rail unit of an RT‑flex96C engine during assembly The exhaust valve actuator (A) is mounted on the servo oil rail and the injection control unit (B) is on the fuel rail Next to the fuel rail is the smaller control oil rail (C) and the return pipe for servo and control oil (D)

Supply unit for a 1RT‑flex96C engine with the fuel pumps in Vee‑form arrangement on the left and the servo pumps on the right of the central gear drive

Volumetric fuel injection control unit

Fuel injectors

Exhaust valve actuator

Exhaust valve actuating unit

Crank angle

sensor

WECS control system

30bar starting air

200bar servo oil

1000bar fuel HFO MDO

Schematic of the Waumlrtsilauml RT‑flex system with electronically‑controlled common‑rail systems for fuel injection exhaust valve operation and starting air

9

RT‑FLEX REAL IN‑SERVICE FUEL ECONOMY

WhereasWaumlrtsilaumlRTA‑seriesengines

haveexcellentfuelconsumptionin

generaltheRT‑flexsystemenablesfurther

improvementstobeachievedinthepartshy

loadrangeThisisbecauseofthefreedom

allowedbytheRT‑flexsysteminselecting

optimuminjectionpressurefuelinjection

timingandexhaustvalvetimingatallengine

loadsorspeedswhileensuringefficient

combustionatalltimesevenduringdead

slowrunning

Similarfreedominexhaustvalve

timingallowstheRT‑flexsystemtokeep

combustionairexcesshighbyearliervalve

closingastheloadspeedisreducedThisis

notonlyadvantageousforfuelconsumption

butalsolimitscomponenttemperatures

whichwouldnormallyincreaseatlowload

Lowerturbochargerefficienciesatpartload

normallyresultinlowexcesscombustionair

withfixedvalvetiming

Anotherimportantcontributiontofuel

economyoftheRT‑flex96Cenginesisthe

capabilitytoadapteasilytheinjectiontiming

tovariousfuelpropertieshavingapoor

combustionbehaviour

DELTA TUNING A FUEL EFFICIENCY ALTERNATIVE Throughtheirflexibilityinenginesetting

RT‑flexenginesalsohaveanalternativefuel

consumptioncurveasstandardtogivelower

BSFC(brakespecificfuelconsumption)in

whatisformanyshipsthemainoperating

rangeThroughDeltaTuningtheBSFCis

loweredinthemid‑andlow‑loadoperating

rangeatlessthan90percentenginepower

TheconsequentincreaseinNOXinthat

operatingrangeiscompensatedbyreducing

NOXemissionsinthehighloadrangeWith

bothBSFCcurvestheenginescomplywith

theNOXregulationoftheMARPOL7378

convention

The new alternative BSFC curve for RT‑flex96C engines given by Delta Tuning compared with the original BSFC curves All curves shown are for engines complying with the IMO NOX regulation

Smoke emission measurements for RT‑flex96C engines compared with the RTA96C engines both using marine diesel oil

RT‑FLEX CLEANER IN THE ENVIRONMENT Exhaustgasemissionshavebecomean

importantaspectofmarinedieselenginesAll

WaumlrtsilaumlRTAandRT‑flexenginescomplywith

theNOXemissionslimitofAnnexVIofthe

MARPOL7378conventionasstandard

RT‑flexengineshowevercome

comfortablybelowthisNOXlimitbyvirtueof

theirextremelywideflexibilityinoptimising

thefuelinjectionandexhaustvalve

processes

ThemostvisiblebenefitofRT‑flexengines

isofcoursetheirsmokelessoperationatall

shipspeedsThesuperiorcombustionwith

thecommon‑railsystemislargelybecause

thefuelinjectionpressureismaintainedat

theoptimumlevelirrespectiveofengine

speedInadditionatverylowspeeds

individualfuelinjectorsareselectivelyshut

offandtheexhaustvalvetimingadaptedto

helptokeepsmokeemissionsbelowthe

visiblelimit

Yettheenvironmentalbenefitsof

RT‑flexenginesneednotberestrictedby

thecurrentstate‑of‑the‑artAsallsettings

andadjustmentswithinthecombustion

andscavengingprocessesaremade

electronicallyfutureadaptationswill

bepossiblesimplythroughchangesin

softwarewhichcouldbereadilyretrofitted

toexistingRT‑flexengines

Amajorreductioninallexhaust

emissionsincludingCO2canbeobtained

withRT‑flex96Cenginesbycombiningthe

enginewithahigh‑efficiencywasteheat

recoveryplant(seepage20)

Aswellasinvestigatingthescopeof

possibilitiesoftheRT‑flexsystemWaumlrtsilauml

iscarryingoutalong‑termresearch

programmetodeveloptechniquesfor

furtherreducingexhaustemissions

includingNOXSOXandCO2inbothRTA

andRT‑flexengines

10

1‑cylinder Waumlrtsilauml RTA96C engine giving 68640 kW

RTA96C THE TRADITIONAL CAMSHAFT ARRANGEMENT TheWaumlrtsilaumlRTA96Cretainsthetraditional

mechanicalcamshaftarrangementforfuel

injectionpumpsandvalvedrives

Thecamshaft‑drivenfuelinjectionpumps

areofthewell‑provendouble‑valvecontrolled

typethathasbeentraditionalinWaumlrtsilaumllowshy

speedenginesInjectiontimingiscontrolled

byseparatesuctionandspillvalvesregulated

througheccentricsonhydraulically‑actuated

layshaftsConsequentlygreatflexibilityin

timingispossiblethroughthevariablefuel

injectiontiming(VIT)systemforimprovedpartshy

loadfuelconsumptionandforthefuelquality

setting(FQS)levertoadjusttheinjectiontiming

accordingtothefueloilquality

Thevalve‑controlledfuelinjectionpump

incomparisonwithahelixtypehasaplunger

withasignificantlygreatersealinglength

Thehighervolumetricefficiencyreducesthe

torqueinthecamshaftAdditionallyinjection

fromavalve‑controlledpumpisfarmore

stableatverylowloadsandrotationalshaft

speedsdownto15percentoftherated

speedareachievedValvecontrolalsohas

benefitsoflessdeteriorationoftimingover

theyearsowingtolesswearandtofreedom

fromcavitation

Thecamshaftisassembledfromanumber

ofsegmentsoneforeachpumphousingThe

segmentsareconnectedthroughSKFsleeve

couplingsEachsegmenthasanintegral

hydraulicreversingservomotorlocatedwithin

thepumphousing

Thecamshaftdriveusesthewellshy

provenarrangementofgearwheels

housedinadoublecolumnlocated

atthedrivingendinthecentreof

theenginedependinguponnumber

ofcylindersTherearethreegear

wheelsinthecamshaftdriveThemaingear

wheelonthecrankshaftisinonepieceand

flange‑mounted

Fuel injection pump with double control valves

Pump housing with fuel injection pumps and exhaust‑valve actuator pumps

11

1

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 7: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

