Writing an original research paper Part two: Title and abstract Amin Bredan, PhD, Editor Department...

28
Writing an original research paper Part two: Title and abstract Amin Bredan, PhD, Editor Department of Biomedical Molecular Biology Ghent University and Department for Molecular Biomedical Research Flanders Institute of Biotechnology Belgium

Transcript of Writing an original research paper Part two: Title and abstract Amin Bredan, PhD, Editor Department...

Writing an original research paperPart two: Title and abstract

Amin Bredan, PhD, Editor

Department of Biomedical Molecular BiologyGhent University

and

Department for Molecular Biomedical ResearchFlanders Institute of Biotechnology

Belgium

THE TITLE

the most important single phrase in a paper

© Amin Bredan - 2012

Good titles

Clear and easy to read Brief but accurate representation of paper Specific about contents Length within journal limit

© Amin Bredan - 2012

Bad titles

Difficult to read Badly phrased Much jargon Too long

Cryptic: too short

Ambiguous Meaning not understood Can be interpreted in different ways

© Amin Bredan - 2012

Types of titles

Informative :sentence stating main result Caspase-14 protects against epidermal UVB photo damage and water loss

Indicative: states the purpose of the study or what it is about Effect of radar electromagnetic fields on migrating birds

Question (+/- reverse of informative title but not informative) Should we inhibit type I IFNs in sepsis?

© Amin Bredan - 2012

Types of titles

Informative: sentence stating main result Caspase-14 protects against epidermal UVB photo damage and water loss

Indicative: states the purpose of the study or what it is about Effect of radar electromagnetic fields on migrating birds

Question (+/- reverse of informative title but not informative) Should we inhibit type I IFNs in sepsis?

© Amin Bredan - 2012

Types of titles

Informative: sentence stating main result Caspase-14 protects against epidermal UVB photo damage and water loss

Indicative: phrase stating the purpose of the study or what it is about Effect of radar electromagnetic fields on migrating birds

Question (+/- reverse of informative title but not informative) Should we inhibit type I IFNs in sepsis?

© Amin Bredan - 2012

Types of titles

Informative: sentence stating main result Caspase-14 protects against epidermal UVB photo damage and water loss

Indicative: phrase stating the purpose of the study or what it is about Effect of radar electromagnetic fields on migrating birds

Question (+/- reverse of informative title but not informative) Should we inhibit type I IFNs in sepsis?

© Amin Bredan - 2012

Types of titles

Informative :sentence stating main result Caspase-14 protects against epidermal UVB photo damage and water loss

Indicative: states the purpose of the study or what it is about Effect of radar electromagnetic fields on migrating birds

Question (+/- reverse of informative title but not informative) Should we inhibit type I IFNs in sepsis?

© Amin Bredan - 2012

Examples of bad titles

Complex Familial Breast Cancers without mutations in BRCA1or

BRCA2 have low cyclin E and high cyclin D1 in contrast to cancers in BRCA Mutation Carriers

Too general: not specific Hormones and progeny of breast tumor cells

Promises more than thee paper delivers New nanobody cures cancer

(In reality, a new nanobody that binds to one of the known drug targets in a particular type of cancer)

© Amin Bredan - 2012

Improving titles

Original Capecitabine and oxaliplatin for advanced esophagogastric

cancer

Cunningham et al N Engl J Med 2008, 358:36-46

Improved on basis of content of paper Capecitabine and oxaliplatin are as effective as fluorouracil and

cisplatin for advanced esophagogastric cancer

© Amin Bredan - 2012

Improving titles

Delayed time to defibrillation after in-hospital cardiac arrestChan et al. N Engl J Med 2008, 358:9-17

Improved Delayed time to defibrillation after in-hospital cardiac arrest

reduces survival

Even better (shorter) Delayed defibrillation after in-hospital cardiac arrest reduces

