Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems...

229
RUHR-UNIVERSITY BOCHUM Wireless Communications Lecture slides Karlheinz Ochs Chair of Digital Communication Systems Communications Systems Chair of Digital www.dks.rub.de

Transcript of Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems...

Page 1: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

RUHR-UNIVERSITY BOCHUM

Wireless CommunicationsLecture slides

Karlheinz Ochs

Chair of Digital Communication Systems

Communications Systems

Chair ofDigital

Faculty of

Electrical Engineering and

Information Technology

www.dks.rub.de WS 2017/18

Page 2: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communications

Contents

1 Motivation

2 Linear Systems

3 Wireless Communication Channel

4 Single Input Single Output Systems

5 Multiple Input Multiple Output Systems

6 Optimal Transmission Strategies

7 Multiple Access Channel

8 X Channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 3: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communications Motivation

Wireless CommunicationsMotivation

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 4: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Motivation

Contents

1 Preliminaries

2 Transmission Scenario

3 Challenges

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 5: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Motivation Preliminaries

Contents

1 Preliminaries

2 Transmission Scenario

3 Challenges

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 6: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Preliminaries 1 / 152

Preliminaries

Trends in communication systems

mobile communication

high data rates

low latency

Constraints on mobile communication systems

expensive and limited bandwidth

limited transmitter signal power

time-variant transfer behavior

Problem-solving approaches

orthogonal frequency-division multiplexing (OFDM)

multiple input multiple output systems

multiple antenna systems

cooperative communication

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 7: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Motivation Transmission Scenario

Contents

1 Preliminaries

2 Transmission Scenario

3 Challenges

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 8: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 2 / 152

Transmission scenario

Multipath Propagation Channel

cellular phone

echos

noise

base station

Time-variancemultipath propagation due to mobile objectssample and hold devices, modulators, HF amplifiers, . . .

Transmission conditions are changing with time!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 9: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Motivation Challenges

Contents

1 Preliminaries

2 Transmission Scenario

3 Challenges

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 10: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Challenges 3 / 152

Challenges

Communication theorie

How to design and synthesize digital communication systems?

Information theorie

What is the maximum data rate of a reliable transmission?

Digital signal processing

What is the optimal processing strategy?

Programable hardware

How can a digital communication system be verified?

Determine and reach the limits of communications!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 11: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communications Linear Systems

Wireless CommunicationsLinear Systems

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 12: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems

Contents

1 Signals

2 Fourier Series and Transformation

3 Linear Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 13: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Signals

Contents

1 Signals

2 Fourier Series and Transformation

3 Linear Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 14: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signals 4 / 152

Unit Step Function

Definition

u(ξ) =

1 for ξ > 00 for ξ < 0

Graph

u(ξ)

1

ξ

Remarks

argument can have a physical unit

at discontinuity we may define u(0) = 1/2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 15: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signals 5 / 152

Sign Function

Definition

sgn(ξ) =

1 for ξ > 0−1 for ξ < 0

Graph

sgn(ξ)

1

−1

ξ

Remarks

is a superposition of two unit step functions

argument can have a physical unit

at discontinuity we may define sign(0) = 0

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 16: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signals 6 / 152

Rectangular Function

Definition

rect(ξ) =

1 for |ξ| < 10 for |ξ| > 1

Graph

rect(ξ)

−1 1

1

ξ

Remarks

is a superposition of two unit step functions

argument has no physical unit

at discontinuities we may define rect(±1) = 1/2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 17: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signals 7 / 152

Triangular Function

Definition

4(ξ) =

1− |ξ| for |ξ| ≤ 1

0 for |ξ| > 1

Graph

−1 1

1

(ξ)

ξ

Remarks

is the convolution of two rectangular functions

argument has no physical unit

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 18: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signals 8 / 152

si-Function

Definition

si(ξ) =

1 for ξ = 0

sin(ξ)/ξ for ξ 6= 0

Graph

−4π −3π −2π −π π 2π 3π 4π

1

si(ξ)

ξ

Remarks

argument has no physical unit

decays reciprocal to its argument

zeros si(νπ) = 0 for ν ∈ Z\0

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 19: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signals 9 / 152