RT‑FLEX CONCEPT AND BENEFITS TheWaumlrtsilaumlRT‑flexsystemistheresultofa

longprojectsincethe1980stodeveloplowshy

speedmarineengineswithouttheconstraints

imposedbymechanicaldriveoffuelinjection

pumpsandvalveactuationpumpsbutwith

fargreaterflexibilityinenginesettingtoreach

futurerequirementsTheobjectiveistodeliver

operationalbenefitstotheshipowners

TheWaumlrtsilaumlRT‑flex96Cisbasicallya

standardWaumlrtsilaumllow‑speedtwo‑strokemarine

dieselengineexceptthatinsteadoftheusual

camshaftanditsgeardrivefuelinjectionpumps

exhaustvalveactuatorpumpsandreversing

servomotorsitisequippedwithacommon‑rail

systemforfuelinjectionexhaustvalveactuation

andairstartingandfullelectroniccontrolofthese

enginefunctions

Thecommon‑railinjectionsystemoperates

withjustthesamegradesofheavyfueloilas

arealreadystandardforWaumlrtsilaumllow‑speed

engines

TheRT‑flexenginesofferanumberof

interestingbenefitstoshipownersandoperators

bull Smokelessoperationatalloperatingspeeds

bull Lowersteadyrunningspeedsintherange

of10‑15percentnominalspeedobtained

smokelesslythroughsequentialshut‑off

ofinjectorswhilecontinuingtorunonall

cylinders

bull Reducedrunningcoststhroughlowerpartshy

loadfuelconsumptionandlongertimes

betweenoverhauls

bull Reducedmaintenancerequirementswith

simplersettingoftheengineThelsquoasshy

newrsquorunningsettingsareautomatically

maintained

bull Reducedmaintenancecoststhroughprecise

volumetricfuelinjectioncontrolleadingto

extendabletimesbetweenoverhaulsThe

common‑railsystemwithitsvolumetric

controlgivesexcellentbalanceinengine

powerdevelopedbetweencylindersand

betweencycleswithpreciseinjectiontiming

andequalisedthermalloads

bull Reliabilityisgivenbylong‑termtestingof

common‑railhardwareincomponenttestrigs

bull Higheravailabilityowingtotheintegrated

monitoringfunctions

bull Highavailabilityalsogivenbythebuilt‑in

redundancyprovidedbytheamplecapacity

andduplicationinthesupplypumpsmain

deliverypipescrank‑anglesensorselectronic

controlunitsandotherkeyelements

RT‑FLEX COMMON‑RAIL SYSTEM APPLIED Thecommonrailforfuelinjectionisamanifold

runningthelengthoftheengineatjustbelow

thecylindercoverlevelThecommonrailand

otherrelatedpipeworkareneatlyarranged

beneaththetopengineplatformandreadily

accessiblefromabove

Thecommonrailisfedwithheatedfueloil

attheusualhighpressure(nominally1000

bar)readyforinjectionThesupplyunithasa

numberofhigh‑pressurepumpsrunningon

multi‑lobecams

Fuelisdeliveredfromthiscommonrail

throughaseparateinjectioncontrolunit

foreachenginecylindertothestandard

fuelinjectionvalveswhicharehydraulically

operatedintheusualwaybythehigh‑pressure

fueloilThecontrolunitsusingquick‑acting

Waumlrtsilaumlrailvalvesregulatethetimingoffuel

injectioncontrolthevolumeoffuelinjected

andsettheshapeoftheinjectionpattern

Thethreefuelinjectionvalvesineachcylinder

coverareseparatelycontrolledsothat

althoughtheynormallyactinunisontheycan

alsobeprogrammedtooperateseparatelyas

necessary

ThekeyfeaturesoftheWaumlrtsilaumlRT‑flex

common‑railsystemare

bull Precisevolumetriccontroloffuelinjection

withintegratedflow‑outsecurity

bull Variableinjectionrateshapingandfree

selectionofinjectionpressure

bull Stablepressurelevelsincommonrailand

supplypipes

bull Possibilityforindependentcontroland

shuttingoffofindividualfuelinjectionvalves

bull Ideallysuitedforheavyfueloilthroughclear

separationofthefueloilfromthehydraulic

pilotvalves

bull Well‑provenstandardfuelinjectionvalves

bull Provenhigh‑efficiencycommon‑railfuel

pumps

TheRT‑flexsystemalsoencompassesexhaust

Rail unit at the cylinder top level of the RT‑flex96C engine with electronic control units on the front of the rail unit for good access

valveactuationandstartingaircontrolThe

exhaustvalvesareoperatedinmuchthesame

wayasinexistingRTAenginesbyahydraulic

pushrodbutwiththeactuatingenergynow

comingfromaservooilrailat200barpressure

Theservooilissuppliedbyhigh‑pressure

hydraulicpumpsincorporatedinthesupplyunit

withthefuelsupplypumpsTheelectronicallyshy

controlledactuatingunitforeachcylindergives

fullflexibilityintimingforvalveopeningand

closing

AllfunctionsintheRT‑flexsystemare

controlledandmonitoredthroughthe

integratedWaumlrtsilaumlWECS‑9520electronic

controlsystemThisisamodularsystemwith

separatemicroprocessorcontrolunitsforeach

cylinderandoverallcontrolandsupervision

byduplicatedmicroprocessorcontrolunits

Thelatterprovidetheusualinterfaceforthe

electronicgovernorandtheshipboardremote

controlandalarmsystems

8

Various RT‑flex equipment on the lower platform of a 1RT‑flex96C engine From left to right these include (A) the local engine control panel (B) the automatic fine filter for servo and control oil (C) the two electrically‑driven control oil pumps and (D) the supply unit

Inside the rail unit of an RT‑flex96C engine during assembly The exhaust valve actuator (A) is mounted on the servo oil rail and the injection control unit (B) is on the fuel rail Next to the fuel rail is the smaller control oil rail (C) and the return pipe for servo and control oil (D)

Supply unit for a 1RT‑flex96C engine with the fuel pumps in Vee‑form arrangement on the left and the servo pumps on the right of the central gear drive

Volumetric fuel injection control unit

Fuel injectors

Exhaust valve actuator

Exhaust valve actuating unit

Crank angle

sensor

WECS control system

30bar starting air

200bar servo oil

1000bar fuel HFO MDO

Schematic of the Waumlrtsilauml RT‑flex system with electronically‑controlled common‑rail systems for fuel injection exhaust valve operation and starting air

9

RT‑FLEX REAL IN‑SERVICE FUEL ECONOMY

WhereasWaumlrtsilaumlRTA‑seriesengines

haveexcellentfuelconsumptionin

generaltheRT‑flexsystemenablesfurther

improvementstobeachievedinthepartshy

loadrangeThisisbecauseofthefreedom

allowedbytheRT‑flexsysteminselecting

optimuminjectionpressurefuelinjection

timingandexhaustvalvetimingatallengine

loadsorspeedswhileensuringefficient

combustionatalltimesevenduringdead

slowrunning

Similarfreedominexhaustvalve

timingallowstheRT‑flexsystemtokeep

combustionairexcesshighbyearliervalve

closingastheloadspeedisreducedThisis

notonlyadvantageousforfuelconsumption

butalsolimitscomponenttemperatures

whichwouldnormallyincreaseatlowload

Lowerturbochargerefficienciesatpartload

normallyresultinlowexcesscombustionair

withfixedvalvetiming

Anotherimportantcontributiontofuel

economyoftheRT‑flex96Cenginesisthe

capabilitytoadapteasilytheinjectiontiming

tovariousfuelpropertieshavingapoor

combustionbehaviour

DELTA TUNING A FUEL EFFICIENCY ALTERNATIVE Throughtheirflexibilityinenginesetting