survival

© Amin Bredan - 2012

Abstract: two types

Structured: divided into sections

“Unstructured”: one continuous paragraph

© Amin Bredan - 2012

Structured abstract

Sections must be according to journal style

Word count must be according to journal style

© Amin Bredan - 2012

Structured abstract

BACKGROUNDThe optimal time for the initiation of antiretroviral therapy for asymptomatic patients with human immunodeficiency virus (HIV) infection is uncertain.METHODSWe conducted two parallel analyses involving a total of 17,517 asymptomatic patients with HIV infection in the United States and Canada who received medical care during the period from 1996 through 2005. None of the patients had undergone previous antiretroviral therapy. In each group, we stratified the patients according to the CD4+ count (351 to 500 cells per cubic millimeter or >500 cells per cubic millimeter) at the initiation of antiretroviral therapy. In each group, we compared the relative risk of death for patients who initiated therapy when the CD4+ count was above each of the two thresholds of interest (early-therapy group) with that of patients who deferred therapy until the CD4+ count fell below these thresholds (deferred-therapy group).RESULTSIn the first analysis, which involved 8362 patients, 2084 (25%) initiated therapy at a CD4+ count of 351 to 500 cells per cubic millimeter, and 6278 (75%) deferred therapy. After adjustment for calendar year, cohort of patients, and demographic and clinical characteristics, among patients in the deferred-therapy group there was an increase in the risk of death of 69%, as compared with that in the early-therapy group (relative risk in the deferred-therapy group, 1.69; 95% confidence interval [CI], 1.26 to 2.26; P<0.001). In the second analysis involving 9155 patients, 2220 (24%) initiated therapy at a CD4+ count of more than 500 cells per cubic millimeter and 6935 (76%) deferred therapy. Among patients in the deferred-therapy group, there was an increase in the risk of death of 94% (relative risk, 1.94; 95% CI, 1.37 to 2.79; P<0.001).CONCLUSIONSThe early initiation of antiretroviral therapy before the CD4+ count fell below two prespecified thresholds significantly improved survival, as compared with deferred therapy.

Kitahata et al., 2009. New Engl J Med 360:1815 360:1815

© Amin Bredan - 2012

“Unstructured” abstract

Written like a mini paper without discussion Consists of

Introduction Aim Methodology Results Conclusion

Word count according to journal style

© Amin Bredan - 2012

“Unstructured” abstract has structure

Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable levels of Ag-specific IgG, but differences in isotype profile and specificity for conformational epitopes were noted. As both strains of mice were similarly protected against P. yoelii, we could not correlate vaccine-induced responses with protection. However, passive immunization studies suggested that protection resulted from differing immune responses. Studies with cytokine-deficient mice showed that protection was induced by immunization of C57BL/6 mice only when IL-4 and IFN-gamma were both present. In BALB/c mice, the absence of either IL-4 or IFN-gamma led to predictable shifts in the IgG isotype profile but did not reduce the magnitude of the Ab response induced by rPyMSP-8 immunization. Immunized IL-4-/- BALB/c mice were solidly protected against P. yoelii. To our surprise, immunized IFN-gamma-/- BALB/c mice initially controlled parasite growth but eventually succumbed to infection. Analysis of cytokine production revealed that P. yoelii infection induced two distinct peaks of IFN-gamma that correlated with periods of controlled parasite growth in intact, rPyMSP-8-immunized BALB/c mice. Maximal parasite growth occurred during a period of sustained TGF-beta production. Combined, the data indicate that induction of protective responses by merozoite surface protein-based vaccines depends on IL-4 and IFN-gamma-dependent pathways and that vaccine efficacy is significantly influenced by host responses elicited upon infection.

Petritus PM, Burns JM, Jr. Suppression of lethal Plasmodium yoelii malaria following protective immunization requires antibody-, IL-4-, and IFN gamma-dependent responses induced by vaccination and/or challenge infection. J Immunol 2008; 180:444-53.

IntroductionMethodResultsConclusion

© Amin Bredan - 2012

“Unstructured” abstract has structure

Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable levels of Ag-specific IgG, but differences in isotype profile and specificity for conformational epitopes were noted. As both strains of mice were similarly protected against P. yoelii, we could not correlate vaccine-induced responses with protection. However, passive immunization studies suggested that protection resulted from differing immune responses. Studies with cytokine-deficient mice showed that protection was induced by immunization of C57BL/6 mice only when IL-4 and IFN-gamma were both present. In BALB/c mice, the absence of either IL-4 or IFN-gamma led to predictable shifts in the IgG isotype profile but did not reduce the magnitude of the Ab response induced by rPyMSP-8 immunization. Immunized IL-4-/- BALB/c mice were solidly protected against P. yoelii. To our surprise, immunized IFN-gamma-/- BALB/c mice initially controlled parasite growth but eventually succumbed to infection. Analysis of cytokine production revealed that P. yoelii infection induced two distinct peaks of IFN-gamma that correlated with periods of controlled parasite growth in intact, rPyMSP-8-immunized BALB/c mice. Maximal parasite growth occurred during a period of sustained TGF-beta production. Combined, the data indicate that induction of protective responses by merozoite surface protein-based vaccines depends on IL-4 and IFN-gamma-dependent pathways and that vaccine efficacy is significantly influenced by host responses elicited upon infection.