Dirac Delta Function

Definition∫ t

−∞δ(ξ)dξ = u(t)

Especially ∫ ∞−∞

δ(ξ)dξ = 1

Properties

even

δ(t) = δ(−t)

scaling

δ(αt) =1|α|δ(t) for α ∈ R \ 0

sifting property

f (t)δ(t − t0) = f (t0)δ(t − t0)

Remarks

argument can have physical unit

physical unit is reciprocal to the physical unit of its argument

briefly called δ-function

Do not evaluate this function!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 20: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Fourier Series and Transformation

Contents

1 Signals

2 Fourier Series and TransformationFourier SeriesFourier Transformation

3 Linear Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 21: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Fourier Series and Transformation Fourier Series 10 / 152

Fourier Series

Periodic Signal

s(t) = s(t − T)

fundamental periodsmallest possible positive T

Examples

sine

s(t) = sin(Ωt) , with ΩT = 2π

cosine

s(t) = cos(Ωt) , with ΩT = 2π

periodically repeated function

s(t) =∞∑

n=−∞

f (t − nT)

Fourier Series

s(t) =∞∑

n=−∞

Sn e jnΩt , with Sn =1T

∫ T

0s(t)e−jnΩtdt and ΩT = 2π

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 22: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Fourier Series and Transformation Fourier Series 11 / 152

Important Fourier Series

Cosine

s(t) = cos(Ωt) =12

[e jΩt + e−jΩt

]corresponds to real part

Sine

s(t) = sin(Ωt) =12j

[e jΩt − e−jΩt

]corresponds to imaginary part

Periodically Repeated Function

s(t) =∞∑

n=−∞

f (t − nT) =1T

∞∑n=−∞

F(jnΩ)e jnΩt ,

where f (t) −−•F(jω) and ΩT = 2πLehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 23: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Fourier Series and Transformation Fourier Series 12 / 152

Fourier Series of the Sampling Function

Definition

δT(t) =∞∑

k=−∞

δ(t − kT)

Graph

δT (t)

−3 −2 −1 0 1 2 3 t/T

Remarks

also called Dirac comb or impulse train

T-periodic function

δ(t) −−• 1

Fourier Series

δT(t) =1T

∞∑n=−∞

e jnΩt ,

where ΩT = 2π.Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 24: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Fourier Series and Transformation Fourier Transformation 13 / 152

Fourier Transformation

Correspondence

x(t) −−•X(jω)

Time Domain

x(t) = F−1X(jω) = 12π

∫ ∞−∞

X(jω)e jωtdω

Frequency Domain

X(jω) = Fx(t) =∫ ∞−∞

x(t)e−jωtdt

Remark

X(jω) is called Fourier transform or spectrum of x(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 25: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Fourier Series and Transformation Fourier Transformation 14 / 152

Properties of the Fourier Transformation

Complex Conjugation

x∗(t) −−•X∗(−jω)

Time Shift

x(t − t0) −−• e−jωt0 X(jω) , with t0 ∈ R

Modulation

x(t)e jω0t −−•X(jω − jω0) , with ω0 ∈ R

Time Scaling

x(αt) −−• 1|α|X

(jωα

), with α ∈ R\0

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 26: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Fourier Series and Transformation Fourier Transformation 15 / 152

Properties of the Fourier Transformation

Differentiation

time domain

dx(t)dt−−• jωX(jω)

frequency domain

tx(t) −−• jdX(jω)

Integration

time domain∫ t

−∞x(τ)dτ −−• X(jω)

jω+ πX(0)δ(ω) for X(0) <∞

frequency domain

jx(t)

t+ πx(0)δ(t) −−•

∫ ω

−∞X(jv)dv for x(0) <∞

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 27: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Fourier Series and Transformation Fourier Transformation 16 / 152