RT‑flexenginesalsohaveanalternativefuel

consumptioncurveasstandardtogivelower

BSFC(brakespecificfuelconsumption)in

whatisformanyshipsthemainoperating

rangeThroughDeltaTuningtheBSFCis

loweredinthemid‑andlow‑loadoperating

rangeatlessthan90percentenginepower

TheconsequentincreaseinNOXinthat

operatingrangeiscompensatedbyreducing

NOXemissionsinthehighloadrangeWith

bothBSFCcurvestheenginescomplywith

theNOXregulationoftheMARPOL7378

convention

The new alternative BSFC curve for RT‑flex96C engines given by Delta Tuning compared with the original BSFC curves All curves shown are for engines complying with the IMO NOX regulation

Smoke emission measurements for RT‑flex96C engines compared with the RTA96C engines both using marine diesel oil

RT‑FLEX CLEANER IN THE ENVIRONMENT Exhaustgasemissionshavebecomean

importantaspectofmarinedieselenginesAll

WaumlrtsilaumlRTAandRT‑flexenginescomplywith

theNOXemissionslimitofAnnexVIofthe

MARPOL7378conventionasstandard

RT‑flexengineshowevercome

comfortablybelowthisNOXlimitbyvirtueof

theirextremelywideflexibilityinoptimising

thefuelinjectionandexhaustvalve

processes

ThemostvisiblebenefitofRT‑flexengines

isofcoursetheirsmokelessoperationatall

shipspeedsThesuperiorcombustionwith

thecommon‑railsystemislargelybecause

thefuelinjectionpressureismaintainedat

theoptimumlevelirrespectiveofengine

speedInadditionatverylowspeeds

individualfuelinjectorsareselectivelyshut

offandtheexhaustvalvetimingadaptedto

helptokeepsmokeemissionsbelowthe

visiblelimit

Yettheenvironmentalbenefitsof

RT‑flexenginesneednotberestrictedby

thecurrentstate‑of‑the‑artAsallsettings

andadjustmentswithinthecombustion

andscavengingprocessesaremade

electronicallyfutureadaptationswill

bepossiblesimplythroughchangesin

softwarewhichcouldbereadilyretrofitted

toexistingRT‑flexengines

Amajorreductioninallexhaust

emissionsincludingCO2canbeobtained

withRT‑flex96Cenginesbycombiningthe

enginewithahigh‑efficiencywasteheat

recoveryplant(seepage20)

Aswellasinvestigatingthescopeof

possibilitiesoftheRT‑flexsystemWaumlrtsilauml

iscarryingoutalong‑termresearch

programmetodeveloptechniquesfor

furtherreducingexhaustemissions

includingNOXSOXandCO2inbothRTA

andRT‑flexengines

10

1‑cylinder Waumlrtsilauml RTA96C engine giving 68640 kW

RTA96C THE TRADITIONAL CAMSHAFT ARRANGEMENT TheWaumlrtsilaumlRTA96Cretainsthetraditional

mechanicalcamshaftarrangementforfuel

injectionpumpsandvalvedrives

Thecamshaft‑drivenfuelinjectionpumps

areofthewell‑provendouble‑valvecontrolled

typethathasbeentraditionalinWaumlrtsilaumllowshy

speedenginesInjectiontimingiscontrolled

byseparatesuctionandspillvalvesregulated

througheccentricsonhydraulically‑actuated

layshaftsConsequentlygreatflexibilityin

timingispossiblethroughthevariablefuel

injectiontiming(VIT)systemforimprovedpartshy

loadfuelconsumptionandforthefuelquality

setting(FQS)levertoadjusttheinjectiontiming

accordingtothefueloilquality

Thevalve‑controlledfuelinjectionpump

incomparisonwithahelixtypehasaplunger

withasignificantlygreatersealinglength

Thehighervolumetricefficiencyreducesthe

torqueinthecamshaftAdditionallyinjection

fromavalve‑controlledpumpisfarmore

stableatverylowloadsandrotationalshaft

speedsdownto15percentoftherated

speedareachievedValvecontrolalsohas

benefitsoflessdeteriorationoftimingover

theyearsowingtolesswearandtofreedom

fromcavitation

Thecamshaftisassembledfromanumber

ofsegmentsoneforeachpumphousingThe

segmentsareconnectedthroughSKFsleeve

couplingsEachsegmenthasanintegral

hydraulicreversingservomotorlocatedwithin

thepumphousing

Thecamshaftdriveusesthewellshy

provenarrangementofgearwheels

housedinadoublecolumnlocated

atthedrivingendinthecentreof

theenginedependinguponnumber

ofcylindersTherearethreegear

wheelsinthecamshaftdriveThemaingear

wheelonthecrankshaftisinonepieceand

flange‑mounted

Fuel injection pump with double control valves

Pump housing with fuel injection pumps and exhaust‑valve actuator pumps

11

1

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 8: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

Various RT‑flex equipment on the lower platform of a 1RT‑flex96C engine From left to right these include (A) the local engine control panel (B) the automatic fine filter for servo and control oil (C) the two electrically‑driven control oil pumps and (D) the supply unit

Inside the rail unit of an RT‑flex96C engine during assembly The exhaust valve actuator (A) is mounted on the servo oil rail and the injection control unit (B) is on the fuel rail Next to the fuel rail is the smaller control oil rail (C) and the return pipe for servo and control oil (D)

Supply unit for a 1RT‑flex96C engine with the fuel pumps in Vee‑form arrangement on the left and the servo pumps on the right of the central gear drive

Volumetric fuel injection control unit

Fuel injectors

Exhaust valve actuator

Exhaust valve actuating unit

Crank angle

sensor

WECS control system

30bar starting air

200bar servo oil

1000bar fuel HFO MDO

Schematic of the Waumlrtsilauml RT‑flex system with electronically‑controlled common‑rail systems for fuel injection exhaust valve operation and starting air

9

RT‑FLEX REAL IN‑SERVICE FUEL ECONOMY

WhereasWaumlrtsilaumlRTA‑seriesengines

haveexcellentfuelconsumptionin

generaltheRT‑flexsystemenablesfurther

improvementstobeachievedinthepartshy

loadrangeThisisbecauseofthefreedom

allowedbytheRT‑flexsysteminselecting

optimuminjectionpressurefuelinjection

timingandexhaustvalvetimingatallengine

loadsorspeedswhileensuringefficient

combustionatalltimesevenduringdead

slowrunning

Similarfreedominexhaustvalve

timingallowstheRT‑flexsystemtokeep

combustionairexcesshighbyearliervalve

closingastheloadspeedisreducedThisis

notonlyadvantageousforfuelconsumption

butalsolimitscomponenttemperatures

whichwouldnormallyincreaseatlowload

Lowerturbochargerefficienciesatpartload

normallyresultinlowexcesscombustionair

withfixedvalvetiming

Anotherimportantcontributiontofuel

economyoftheRT‑flex96Cenginesisthe

capabilitytoadapteasilytheinjectiontiming

tovariousfuelpropertieshavingapoor

combustionbehaviour

DELTA TUNING A FUEL EFFICIENCY ALTERNATIVE Throughtheirflexibilityinenginesetting

RT‑flexenginesalsohaveanalternativefuel

consumptioncurveasstandardtogivelower

BSFC(brakespecificfuelconsumption)in

whatisformanyshipsthemainoperating

rangeThroughDeltaTuningtheBSFCis

loweredinthemid‑andlow‑loadoperating

rangeatlessthan90percentenginepower

TheconsequentincreaseinNOXinthat

operatingrangeiscompensatedbyreducing

NOXemissionsinthehighloadrangeWith

bothBSFCcurvestheenginescomplywith

theNOXregulationoftheMARPOL7378

convention

The new alternative BSFC curve for RT‑flex96C engines given by Delta Tuning compared with the original BSFC curves All curves shown are for engines complying with the IMO NOX regulation