IntroductionMethodResultsConclusion

© Amin Bredan - 2012

“Unstructured” abstract has structure

Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable levels of Ag-specific IgG, but differences in isotype profile and specificity for conformational epitopes were noted. As both strains of mice were similarly protected against P. yoelii, we could not correlate vaccine-induced responses with protection. However, passive immunization studies suggested that protection resulted from differing immune responses. Studies with cytokine-deficient mice showed that protection was induced by immunization of C57BL/6 mice only when IL-4 and IFN-gamma were both present. In BALB/c mice, the absence of either IL-4 or IFN-gamma led to predictable shifts in the IgG isotype profile but did not reduce the magnitude of the Ab response induced by rPyMSP-8 immunization. Immunized IL-4-/- BALB/c mice were solidly protected against P. yoelii. To our surprise, immunized IFN-gamma-/- BALB/c mice initially controlled parasite growth but eventually succumbed to infection. Analysis of cytokine production revealed that P. yoelii infection induced two distinct peaks of IFN-gamma that correlated with periods of controlled parasite growth in intact, rPyMSP-8-immunized BALB/c mice. Maximal parasite growth occurred during a period of sustained TGF-beta production. Combined, the data indicate that induction of protective responses by merozoite surface protein-based vaccines depends on IL-4 and IFN-gamma-dependent pathways and that vaccine efficacy is significantly influenced by host responses elicited upon infection.

IntroductionMethodResultsConclusion

© Amin Bredan - 2012

“Unstructured” abstract has structure

Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable levels of Ag-specific IgG, but differences in isotype profile and specificity for conformational epitopes were noted. As both strains of mice were similarly protected against P. yoelii, we could not correlate vaccine-induced responses with protection. However, passive immunization studies suggested that protection resulted from differing immune responses. Studies with cytokine-deficient mice showed that protection was induced by immunization of C57BL/6 mice only when IL-4 and IFN-gamma were both present. In BALB/c mice, the absence of either IL-4 or IFN-gamma led to predictable shifts in the IgG isotype profile but did not reduce the magnitude of the Ab response induced by rPyMSP-8 immunization. Immunized IL-4-/- BALB/c mice were solidly protected against P. yoelii. To our surprise, immunized IFN-gamma-/- BALB/c mice initially controlled parasite growth but eventually succumbed to infection. Analysis of cytokine production revealed that P. yoelii infection induced two distinct peaks of IFN-gamma that correlated with periods of controlled parasite growth in intact, rPyMSP-8-immunized BALB/c mice. Maximal parasite growth occurred during a period of sustained TGF-beta production. Combined, the data indicate that induction of protective responses by merozoite surface protein-based vaccines depends on IL-4 and IFN-gamma-dependent pathways and that vaccine efficacy is significantly influenced by host responses elicited upon infection.

IntroductionMethodResultsConclusion

© Amin Bredan - 2012

“Unstructured” abstract has structure

Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable levels of Ag-specific IgG, but differences in isotype profile and specificity for conformational epitopes were noted. As both strains of mice were similarly protected against P. yoelii, we could not correlate vaccine-induced responses with protection. However, passive immunization studies suggested that protection resulted from differing immune responses. Studies with cytokine-deficient mice showed that protection was induced by immunization of C57BL/6 mice only when IL-4 and IFN-gamma were both present. In BALB/c mice, the absence of either IL-4 or IFN-gamma led to predictable shifts in the IgG isotype profile but did not reduce the magnitude of the Ab response induced by rPyMSP-8 immunization. Immunized IL-4-/- BALB/c mice were solidly protected against P. yoelii. To our surprise, immunized IFN-gamma-/- BALB/c mice initially controlled parasite growth but eventually succumbed to infection. Analysis of cytokine production revealed that P. yoelii infection induced two distinct peaks of IFN-gamma that correlated with periods of controlled parasite growth in intact, rPyMSP-8-immunized BALB/c mice. Maximal parasite growth occurred during a period of sustained TGF-beta production. Combined, the data indicate that induction of protective responses by merozoite surface protein-based vaccines depends on IL-4 and IFN-gamma-dependent pathways and that vaccine efficacy is significantly influenced by host responses elicited upon infection.