Properties of the Fourier Transformation

Convolution

time domain

x(t) ∗ y(t) =∫ ∞−∞

x(τ)y(t − τ)dτ −−•X(jω)Y(jω)

frequency domain

x(t)y(t) −−• 12π

X(jω) ∗ Y(jω) =1

∫ ∞−∞

X(jv)X(jω − jv)dv

Parseval’s Theorem∫ ∞−∞

x(t)y∗(t)dt =1

∫ ∞−∞

X(jω)Y∗(jω)dω

energy of x(t) if y(t) = x(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 28: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Fourier Series and Transformation Fourier Transformation 17 / 152

Often Used Correspondences

Rectangular Function

rect( t

T

)−−• 2T si(ωT) ,

Ω

πsi(Ωt) −−• rect

( ωΩ

),

with T, Ω > 0

Triangular Function

4( t

T

)−−• T si2

(ωT2

),

Ω

πsi2(Ωt) −−•4

( ω

),

with T, Ω > 0

Gaussian Function

e−αt2/2 −−•√

2πα

e−ω2/[2α] , with Reα > 0

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 29: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Fourier Series and Transformation Fourier Transformation 18 / 152

Often Used Correspondences

Unit Step Function

u(t) −−•πδ(ω) +[

1jω

], δ(t) +

[jπt

]−−• 2u(ω)

Signum Function

sgn(t) −−•[

2jω

],

[jπt

]−−• sgn(ω)

Delta Function

δ(t) −−• 1 , 1 −−• 2πδ(ω)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 30: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Fourier Series and Transformation Fourier Transformation 19 / 152

Correspondence of the Sampling Function

Correspondence

δT(t) −−•∆T(jω)

Fourier Transform

∆T(jω) =∞∑

k=−∞

e−jωkT = Ω∞∑

n=−∞

δ(ω − nΩ)

Time Shift∞∑

k=−∞

δ(t − tk) =1T

∞∑n=−∞

e jnΩ[t−t0]

−−•

∞∑k=−∞

e−jωtk = Ω∞∑

n=−∞

δ(ω − nΩ)e−jnΩt0 ,

with tk = t0 + kT.Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 31: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Linear Systems

Contents

1 Signals

2 Fourier Series and Transformation

3 Linear SystemsTime-Invariant SystemsTime-Variant SystemsExamples

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 32: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Time-Invariant Systems 20 / 152

Linear Time-Invariant System

System

x(t) S y(t)

Reaction

x(t)→ y(t) = h(t) ∗ x(t) =∫ ∞−∞

h(t − t′)x(t′)dt′

Impulse Response

δ(t) S h(t)

Reaction

δ(t)→ y(t) = h(t) ∗ δ(t) = h(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 33: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Time-Invariant Systems 21 / 152

Linear Time-Invariant System

Transfer Function

ejΩxt S H(jΩx)ejΩxt

Reaction

e jΩx t → y(t) = H(jΩx)e jΩx t

Proof

1 y(t) = e jΩx t ∗ h(t)

2 y(t) =∫∞−∞ e jΩx[t−t′]h(t′)dt′

3 y(t) =∫∞−∞ h(t′)e−jΩx t′dt′ e jΩx t

4 y(t) = H(jΩx)e jΩx t

with

h(t) −−•H(jω)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 34: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Time-Invariant Systems 22 / 152

Linear Time-Invariant System

Periodic Excitation

∞∑n=−∞

XnejnΩxt S∞∑

n=−∞H(jnΩx)Xne

jnΩxt

Reaction

∞∑n=−∞

Xn e jnΩx t → y(t) =∞∑

n=−∞

H(jnΩx)Xn e jnΩx t

Proof

1 e jnΩx t → H(jnΩx)e jnΩx t

2 Xn e jnΩx t → H(jnΩx)Xn e jnΩx t

3∞∑

n=−∞Xn e jnΩx t → y(t) =

∞∑n=−∞

H(jnΩx)Xn e jnΩx t

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 35: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Time-Invariant Systems 23 / 152

Linear Time-Invariant System

Aperiodic Excitation

X(jω) S Y (jω)

Reaction

X(jω)→ Y(jω) = H(jω)X(jω)

Proof

1 x(t) =1

2π∫∞−∞ X(jω)e jωtdω = lim

Ω→0xΩ(t)