Smoke emission measurements for RT‑flex96C engines compared with the RTA96C engines both using marine diesel oil

RT‑FLEX CLEANER IN THE ENVIRONMENT Exhaustgasemissionshavebecomean

importantaspectofmarinedieselenginesAll

WaumlrtsilaumlRTAandRT‑flexenginescomplywith

theNOXemissionslimitofAnnexVIofthe

MARPOL7378conventionasstandard

RT‑flexengineshowevercome

comfortablybelowthisNOXlimitbyvirtueof

theirextremelywideflexibilityinoptimising

thefuelinjectionandexhaustvalve

processes

ThemostvisiblebenefitofRT‑flexengines

isofcoursetheirsmokelessoperationatall

shipspeedsThesuperiorcombustionwith

thecommon‑railsystemislargelybecause

thefuelinjectionpressureismaintainedat

theoptimumlevelirrespectiveofengine

speedInadditionatverylowspeeds

individualfuelinjectorsareselectivelyshut

offandtheexhaustvalvetimingadaptedto

helptokeepsmokeemissionsbelowthe

visiblelimit

Yettheenvironmentalbenefitsof

RT‑flexenginesneednotberestrictedby

thecurrentstate‑of‑the‑artAsallsettings

andadjustmentswithinthecombustion

andscavengingprocessesaremade

electronicallyfutureadaptationswill

bepossiblesimplythroughchangesin

softwarewhichcouldbereadilyretrofitted

toexistingRT‑flexengines

Amajorreductioninallexhaust

emissionsincludingCO2canbeobtained

withRT‑flex96Cenginesbycombiningthe

enginewithahigh‑efficiencywasteheat

recoveryplant(seepage20)

Aswellasinvestigatingthescopeof

possibilitiesoftheRT‑flexsystemWaumlrtsilauml

iscarryingoutalong‑termresearch

programmetodeveloptechniquesfor

furtherreducingexhaustemissions

includingNOXSOXandCO2inbothRTA

andRT‑flexengines

10

1‑cylinder Waumlrtsilauml RTA96C engine giving 68640 kW

RTA96C THE TRADITIONAL CAMSHAFT ARRANGEMENT TheWaumlrtsilaumlRTA96Cretainsthetraditional

mechanicalcamshaftarrangementforfuel

injectionpumpsandvalvedrives

Thecamshaft‑drivenfuelinjectionpumps

areofthewell‑provendouble‑valvecontrolled

typethathasbeentraditionalinWaumlrtsilaumllowshy

speedenginesInjectiontimingiscontrolled

byseparatesuctionandspillvalvesregulated

througheccentricsonhydraulically‑actuated

layshaftsConsequentlygreatflexibilityin

timingispossiblethroughthevariablefuel

injectiontiming(VIT)systemforimprovedpartshy

loadfuelconsumptionandforthefuelquality

setting(FQS)levertoadjusttheinjectiontiming

accordingtothefueloilquality

Thevalve‑controlledfuelinjectionpump

incomparisonwithahelixtypehasaplunger

withasignificantlygreatersealinglength

Thehighervolumetricefficiencyreducesthe

torqueinthecamshaftAdditionallyinjection

fromavalve‑controlledpumpisfarmore

stableatverylowloadsandrotationalshaft

speedsdownto15percentoftherated

speedareachievedValvecontrolalsohas

benefitsoflessdeteriorationoftimingover

theyearsowingtolesswearandtofreedom

fromcavitation

Thecamshaftisassembledfromanumber

ofsegmentsoneforeachpumphousingThe

segmentsareconnectedthroughSKFsleeve

couplingsEachsegmenthasanintegral

hydraulicreversingservomotorlocatedwithin

thepumphousing

Thecamshaftdriveusesthewellshy

provenarrangementofgearwheels

housedinadoublecolumnlocated

atthedrivingendinthecentreof

theenginedependinguponnumber

ofcylindersTherearethreegear

wheelsinthecamshaftdriveThemaingear

wheelonthecrankshaftisinonepieceand

flange‑mounted

Fuel injection pump with double control valves

Pump housing with fuel injection pumps and exhaust‑valve actuator pumps

11

1

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 9: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

RT‑FLEX REAL IN‑SERVICE FUEL ECONOMY

WhereasWaumlrtsilaumlRTA‑seriesengines

haveexcellentfuelconsumptionin

generaltheRT‑flexsystemenablesfurther

improvementstobeachievedinthepartshy

loadrangeThisisbecauseofthefreedom

allowedbytheRT‑flexsysteminselecting

optimuminjectionpressurefuelinjection

timingandexhaustvalvetimingatallengine

loadsorspeedswhileensuringefficient

combustionatalltimesevenduringdead

slowrunning

Similarfreedominexhaustvalve

timingallowstheRT‑flexsystemtokeep

combustionairexcesshighbyearliervalve

closingastheloadspeedisreducedThisis

notonlyadvantageousforfuelconsumption

butalsolimitscomponenttemperatures

whichwouldnormallyincreaseatlowload

Lowerturbochargerefficienciesatpartload

normallyresultinlowexcesscombustionair

withfixedvalvetiming

Anotherimportantcontributiontofuel

economyoftheRT‑flex96Cenginesisthe

capabilitytoadapteasilytheinjectiontiming

tovariousfuelpropertieshavingapoor

combustionbehaviour

DELTA TUNING A FUEL EFFICIENCY ALTERNATIVE Throughtheirflexibilityinenginesetting

RT‑flexenginesalsohaveanalternativefuel

consumptioncurveasstandardtogivelower

BSFC(brakespecificfuelconsumption)in

whatisformanyshipsthemainoperating

rangeThroughDeltaTuningtheBSFCis

loweredinthemid‑andlow‑loadoperating

rangeatlessthan90percentenginepower

TheconsequentincreaseinNOXinthat

operatingrangeiscompensatedbyreducing

NOXemissionsinthehighloadrangeWith

bothBSFCcurvestheenginescomplywith

theNOXregulationoftheMARPOL7378

convention

The new alternative BSFC curve for RT‑flex96C engines given by Delta Tuning compared with the original BSFC curves All curves shown are for engines complying with the IMO NOX regulation

Smoke emission measurements for RT‑flex96C engines compared with the RTA96C engines both using marine diesel oil

RT‑FLEX CLEANER IN THE ENVIRONMENT Exhaustgasemissionshavebecomean

importantaspectofmarinedieselenginesAll

WaumlrtsilaumlRTAandRT‑flexenginescomplywith

theNOXemissionslimitofAnnexVIofthe

MARPOL7378conventionasstandard

RT‑flexengineshowevercome

comfortablybelowthisNOXlimitbyvirtueof

theirextremelywideflexibilityinoptimising

thefuelinjectionandexhaustvalve

processes

ThemostvisiblebenefitofRT‑flexengines

isofcoursetheirsmokelessoperationatall

shipspeedsThesuperiorcombustionwith

thecommon‑railsystemislargelybecause

thefuelinjectionpressureismaintainedat

theoptimumlevelirrespectiveofengine

speedInadditionatverylowspeeds

individualfuelinjectorsareselectivelyshut

offandtheexhaustvalvetimingadaptedto

helptokeepsmokeemissionsbelowthe

visiblelimit

Yettheenvironmentalbenefitsof

RT‑flexenginesneednotberestrictedby

thecurrentstate‑of‑the‑artAsallsettings

andadjustmentswithinthecombustion

andscavengingprocessesaremade

electronicallyfutureadaptationswill

bepossiblesimplythroughchangesin

softwarewhichcouldbereadilyretrofitted

toexistingRT‑flexengines

Amajorreductioninallexhaust

emissionsincludingCO2canbeobtained

withRT‑flex96Cenginesbycombiningthe

enginewithahigh‑efficiencywasteheat

recoveryplant(seepage20)