IntroductionMethodResultsConclusion

© Amin Bredan - 2012

“Unstructured” abstract has structure

Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable levels of Ag-specific IgG, but differences in isotype profile and specificity for conformational epitopes were noted. As both strains of mice were similarly protected against P. yoelii, we could not correlate vaccine-induced responses with protection. However, passive immunization studies suggested that protection resulted from differing immune responses. Studies with cytokine-deficient mice showed that protection was induced by immunization of C57BL/6 mice only when IL-4 and IFN-gamma were both present. In BALB/c mice, the absence of either IL-4 or IFN-gamma led to predictable shifts in the IgG isotype profile but did not reduce the magnitude of the Ab response induced by rPyMSP-8 immunization. Immunized IL-4-/- BALB/c mice were solidly protected against P. yoelii. To our surprise, immunized IFN-gamma-/- BALB/c mice initially controlled parasite growth but eventually succumbed to infection. Analysis of cytokine production revealed that P. yoelii infection induced two distinct peaks of IFN-gamma that correlated with periods of controlled parasite growth in intact, rPyMSP-8-immunized BALB/c mice. Maximal parasite growth occurred during a period of sustained TGF-beta production. Combined, the data indicate that induction of protective responses by merozoite surface protein-based vaccines depends on IL-4 and IFN-gamma-dependent pathways and that vaccine efficacy is significantly influenced by host responses elicited upon infection.

IntroductionMethodResultsConclusion

© Amin Bredan - 2012

“Unstructured” abstract has structure

Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable levels of Ag-specific IgG, but differences in isotype profile and specificity for conformational epitopes were noted. As both strains of mice were similarly protected against P. yoelii, we could not correlate vaccine-induced responses with protection. However, passive immunization studies suggested that protection resulted from differing immune responses. Studies with cytokine-deficient mice showed that protection was induced by immunization of C57BL/6 mice only when IL-4 and IFN-gamma were both present. In BALB/c mice, the absence of either IL-4 or IFN-gamma led to predictable shifts in the IgG isotype profile but did not reduce the magnitude of the Ab response induced by rPyMSP-8 immunization. Immunized IL-4-/- BALB/c mice were solidly protected against P. yoelii. To our surprise, immunized IFN-gamma-/- BALB/c mice initially controlled parasite growth but eventually succumbed to infection. Analysis of cytokine production revealed that P. yoelii infection induced two distinct peaks of IFN-gamma that correlated with periods of controlled parasite growth in intact, rPyMSP-8-immunized BALB/c mice. Maximal parasite growth occurred during a period of sustained TGF-beta production. Combined, the data indicate that induction of protective responses by merozoite surface protein-based vaccines depends on IL-4 and IFN-gamma-dependent pathways and that vaccine efficacy is significantly influenced by host responses elicited upon infection.

IntroductionMethodResultsConclusion

© Amin Bredan - 2012

Another example of internal structure

Matrix protein 2 (M2) of influenza A is a tetrameric type III membrane protein that functions as a proton-selective channel. The extracellular domain (M2e) has remained nearly invariable since the first human influenza strain was isolated in 1933. By linking a modified form of the leucine zipper of the yeast transcription factor GCN4 to M2e, we obtained a recombinant tetrameric protein, M2e-tGCN4. This protein mimics the quaternary structure of the ectodomain of the natural M2 protein. M2e-tGCN4 was purified, biochemically characterized, and used to immunize BALB/c mice. High M2e-specific serum IgG antibody titers were obtained following either intraperitoneal or intranasal administration. Immunized mice were protected fully against a potentially lethal influenza A virus challenge. Antibodies raised by M2e-tGCN4 immunization specifically bound to the surface of influenza-infected cells and to an M2-expressing cell line. Using a M2e peptide competition enzyme-linked immunosorbent assay with M2-expressing cells as target, we obtained evidence that M2e-tGCN4 induces antibodies that are specific for the native tetramericM2ectodomain. Therefore, fusion of an oligomerization domain to the extracellular part of a transmembrane protein allows it to mimic the natural quaternary structure and can promote the induction of oligomer-specific antibodies.