2 xΩ(t) =∞∑

n=−∞

Ω

2πX(jnΩ)e jnΩt → yΩ(t) =

∞∑n=−∞

Ω

2πH(jnΩ)X(jnΩ)e jnΩt

3 limΩ→0

xΩ(t)→ limΩ→0

yΩ(t)

4 x(t)→ y(t) = F−1H(jω)X(jω)Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 36: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Time-Variant Systems 24 / 152

Linear Time-Variant System

Transfer Function

ejΩxt St H(t, jΩx)ejΩxt

Reaction

e jΩx t → y(t) = H(t, jΩx)e jΩx t

Definition

H(t, jΩx) = y(t)e−jΩx t for all Ωx ∈ R

Time-variant Transfer Function

H(t, jω′)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 37: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Time-Variant Systems 25 / 152

Linear Time-Variant System

Periodic Excitation

∞∑n=−∞

XnejnΩxt St

∞∑n=−∞

H(t, jnΩx)XnejnΩxt

Reaction

∞∑n=−∞

Xn e jnΩx t → y(t) =∞∑

n=−∞

H(t, jnΩx)Xn e jnΩx t

Proof

1 e jnΩx t → H(t, jnΩx)e jnΩx t

2 Xn e jnΩx t → H(t, jnΩx)Xn e jnΩx t

3∞∑

n=−∞Xn e jnΩx t → y(t) =

∞∑n=−∞

H(t, jnΩx)Xn e jnΩx t

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 38: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Time-Variant Systems 26 / 152

Linear Time-Variant System

Aperiodic Excitation

X(jω) St y(t)

Reaction

X(jω)→ y(t) =1

∫ ∞

−∞H(t, jω′)X(jω′)e jω′tdω′

Proof

1 x(t) =1

2π∫∞−∞ X(jω)e jωtdω = lim

Ω→0xΩ(t)

2 xΩ(t) =∞∑

n=−∞

Ω

2πX(jnΩ)e jnΩt → yΩ(t) =

∞∑n=−∞

Ω

2πH(t, jnΩ)X(jnΩ)e jnΩt

3 limΩ→0

xΩ(t)→ limΩ→0

yΩ(t)

4 x(t)→ y(t) = F−1H(t, jω)X(jω)Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 39: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Time-Variant Systems 27 / 152

Linear Time-Variant System

Impulse Response

δ(t− Tx) St h(t, Tx)

Reaction

δ(t − Tx)→ h(t, Tx) with h(t, t′) =1

∫ ∞

−∞H(t, jω′)e jω′[t−t′]dω′

Proof

1 x(t) = δ(t − Tx) −−•X(jω) = e−jωTx

2 y(t) =1

2π∫ ∞−∞ H(t, jω′)e−jω′Tx e jω′tdω′

3 h(t, Tx) =1

2π∫ ∞−∞ H(t, jω′)e jω′[t−Tx]dω′

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 40: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Time-Variant Systems 28 / 152

Linear Time-Variant System

System

x(t) St y(t)

Reactions

x(t)→ y(t) =∫ ∞

−∞h(t, t′)x(t′)dt′

X(jω)→ y(t) =1

∫ ∞

−∞H(t, jω′)X(jω′)e jω′tdω′

Remark

Y(jω) 6= H(t, jω)X(jω)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 41: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Examples 29 / 152

Examples of Linear Time-Variant Systems

Linear Time-invariant System

x(t) S y(t)

Special excitation

δ(t − Tx)→ h(t − Tx)

e jΩx t → H(jΩx)e jΩx t

System functions

impulse response h(t, t′)= h

(t − t′

)transfer function H

(t, jω′

)= H

(jω′)

Transfer function is constant with respect to time!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 42: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Linear Systems Examples 30 / 152

Examples of Linear Time-Variant Systems

Linear Frequency-invariant System

x(t)

c(t)

y(t)

Special excitation

δ(t − Tx)→ c(Tx)δ(t − Tx)

e jΩx t → c(t)e jΩx t

System functions

impulse response h(t, t′) = c(t′)δ(t − t′)

transfer function H(t, jω′) = c(t)