Aswellasinvestigatingthescopeof

possibilitiesoftheRT‑flexsystemWaumlrtsilauml

iscarryingoutalong‑termresearch

programmetodeveloptechniquesfor

furtherreducingexhaustemissions

includingNOXSOXandCO2inbothRTA

andRT‑flexengines

10

1‑cylinder Waumlrtsilauml RTA96C engine giving 68640 kW

RTA96C THE TRADITIONAL CAMSHAFT ARRANGEMENT TheWaumlrtsilaumlRTA96Cretainsthetraditional

mechanicalcamshaftarrangementforfuel

injectionpumpsandvalvedrives

Thecamshaft‑drivenfuelinjectionpumps

areofthewell‑provendouble‑valvecontrolled

typethathasbeentraditionalinWaumlrtsilaumllowshy

speedenginesInjectiontimingiscontrolled

byseparatesuctionandspillvalvesregulated

througheccentricsonhydraulically‑actuated

layshaftsConsequentlygreatflexibilityin

timingispossiblethroughthevariablefuel

injectiontiming(VIT)systemforimprovedpartshy

loadfuelconsumptionandforthefuelquality

setting(FQS)levertoadjusttheinjectiontiming

accordingtothefueloilquality

Thevalve‑controlledfuelinjectionpump

incomparisonwithahelixtypehasaplunger

withasignificantlygreatersealinglength

Thehighervolumetricefficiencyreducesthe

torqueinthecamshaftAdditionallyinjection

fromavalve‑controlledpumpisfarmore

stableatverylowloadsandrotationalshaft

speedsdownto15percentoftherated

speedareachievedValvecontrolalsohas

benefitsoflessdeteriorationoftimingover

theyearsowingtolesswearandtofreedom

fromcavitation

Thecamshaftisassembledfromanumber

ofsegmentsoneforeachpumphousingThe

segmentsareconnectedthroughSKFsleeve

couplingsEachsegmenthasanintegral

hydraulicreversingservomotorlocatedwithin

thepumphousing

Thecamshaftdriveusesthewellshy

provenarrangementofgearwheels

housedinadoublecolumnlocated

atthedrivingendinthecentreof

theenginedependinguponnumber

ofcylindersTherearethreegear

wheelsinthecamshaftdriveThemaingear

wheelonthecrankshaftisinonepieceand

flange‑mounted

Fuel injection pump with double control valves

Pump housing with fuel injection pumps and exhaust‑valve actuator pumps

11

1

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 10: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

1‑cylinder Waumlrtsilauml RTA96C engine giving 68640 kW

RTA96C THE TRADITIONAL CAMSHAFT ARRANGEMENT TheWaumlrtsilaumlRTA96Cretainsthetraditional

mechanicalcamshaftarrangementforfuel

injectionpumpsandvalvedrives

Thecamshaft‑drivenfuelinjectionpumps

areofthewell‑provendouble‑valvecontrolled

typethathasbeentraditionalinWaumlrtsilaumllowshy

speedenginesInjectiontimingiscontrolled

byseparatesuctionandspillvalvesregulated

througheccentricsonhydraulically‑actuated

layshaftsConsequentlygreatflexibilityin

timingispossiblethroughthevariablefuel

injectiontiming(VIT)systemforimprovedpartshy

loadfuelconsumptionandforthefuelquality

setting(FQS)levertoadjusttheinjectiontiming

accordingtothefueloilquality

Thevalve‑controlledfuelinjectionpump

incomparisonwithahelixtypehasaplunger

withasignificantlygreatersealinglength

Thehighervolumetricefficiencyreducesthe

torqueinthecamshaftAdditionallyinjection

fromavalve‑controlledpumpisfarmore

stableatverylowloadsandrotationalshaft

speedsdownto15percentoftherated

speedareachievedValvecontrolalsohas

benefitsoflessdeteriorationoftimingover

theyearsowingtolesswearandtofreedom

fromcavitation

Thecamshaftisassembledfromanumber

ofsegmentsoneforeachpumphousingThe

segmentsareconnectedthroughSKFsleeve

couplingsEachsegmenthasanintegral

hydraulicreversingservomotorlocatedwithin

thepumphousing

Thecamshaftdriveusesthewellshy

provenarrangementofgearwheels

housedinadoublecolumnlocated

atthedrivingendinthecentreof

theenginedependinguponnumber

ofcylindersTherearethreegear

wheelsinthecamshaftdriveThemaingear

wheelonthecrankshaftisinonepieceand

flange‑mounted

Fuel injection pump with double control valves

Pump housing with fuel injection pumps and exhaust‑valve actuator pumps

11

1

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 11: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

1

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 12: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

Three views of principal elements in the engine structure bedplate (top left) column (top right) and cylinder jacket (above)

ENGINE STRUCTURE

WaumlrtsilaumlRT‑flex96CandRTA96Cengineshave

awell‑proventypeofstructurewithalsquogondolarsquoshy

typebedplatesurmountedbyveryrigidAshy

shapeddouble‑walledcolumnsandcylinder

blocksallsecuredbypre‑tensionedverticaltie

rodsThewholestructureisverysturdywithlow

stressesandhighstiffnessBothbedplateand

columnsareweldedfabricationswhicharealso

designedforminimummachining

Ahighstructuralrigidityisofmajor

importanceforthetodayrsquostwo‑strokeenginersquos

longstrokeAccordinglythedesignisbasedon

extensivestressanddeformationcalculations

carriedoutbyusingafullthree‑dimensional

finite‑elementcomputermodelfordifferent

columndesignstoverifytheoptimumframe

configuration

Thecylinderjacketisassembledfrom

individualcast‑ironcylinderblocksbolted

togethertoformarigidwholeThesupplyunit

inRT‑flexenginesorthefuelpumpblocks

inRTAenginesarecarriedonsupportson

onesideofthecolumnandthescavenge

airreceiverontheothersideofthecylinder

jacketAccesstothepistonunder‑sideis

normallyfromthesupplyunitsidebutisalso

possiblefromthereceiversideoftheengine

toallowformaintenanceofthepistonrod

glandandalsoforinspectingpistonrings

Thetilting‑padthrustbearingisintegrated

inthebedplateOwingtotheuseofgear

wheelsforthesupplyunitdrivethethrust

bearingcanbeveryshortandverystiffand

canbecarriedinaclosedrigidhousing

Finite‑element model of the engine structure for computer analysis comprising the lsquogondolarsquo type bedplate welded box‑type columns and individual cast‑iron cylinder blocks

1

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 13: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