IntroductionMethodResultsConclusion

© Amin Bredan - 2012

Another example of internal structure

Matrix protein 2 (M2) of influenza A is a tetrameric type III membrane protein that functions as a proton-selective channel. The extracellular domain (M2e) has remained nearly invariable since the first human influenza strain was isolated in 1933. By linking a modified form of the leucine zipper of the yeast transcription factor GCN4 to M2e, we obtained a recombinant tetrameric protein, M2e-tGCN4. This protein mimics the quaternary structure of the ectodomain of the natural M2 protein. M2e-tGCN4 was purified, biochemically characterized, and used to immunize BALB/c mice. High M2e-specific serum IgG antibody titers were obtained following either intraperitoneal or intranasal administration. Immunized mice were protected fully against a potentially lethal influenza A virus challenge. Antibodies raised by M2e-tGCN4 immunization specifically bound to the surface of influenza-infected cells and to an M2-expressing cell line. Using a M2e peptide competition enzyme-linked immunosorbent assay with M2-expressing cells as target, we obtained evidence that M2e-tGCN4 induces antibodies that are specific for the native tetramericM2ectodomain. Therefore, fusion of an oligomerization domain to the extracellular part of a transmembrane protein allows it to mimic the natural quaternary structure and can promote the induction of oligomer-specific antibodies.

IntroductionMethodResultsConclusion

© Amin Bredan - 2012

Another example of internal structure

Matrix protein 2 (M2) of influenza A is a tetrameric type III membrane protein that functions as a proton-selective channel. The extracellular domain (M2e) has remained nearly invariable since the first human influenza strain was isolated in 1933. By linking a modified form of the leucine zipper of the yeast transcription factor GCN4 to M2e, we obtained a recombinant tetrameric protein, M2e-tGCN4. This protein mimics the quaternary structure of the ectodomain of the natural M2 protein. M2e-tGCN4 was purified, biochemically characterized, and used to immunize BALB/c mice. High M2e-specific serum IgG antibody titers were obtained following either intraperitoneal or intranasal administration. Immunized mice were protected fully against a potentially lethal influenza A virus challenge. Antibodies raised by M2e-tGCN4 immunization specifically bound to the surface of influenza-infected cells and to an M2-expressing cell line. Using a M2e peptide competition enzyme-linked immunosorbent assay with M2-expressing cells as target, we obtained evidence that M2e-tGCN4 induces antibodies that are specific for the native tetramericM2ectodomain. Therefore, fusion of an oligomerization domain to the extracellular part of a transmembrane protein allows it to mimic the natural quaternary structure and can promote the induction of oligomer-specific antibodies.

IntroductionMethodResultsConclusion

© Amin Bredan - 2012

Another example of internal structure

Matrix protein 2 (M2) of influenza A is a tetrameric type III membrane protein that functions as a proton-selective channel. The extracellular domain (M2e) has remained nearly invariable since the first human influenza strain was isolated in 1933. By linking a modified form of the leucine zipper of the yeast transcription factor GCN4 to M2e, we obtained a recombinant tetrameric protein, M2e-tGCN4. This protein mimics the quaternary structure of the ectodomain of the natural M2 protein. M2e-tGCN4 was purified, biochemically characterized, and used to immunize BALB/c mice. High M2e-specific serum IgG antibody titers were obtained following either intraperitoneal or intranasal administration. Immunized mice were protected fully against a potentially lethal influenza A virus challenge. Antibodies raised by M2e-tGCN4 immunization specifically bound to the surface of influenza-infected cells and to an M2-expressing cell line. Using a M2e peptide competition enzyme-linked immunosorbent assay with M2-expressing cells as target, we obtained evidence that M2e-tGCN4 induces antibodies that are specific for the native tetramericM2ectodomain. Therefore, fusion of an oligomerization domain to the extracellular part of a transmembrane protein allows it to mimic the natural quaternary structure and can promote the induction of oligomer-specific antibodies.

IntroductionMethodResultsConclusion

© Amin Bredan - 2012

Recommendation

To write an unstructured paragraph, first write in structured form

More easy to check completeness of information

More easy to check on how much is in each section

Can then be easily composed into a single paragraph

© Amin Bredan - 2012