Transfer function is constant with respect to frequency!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 43: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communications Wireless Communication Channel

Wireless CommunicationsWireless Communication Channel

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 44: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communication Channel

Contents

1 Transmission Scenario

2 Passband Transmission

3 Baseband Transmission

4 Time-Discrete Transmission

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 45: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communication Channel Transmission Scenario

Contents

1 Transmission Scenario

2 Passband Transmission

3 Baseband Transmission

4 Time-Discrete Transmission

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 46: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 31 / 152

Wireless Communications

Transmission Scenario

cellular phone

echos

noise

base station

Time-variancemultipath propagation due to mobile objectssample and hold devices, modulators, HF amplifiers, . . .

Transmission conditions are changing with time!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 47: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 32 / 152

Time-Invariant Multipath Propagation

Input-Output Relation

y(t) =n∑ν=0

cνxν(t)

transmitted signal arrives at the receiver on different paths

xν(t) = x(t − Tν)

different durationsTν = T0 + νT

attenuation and change of phase

cν = |cν | e j arccν

x(t) T0 T T

c0 c1 cn−1 cn

y(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 48: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 33 / 152

Time-Invariant Multipath Propagation

Impulse Response

definitionx(t) = δ(t − Tx) → y(t) = h(t − Tx)

impulse response of the multipath channel

h(t) =n∑ν=0

cνδ(t − Tν)

input-output relation

y(t) =∫ ∞−∞

h(t − t′)x(t′)dt′

x(t) T0 T T

c0 c1 cn−1 cn

y(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 49: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 34 / 152

Time-Invariant Multipath Propagation

Transfer function

definition

x(t) = e jΩx t → y(t) = H(jΩx)e jΩx t

transfer function of the multipath channel

H(jω) =n∑ν=0

cν e−jωTν

input-output relation

Y(jω) = H(jω)X(jω)

x(t) T0 T T

c0 c1 cn−1 cn

y(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 50: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 35 / 152

Time-Variant Multipath Propagation

Input-output Relation

y(t) =n∑ν=0

cν(t)x(t − Tν) , with cν(t) ∈ C

Transfer behavior

x(t) = e jΩx t → y(t) =

[n∑ν=0

cν(t)e−jΩxTν

]e jΩx t

x(t) T0 T T

c0(t) c1(t) cn−1(t) cn(t)

y(t)

Time-variant transfer behavior!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 51: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 36 / 152

Time-Variant Multipath Propagation

Stochastic Modeling

y(t) = c(t)x(t) + w(t) , with c(t),w(t) ∈ C

c(t) associated with probability density function

Rice distributionRayleigh distributionNakagami distribution

additive white noise w(t)

Transmission Scheme

x(t)

c(t) w(t)

y(t)digitalsource

digitalmodulator

digitaldemodulator

digitalsink

baseband channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 52: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communication Channel Passband Transmission

Contents

1 Transmission Scenario

2 Passband Transmission

3 Baseband Transmission

4 Time-Discrete Transmission

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 53: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Passband Transmission 37 / 152

Passband Transmission

Channel

real

center radian frequency ωc

bandwidth Bc

Bc

−ωc ωc ω

availablefrequency range

availablefrequency range

x0(t) y0(t)source transmitter

transmissionchannel

receiver sink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 54: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Passband Transmission 38 / 152

Passband Transmission

Transmission Signal

real

center radian frequency ω0

bandwidth Bx

X0(jω)

Bx

−ω0 ω0 ω

x0(t) y0(t)source transmitter

transmissionchannel

receiver sink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 55: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Passband Transmission 39 / 152

Passband Transmission

Transmission Signal

real

bandwidth Bx ≤ Bc

carrier radian frequency ω0

X0(jω) Bc

Bx

−ω0 ω0 ω

x0(t) y0(t)source transmitter

transmissionchannel

receiver sink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 56: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Passband Transmission 40 / 152

Passband Transmission

Equivalent Baseband

channel is complex-valued

transmitter signal x(t) is complex-valued

receiver signal y(t) is complex-valued

X(jω)