Lowering the crankshaft into the bedplate

RUNNING GEAR Therunninggearcomprisesthecrankshaft

connectingrodspistonsandpistonrods

togetherwiththeirassociatedbearingsand

pistonrodglands

Thecrankshaftissemi‑builtcomprising

combinedcrankpinwebelementsforgedfrom

asolidingotandthejournalpinsthenshrunk

intothecrankweb

Themainbearingshavewhitemetalshells

Themainbearingcapsarehelddownbytwo

pairsofelasticholdingdownstuds

Abetterunderstandingofthemainbearing

loadsisobtainedwithtodayrsquosfinite‑element

analysisandelasto‑hydrodynamiccalculation

techniquesastheytakeintoaccountthe

structurearoundthebearingandvibration

oftheshaftTheFEmodelcomprisesthe

completeshaftanditsbearingstogether

withthesurroundingstructureBoundary

conditionsincludingthecrankshaftstiffness

canthusbefedintothebearingcalculation

Thecrossheadbearingisdesignedtothe

sameprinciplesasforallotherRTAandRT‑flex

enginesItalsofeaturesafull‑widthlowerhalf

bearingThecrossheadbearingshavethinshy

walledshellsofwhitemetalforahighloadshy

bearingcapacityWaumlrtsilaumllow‑speedengines

retaintheuseofaseparateelevated‑pressure

lubricatingoilsupplytothecrossheadIt

provideshydrostaticlubricationwhichlifts

thecrossheadpinofftheshellduringevery

revolutiontoensurethatsufficientoilfilm

thicknessismaintainedunderthegasload

Thishasprovedcrucialtolong‑termbearing

security

Extensivedevelopmentworkhasbeen

putintothepistonrodglandbecauseof

itsimportanceinkeepingcrankcaseoil

consumptiondowntoareasonableleveland

maintainingthequalityofthesystemoil

TodayrsquosRTAandRT‑flexenginesemployan

improveddesignofpistonrodglandwithgasshy

tighttopscraperringsandlargedrainareas

andchannelsHardenedpistonrodsarenow

standardtoensurelong‑termstabilityinthe

glandbehaviour

14

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 14: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

Piston piston rod and gland box Crosshead pins with guide shoes

with crankshaft distortion

without crankshaft distortion

Load vector

Load diagrams for main bearing with and without crankshaft distortion taken Finite‑element analysis of the crank throw of the RT‑flex96C

into account under full dynamic loading

1

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 15: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

Bore‑cooled pistons from the underside

Cooling oil spray nozzles at top of piston rod

16

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 16: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

COMBUSTION CHAMBER Thecombustionchamberintodayrsquosdiesel

enginehasamajorinfluenceontheenginersquos

reliabilityCarefulattentionisneededforthe

layoutofthefuelinjectionspraypatternto

achievemoderatesurfacetemperaturesandto

avoidcarbondeposits

AtWaumlrtsilaumloptimisationoffuelinjection

iscarriedoutfirstbytheuseofmodern

calculationtoolssuchasCFD(computerised

fluiddynamics)analysisThecalculatedresults

arethenconfirmedonthefirsttestengines

Themoderncalculationtoolswere

invaluablewiththeRTA96Cwhichhasa

rathershallowcombustionchamberowingto

itscomparativelyshortstrokeboreratioand

carewasneededwiththelargequantityoffuel

injectedtoavoidimpingementoncomponent

surfaces

Thewell‑provenbore‑coolingprincipleis

alsoemployedinallthecombustionchamber

componentstocontroltheirtemperaturesas

wellasthermalstrainsandmechanicalstresses

Thesolidforgedsteelbore‑cooledcylinder

coverissecuredbyeightelasticstudsItis

equippedwithasinglecentralexhaustvalve

inNimonic80Awhichishousedinaboltedshy

onvalvecageTheengineshavethreefuel

injectionvalvessymmetricallydistributedin

thecylindercoverAnti‑corrosioncladdingis

appliedtothecylindercoversdownstreamof

theinjectionnozzlestoprotectthecylinder

coversfromhotcorrosiveorerosiveattack

Thepistonscompriseaforgedsteelcrown

withashortskirtCombinedjet‑shakeroil

coolingofthepistoncrownprovidesoptimum

coolingperformanceItgivesverymoderate

temperaturesonthepistoncrownwithafairly

eventemperaturedistributionrightacrossthe

crownsurfaceNocoatingsarenecessary

ThecylinderlinerisalsoborecooledIts

surfacetemperaturesareoptimisedforgood

piston‑runningbehaviour

PISTON‑RUNNING BEHAVIOUR Todaythetimebetweenoverhaul(TBO)of

low‑speedmarinedieselenginesislargely

determinedbythepiston‑runningbehaviour

anditseffectonthewearofpistonrings

andcylinderlinersForthisreasonWaumlrtsilauml

RT‑flex96CandRTA96Cenginesnow

incorporateapackageofdesignmeasuresthat

enabletheTBOofthecylindercomponents

includingpistonringrenewaltobeextendedto

atleastthreeyearswhileallowingthefurther

reductionofcylinderlubricatingoilfeedrate

Thestandarddesignmeasuresappliedto

newly‑builtRT‑flex96CandRTA96Cengines

forimprovedpiston‑runningbehaviournow

include

bull Lineroftheappropriatematerialwith

sufficienthardphase

bull Carefulturningofthelinerrunningsurface

andplateauhoningofthelineroverthefull

lengthoftherunningsurface

bull Optimisedsurfacetemperaturesonthe

cylinderlinerwithoutanyinsulationor

insulatingtubes

bull Chromium‑ceramiccoatedpre‑profiled

pistonringsinallpistongrooves

bull Anti‑PolishingRing(APR)withdoubleshy

actingscraperedgesatthetopofthe

cylinderliner

bull Increasedthicknessofchromiumlayerin

thepiston‑ringgrooves

bull Twobronzerubbingbandsonshortpiston

skirt

bull Load‑dependentaccumulatorlubricating

systemforcylinderlubrication

Akeyelementgoodpiston‑runningisthe

surfacefinishofthecylinderlinerCareful

machiningandplateauhoninggivesthe

lineranidealrunningsurfaceforthepiston

ringstogetherwithanoptimumsurface

microstructure

TheAnti‑PolishingRing(APR)prevents

thebuildupofdepositsonthetoplandofthe

pistonwhichcandamagetheoilfilmonthe

linerandcauseborepolishingTheAPRhasa

smallerclearancewiththepistoncrownand

twoscraperedgesforgreatercleaningeffect

Fully bore‑cooled combustion chamber Analysis of fuel distribution and injection trajectories in the cylinder Colours indicate concentration with bluegreen for the stoichiometric mixture No combustion calculated

1

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 17: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

The Anti‑Polishing Ring (APR) for RTA96C and RT‑flex96C engines has a revised geometry with two edges to clean the piston top land during both the up and down strokes of the piston

Piston of an RTA96C engine after testing at 110 per cent load The piston has chromium ceramic rings in all grooves and two bronze rubbing bands in the short skirt