Bc

Bxω

x0(t) y0(t)x(t) y(t)digitalsource

digitalmodulator

analogmodulator

transmissionchannel

analogdemodulator

digitaldemodulator

digitalesink

baseband channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 57: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communication Channel Baseband Transmission

Contents

1 Transmission Scenario

2 Passband Transmission

3 Baseband Transmission

4 Time-Discrete Transmission

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 58: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 41 / 152

Baseband Transmission

Channel Resources

bandwidth Bc

dynamic Dc

duration Tc

x(t) y(t)

dynamic duration

bandwidth

Dc Tc

Bc

digitalsource

digitalmodulator

basebandchannel

digitaldemodulator

digitalsink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 59: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 42 / 152

Baseband Transmission

Transmitter Signal

bandwidth Bx

dynamic Dx

duration Tx

x(t) y(t)

dynamic dynamicduration

duration

bandwidth bandwidth

Dx DxDcTx Tx Tc

Bx Bx

Bc

digitalsource

digitalmodulator

basebandchannel

digitaldemodulator

digitalsink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 60: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 43 / 152

Baseband Transmission

Limitations

bandwidth Bx ≤ Bc

dynamic Dx ≤ Dc

duration Tx ≤ Tc

x(t) y(t)

dynamic dynamic dynamicduration

duration

duration

bandwidth bandwidth bandwidth

Dx Dx DxDc DcTx Tx TxTc Tc

Bx Bx Bx

Bc Bc

digitalsource

digitalmodulator

basebandchannel

digitaldemodulator

digitalsink

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 61: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 44 / 152

Baseband Transmission

Symbol Mapping

matching of the signal dynamic Dx ≤ Dc

finite alphabet A

information in symbols u(tk) ∈ A

u(t) x(t) y(t) v(t)

dynamic dynamic dynamicduration

duration

duration

bandwidth bandwidth bandwidth

Dx Dx DxDc DcTx Tx TxTc Tc

Bx Bx Bx

Bc Bc

digitalsource

impulseshaping

basebandchannel

symbolrecovery

digitalsink

symbolmapping

inversesymbolmapping

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 62: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 45 / 152

Baseband Transmission

Impulse Shaping

matching of the signal bandwidth Bx ≤ Bc

real pulse with finite energy q(t) ∈ R , Eq <∞crucial for symbol recovery

u(t) x(t) y(t) v(t)

dynamic dynamic dynamicduration

duration

duration

bandwidth bandwidth bandwidth

Dx Dx DxDc DcTx Tx TxTc Tc

Bx Bx Bx

Bc Bc

digitalsource

impulseshaping

basebandchannel

symbolrecovery

digitalsink

symbolmapping

inversesymbolmapping

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 63: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 46 / 152

Transmission Scheme

Transmission Scheme1 Nyquist pulse

z(tk) = u(tk)

2 separation into transmit and receive filter

S(jω) = R(jω)Q(jω)

3 channel with additive white noise

y(t) = x(t) + w(t)

4 optimal signal to noise ratio at decider

r(t) = q(−t)/Eq

u(t)

δT (t− t0)

s(t)z(t)

δT (t− t0)

PAM v(t)

transmitter receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 64: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 46 / 152

Transmission Scheme

Transmission Scheme1 Nyquist pulse

z(tk) = u(tk)

2 separation into transmit and receive filter

S(jω) = R(jω)Q(jω)

3 channel with additive white noise

y(t) = x(t) + w(t)

4 optimal signal to noise ratio at decider

r(t) = q(−t)/Eq

u(t)

δT (t− t0)

q(t)x(t)

r(t)z(t)

δT (t− t0)

PAM v(t)

transmitter receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 65: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 46 / 152

Transmission Scheme

Transmission Scheme1 Nyquist pulse

z(tk) = u(tk)

2 separation into transmit and receive filter

S(jω) = R(jω)Q(jω)

3 channel with additive white noise

y(t) = x(t) + w(t)

4 optimal signal to noise ratio at decider

r(t) = q(−t)/Eq

u(t)

δT (t− t0)

q(t)x(t)

w(t)

y(t)r(t)

z(t)

δT (t− t0)

PAM v(t)

transmitter additive noise receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 66: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 46 / 152

Transmission Scheme

Transmission Scheme1 Nyquist pulse

z(tk) = u(tk)

2 separation into transmit and receive filter

S(jω) = R(jω)Q(jω)

3 channel with additive white noise

y(t) = x(t) + w(t)

4 optimal signal to noise ratio at decider

r(t) = q(−t)/Eq

u(t)

δT (t− t0)

q(t)x(t)

w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0)

PAM v(t)

transmitter additive noise receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 67: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 47 / 152

Transmission Scheme

Transmission Scheme

5 low-pass band-limited pulse

Bx ≤ Bc

6 moderate timing jitter

|τ | T

u(t)

δT (t− t0)

q(t)x(t)

w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0)

PAM v(t)

transmitter additive noise receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 68: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 47 / 152

Transmission Scheme

Transmission Scheme

5 low-pass band-limited pulse

Bx ≤ Bc

6 moderate timing jitter

|τ | T

u(t)

δT (t− t0)

q(t)x(t)

w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0 − τ)

PAM v(t)

transmitter additive noise receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 69: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 48 / 152

Transmission Scheme

Transmission Scheme

7 stochastic model for flat fading and noise

8 minimizing decision error probability

transmitted u(tk) ∈ A

received z(tk − τ) ∈ C

decided v(tk) = Qz(tk − τ) ∈ A

u(t)

δT (t− t0)

q(t)x(t)

c(t) w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0 − τ)

PAM v(t)

transmitter basebandchannel

receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 70: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Baseband Transmission 48 / 152

Transmission Scheme

Transmission Scheme

7 stochastic model for flat fading and noise8 minimizing decision error probability

transmitted u(tk) ∈ A

received z(tk − τ) ∈ C

decided v(tk) = Qz(tk − τ) ∈ A

u(t)

δT (t− t0)

q(t)x(t)

c(t) w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0 − τ)

PAM v(t)

transmitter basebandchannel

receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 71: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communication Channel Time-Discrete Transmission

Contents

1 Transmission Scenario

2 Passband Transmission

3 Baseband Transmission

4 Time-Discrete Transmission

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 72: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time-Discrete Transmission 49 / 152

Time-Discrete Channel

Preliminary Considerations

1 perfect timing synchronization

τ = 0

2 no receiver filter, transmitter filter is Nyquist filter

x(tk) = u(tk)

3 time-discrete channel

y(tk) = c(tk)x(tk) + w(tk)

4 decision

v(tk) = Qy(tk)

u(t)

δT (t− t0)

q(t)x(t)

c(t) w(t)

y(t) q(−t)

Eq

z(t)

δT (t− t0)

PAM v(t)

transmitter basebandchannel

receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 73: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time-Discrete Transmission 49 / 152

Time-Discrete Channel

Preliminary Considerations

1 perfect timing synchronization

τ = 0

2 no receiver filter, transmitter filter is Nyquist filter

x(tk) = u(tk)

3 time-discrete channel

y(tk) = c(tk)x(tk) + w(tk)

4 decision

v(tk) = Qy(tk)

u(t)

δT (t− t0)

s(t)x(t)

c(t) w(t)

y(t)

δT (t− t0)

PAM v(t)

transmitter basebandchannel

receiver

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 74: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time-Discrete Transmission 49 / 152

Time-Discrete Channel

Preliminary Considerations

1 perfect timing synchronization

τ = 0

2 no receiver filter, transmitter filter is Nyquist filter

x(tk) = u(tk)

3 time-discrete channel

y(tk) = c(tk)x(tk) + w(tk)

4 decision

v(tk) = Qy(tk)

replacements

u(t)

δT (t− t0)

s(t)x(t)

c(t) w(t)

y(t)

δT (t− t0)

PAM v(t)

time-discrete channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 75: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time-Discrete Transmission 49 / 152

Time-Discrete Channel

Preliminary Considerations

1 perfect timing synchronization

τ = 0

2 no receiver filter, transmitter filter is Nyquist filter

x(tk) = u(tk)