Itisimportantthatthelinerwall

temperatureisoptimisedoverthepiston

strokeTheuseofchromium‑ceramiccoated

pistonringsinallgroovesallowslowerliner

temperatureswhicharenowachievedwithout

mid‑strokeinsulation

Whilsttryingtoavoidcorrosivewear

byoptimisinglinerwalltemperaturesitis

necessarytotakeoutasmuchwateras

possiblefromthescavengeairThusthe

lsquounderslungrsquoscavengeairreceivercombined

withhighly‑efficientvane‑typewater

separatorsfittedaftertheaircoolerandthe

effectivewaterdrainagearrangementsare

absolutelyessentialforgoodpistonrunning

Load‑dependentcylinderlubricationis

providedbythewell‑provenWaumlrtsilaumlmultishy

levelaccumulatorsystemwhichdelivers

thetimelyquantityoflubricatingoilforgood

piston‑runningThelubricatingoilfeedrate

18

iscontrolledaccordingtotheengineload

andcanalsobeadjustedaccordingtoengine

conditionThesystemallowsfeedratesdown

to11gkWhthoughalowerfeedrateof09

gkWhispossibleafteranalysisofengine

performancebyaWaumlrtsilaumlserviceengineer

ThenewPulseJetLubricationSystemis

alsobeingintroducedonRT‑flex96Cengines

Thiselectronically‑timedload‑dependent

cylinderlubricationsystemensuresoptimum

distributionofcylinderlubricatingoilonthe

runningsurfaceofthecylinderlinerCylinder

lubricatingoilissprayedasmultiplejetson

tothelinersurfacefromasinglerowofquills

aroundthelinereachquillhavingmultiple

nozzleholesThefeedrateandtimingare

electronicallycontrolledatthelubricatorpump

Thereisthusfullflexibilityinthesettingofthe

lubricatortimingpointandvolumetricmetering

ensuresconstantspraypatternsacrossthe

engineloadrangeThedosageisprecisely

regulatedevenforlowfeedrates

TURBOCHARGING AND SCAVENGE AIR SYSTEM TheRT‑flex96CandRTA96Cenginesare

uniflowscavengedwithairinletportsinthe

lowerpartofthecylinderandasinglecentral

exhaustvalveinthecylindercoverScavenge

airisdeliveredbyaconstant‑pressure

turbochargingsystemwithoneormore

high‑efficiencyexhaustgasturbochargers

dependingonthenumbersofcylindersFor

startingandduringslow‑runningthescavenge

airdeliveryisaugmentedbyelectrically‑driven

auxiliaryblowers

Thescavengeairreceiverisofan

underslungdesignwithintegralnon‑return

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 18: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

Air cooler

Location of water separator

Arrangements for transmitting propeller thrust to the engine seatings for the RT‑flex96C and RTA96C engines The inset shows the thrust sleeve for the thrust bolts

Side stopper

Thrust

Scavenge air flow from the turbocharger through the horizontal scavenge air cooler and the vertically mounted water separator exiting left to the engine cylinders

INSTALLATION ARRANGEMENTS flapsaircoolerwaterseparatorandthe

auxiliaryblowersTheturbochargersare

mountedonthescavengeairreceiverwhich

alsocarriesthefixedfootfortheexhaust

manifold

Immediatelyafterthehorizontalaircooler

thescavengeairisswunground180degrees

totheenginecylindersintheprocess

passingthroughthevertically‑arrangedwater

separatorThehighly‑efficientwaterseparator

comprisesarowofvaneswhichdiverttheair

flowandcollectthewaterThereareample

drainageprovisionstoremovecompletely

thecondensedwatercollectedatthebottom

oftheseparatorThisarrangementprovides

theeffectiveseparationofcondensedwater

fromthestreamofscavengeairwhichis

imperativeforsatisfactorypiston‑running

behaviour

Waumlrtsilaumllow‑speedengineshavespecific

designfeaturesthathelptofacilitate

shipboardinstallation

Theenginelayoutfieldsgivetheship

designeramplefreedomtomatchthe

enginetotheoptimumpropellerfortheship

Theengineshavesimpleseating

arrangementswithamodestnumberof

holdingdownboltsandsidestoppers

Forexamplea12‑cylinderRT‑flex96Cor

RTA96Crequires14sidestoppersNoend

stoppersorthrustbracketsareneededas

thrusttransmissionisprovidedbyfitted

boltsorthrustsleeveswhichareappliedtoa

numberoftheholding‑downboltsTheholes

inthetanktopforthethrustsleevescan

bemadebydrillingorevenflamecutting

Afteralignmentofthebedplateepoxyresin

chockingmaterialispouredaroundthe

thrustsleeves

Allancillariessuchaspumpsandtank

capacitiesandtheirarrangementareoptimised

toreducetheinstallationandoperatingcosts

Thenumberofpipeconnectionsontheengine

thatmustbeconnectedbytheshipyardare

minimisedTheenginersquoselectricalpower

requirementfortheancillaryservicesisalso

keptdowntoaminimum

Astandardall‑electricinterfaceis

employedforenginemanagementsystems

‑knownasDENIS(DieselEngineInterface

Specification)‑tomeetallneedsforcontrol

monitoringsafetyandalarmwarning

functionsThismatchesremotecontrol

systemsandshipcontrolsystemsfroma

numberofapprovedsuppliers

Theengineisequippedwithanintegrated

axialdetuneratthefreeendofthecrankshaft

Anaxialdetunermonitoringsystemdeveloped

byWaumlrtsilaumlisstandardequipment

19

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 19: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

Schematic of a typical waste heat recovery plant for containerships in the 000‑9000 TEU range

M

G

G

G

G

Main engine

Exhaust gas economiser Ship service steam

Ship service power

Aux engines

Steam turbine

Power turbine

Turbogenerator set for the high‑efficiency waste heat recovery plant with the exhaust‑gas power turbine on the left the generator on the right and the steam turbine to the right of centre

Indicative performance of RT‑flex96C engines with high‑efficiency waste heat recovery (WHR) plant

RT‑flex96C engine 10 cylinders 1 cylinders 14 cylinders

Referenceplantofenginealone

EnginepowerMCRkW 57200 68640 80080

FuelconsumptiongkWh 171 171 171

PlantcombiningengineandWHR

EnginepowerMCRkW 57200 68640 80080

WHRturbogeneratoroutputkWe 7040 8450 9860

OverallfuelconsumptiongkWh 158 158 158

Indicativevaluesbasedonstandardreferenceconditionsand100percentenginepowerattheR1ratingThe engineswithWHRplantemployDeltaTuning

WASTE HEAT RECOVERY FUEL SAVING WITH REDUCED EMISSIONS Anextendedformofhigh‑efficiencywaste

heatrecoveryplanthasbeendevelopedfor

WaumlrtsilaumlRT‑flex96Cenginesprovidingan

environmentally‑cleansolutiontoreducing

shipsrsquofuelconsumptionThegenerated

electricalpowercanbeabout12percentofthe

enginepowerandisemployedtoassistship

propulsionorforsupplyingshipboardservices

Thegeneratedpowerthuscontributes

significantsavingsinbothfuelcostsand

overallexhaust‑gasemissionssuchas

CO2NOXSOXetcItistheonlytechnology

commerciallyavailabletodaythatreducesboth

fuelconsumptionandexhaustemissionsatthe

sametime

Thewasteheatrecoveryplantfollowsthe

well‑establishedconceptofpassingtheexhaust

gasesoftheshiprsquosmainenginethroughan

exhaust‑gaseconomisertogeneratesteamfor

aturbine‑drivengeneratorHoweverthequantity

ofenergyrecoveredfromtheexhaustgases

ismaximisedbyadaptingtheenginetothe

lowerairintaketemperaturesthatareavailable

bydrawingintakeairfromoutsidetheship

(ambientair)insteadoffromtheshiprsquosengine

roomTheengineturbochargersarematched

forthelowerairintaketemperaturesthereby

increasingtheexhaustenergy

Atthesametimetodayrsquoshigh‑efficiency

turbochargershavesurpluscapacityatthe

enginersquosupperloadrangewhenmatchedfor

ambientairintakeThusabout10ofthe

enginersquosexhaustgasflowcanbebranchedoff

todriveapowerturbinewhichisincorporated

intheturbogeneratorpackage

Theoverallresultofthenewconceptis

thatthequantityofenergyrecoverableinan

exhaust‑gaseconomiserandinthepower

turbineisincreasedwithoutaffectingtheairflow

throughtheengineThereisthusnoincreasein

thethermalloadingoftheengineandthereis

noadverseeffectonenginereliability

Heatisalsorecoveredfromtheenginersquos

scavengeairandjacketcoolingwaterfor

feedwaterheatingThescavengeaircoolers

aredesignedinsuchawaythattheboilerfeed

watercanbeheatedclosetotheevaporation

temperature

0

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 20: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

MAINTENANCE Primaryobjectivesinthedesignand

developmentofWaumlrtsilaumllow‑speedengines

arehighreliabilityandlongtimesbetween

overhaulsThreeyearsbetweenoverhaulsare

nowbeingachievedbyenginestothelatest

designstandardsAtthesametimetheirhigh

reliabilitygivesshipownersmorefreedomto

arrangemaintenanceworkwithinshipsrsquosailing

schedules

Yetasmaintenanceworkisinevitable

particularattentionisgiventoeaseof

maintenancebyincludingtoolingandeasy

accessandbyprovidingeasy‑to‑understand

instructions

Allmajorfasteningsthroughoutthe

enginearehydraulicallytightenedForthe

RT‑flex96CandRTA96Cthedimensionsand

weightsofthesejacksarekeptlowbythe

useof1500barworkingpressureAccessto

thecrankcasecontinuestobepossiblefrom

bothsidesoftheengineThehandlingof

componentswithinthecrankcaseisfacilitated

byampleprovisionforhanginghoisting

equipment

TheWaumlrtsilaumlRT‑flexsystemisdesigned

tobeuserfriendlywithoutrequiringshipsrsquo

engineerstohaveanyspecialadditionalskills

Thesystemincorporatesitsowndiagnostic

functionsandallthecriticalelementsare

madeforstraightforwardreplacementInfact

theknowledgeforoperationandmaintenance

ofRT‑flexenginescanbeincludedinWaumlrtsilaumlrsquos

usualone‑weekcoursesforRTA‑series

enginesavailableforshipsrsquoengineersTraining

timeusuallygiventothecamshaftsystemfuel

pumpsvalveactuatingpumpsandreversing

servomotorsissimplygiveninsteadtothe

RT‑flexsystem

1

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 21: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

SHIP REFERENCES

Waumlrtsilauml 9RTA96C Waumlrtsilauml 10RTA96C

Waumlrtsilauml 10RTA96C

Waumlrtsilauml 1RTA96C

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 22: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

MAIN TECHNICAL DATA

DEFINITIONS bull DimensionsandweightsAlldimensionsareinmillimetresandare

notbindingTheengineweightisnetinmetrictonnes(t)withoutoil

andwaterandisnotbinding

bull R1R2R3R4=powerspeedratingsatthefourcornersofthe

enginelayoutfield(seediagram)

bull R1=engineMaximumContinuousRating(MCR)

bull Contract‑MCR(CMCR)=selectedratingpointforparticular

installationAnyCMCRpointcanbeselectedwithintheengine

layoutfield

bull BSFC=brakespecificfuelconsumptions(BSFC)Allfiguresare

quotedforfueloflowercalorificvalue427MJkgandforISO

standardreferenceconditions(ISO15550and3046)TheBSFC

figuresaregivenwithatoleranceof+5

bull WaumlrtsilaumlRT‑flex96Cengineshavealowerpart‑loadfuel

consumptionthanthecorrespondingWaumlrtsilaumlRTA96Cengines

bull ThevaluesofpowerinkilowattsandfuelconsumptioningkWh

arethestandardfiguresanddiscrepanciesoccurbetweenthese

andthecorrespondingbrakehorsepower(bhp)valuesowingtothe

roundingofnumbersFordefinitivevaluespleasecontactWaumlrtsilauml

localoffices

bull ISOstandardreferenceconditions

TotalbarometricpressureatR1 10bar

Suctionairtemperature 25degC

Relativehumidity30

Scavengeaircoolingwatertemperature

‑withseawater 25degC

‑withfreshwater 29degC

MAIN DATA RT‑flex96C AND RTA96C Cylinderbore 960mm Pistonstroke 2500mm Speed 92‑102rpm MeaneffectivepressureatR1 186bar Pistonspeed 85ms Fuelspecification Fueloil 730cSt50degC 7200sR1100degF ISO8217categoryISO‑F‑RMK55

RATED POWER PROPULSION ENGINES

Cyl

Output in kWbhp at 10 rpm 9 rpm

R1 R R R4 kW bhp kW bhp kW bhp kW bhp

6 7 8 9 10 11 12 13 14

34320 40040 45760 51480 57200 62920 68640 74360 80080

46680

54460

62240

70020

77800

85580

93360 101140 108920

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

30960 36120 41280 46440 51600 56760 61920 67080 72240

42120 49140 56160 63180 70200 77220 84240 91260 98280

24000 28000 32000 36000 40000 44000 48000 52000 56000

32640 38080 43520 48960 54400 59840 65280 70720 76160

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC)

gkWh gbhph gkWh gbhph gkWh gbhph gkWh gbhph Load100 171 126 163 120 171 126 164 121

BMEPbar 186 130 186 144

PRINCIPAL ENGINE DIMENSIONS (MM) AND WEIGHTS (TONNES)

Cyl A

6 7 8 9 10 11 12 13 14

11564 13244 15834 17514 19194 20874 22554 24234 25914

B C D E F G I K Weight

4480 1800 10925 5232 12950 2594 723 676 1160 4480 1800 10925 5232 12950 2594 723 676 1290 4480 1800 10925 5232 12950 2594 723 676 1470 4480 1800 10925 5232 12950 2594 723 676 1620 4480 1800 10925 5232 12950 2594 723 676 1760 4480 1800 10925 5232 12950 2594 723 676 1910 4480 1800 10925 5232 12950 2594 723 676 2050 4480 1800 10925 5232 12950 2594 723 676 2160 4480 1800 10925 5232 12950 2594 723 676 2300

Standardpistondismantlingheightcanbereducedwithtiltedpistonwithdrawal

13‑and14‑cylinderenginesareonlyavailableinRT‑flexversionsandnotRTAversions

AlltheabovedataapplytobothRTA96CandRT‑flex96CversionsHowevertheremaybedifferencesinweightsfor theRT‑flex96C

WaumlrtsilaumlRT‑flexenginesarealsoavailablewithpart‑loadoptimisationforlowerfuelconsumptions

Power Engine-MCR

Speed

Engine layout field

R4

R3

R2

R1

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation

Page 23: Wärtsilä RT-flex96C and RTA96C Technology Review - main … · 2014. 7. 17. · WÄRTSILÄ RT‑FLEX96C AND WÄRTSILÄ RTA96C TECHNOLOGY REVIEW This is a brief guide to the technical

Waumlrtsilauml Switzerland Ltd PO Box 414 CH-8401 Winterthur Switzerland l Tel +41 52 262 49 22 l Fax +41 52 262 07 18

012

007

B

ockacute

s O

ffice

Waumlrtsilauml enhances the business of its customers by providing them with

complete lifecycle power solutions When creating better and environmentally

compatible technologies Waumlrtsilauml focuses on the marine and energy markets

with products and solutions as well as services Through innovative products

and services Waumlrtsilauml sets out to be the most valued business partner of

all its customers This is achieved by the dedication of more than 14000

professionals manning 130 Waumlrtsilauml locations in close to 70 countries around

the world

WAumlRTSILAumlreg is a registered trademark Copyright copy 2007 Waumlrtsilauml Corporation