3 time-discrete channel

y(tk) = c(tk)x(tk) + w(tk)

4 decision

v(tk) = Qy(tk)

u(tk) = x(tk)

c(tk) w(tk)

y(tk)v(tk)

time-discrete channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 76: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time-Discrete Transmission 50 / 152

Time-Discrete Channel

Time-Discrete Channel

y(tk) = c(tk)x(tk) + w(tk)

Communication scenariodynamic du

ration

bandwidth

DxDc Tx Tc

Bx

Bc

u(tk)x(tk)

c(tk)w(tk)

y(tk)v(tk)Tx Rx

Find an optimal strategy to exploit the communication resources!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 77: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time-Discrete Transmission 51 / 152

Time-Discrete Channel

Time-Discrete Channel

y(tk) = c(tk)x(tk) + w(tk)

Communication limits

U

equivo

cation

mutual information

irrelev

ance

V

u(tk)x(tk)

c(tk)w(tk)

y(tk)v(tk)Tx Rx

Use information theory to determine the communication limits!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 78: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communications Single Input Single Output Systems

Wireless CommunicationsSingle Input Single Output Systems

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 79: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Single Input Single Output Systems

Contents

1 Signal Space

2 AWGN Channel

3 Flat Fading Channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 80: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Single Input Single Output Systems Signal Space

Contents

1 Signal Space

2 AWGN Channel

3 Flat Fading Channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 81: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signal Space 52 / 152

Signal Space

Digital Modulator

u(t)digital

modulatorx(t)

1 Retrieve transmitted symbols

x(tk) = u(tk) , with tk = t0 + kT

2 Nyquist criterion

s(kT) =

1 for k = 00 for k ∈ Z \ 0

3 Minimal bandwidth

s(t) = si (Ωt/2) , with ΩT = 2π

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 82: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signal Space 52 / 152

Signal Space

Digital Modulator

u(t)

δT (t− t0)

s(t) x(t)

1 Retrieve transmitted symbols

x(tk) = u(tk) , with tk = t0 + kT

2 Nyquist criterion

s(kT) =

1 for k = 00 for k ∈ Z \ 0

3 Minimal bandwidth

s(t) = si (Ωt/2) , with ΩT = 2π

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 83: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signal Space 52 / 152

Signal Space

Digital Modulator

u(t)

δT (t− t0)

si(Ωt2

)x(t)

1 Retrieve transmitted symbols

x(tk) = u(tk) , with tk = t0 + kT

2 Nyquist criterion

s(kT) =

1 for k = 00 for k ∈ Z \ 0

3 Minimal bandwidth

s(t) = si (Ωt/2) , with ΩT = 2π

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 84: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signal Space 52 / 152

Signal Space

Digital Modulator

u(t)

δT (t− t0)

si(Ωt2

)x(t)

1 Retrieve transmitted symbols

x(tk) = u(tk) , with tk = t0 + kT

2 Nyquist criterion

s(kT) =

1 for k = 00 for k ∈ Z \ 0

3 Minimal bandwidth

s(t) = si (Ωt/2) , with ΩT = 2π

Signaling with Nyquist rate!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 85: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signal Space 53 / 152

Signal Space

Digital modulator

u(t)

δT (t− t0)

si(Ωt2

)x(t)

Digitally modulated signal

x(t) =∞∑

k=−∞

u(tk) si

2[t − tk]

)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 86: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signal Space 53 / 152

Signal Space

Digital modulator

u(t)

δT (t− t0)

si(Ωt2

)x(t)

Digitally modulated signal

x(t) =∞∑

k=−∞

xkϕk(t)

Definitions

1 samples

xk = u(tk)

2 base functions

ϕk(t) = si

2[t − tk]

)−−• Φk(jω) = T rect

(2ωΩ

)e−jωtk

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 87: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signal Space 54 / 152

Signal Space

Scalar Product

〈ϕk(t), ϕ`(t)〉 =∫ ∞

−∞ϕk(t)ϕ∗` (t)dt

Orthogonal base functions

〈ϕk(t), ϕ`(t)〉 = T

1 for k = `0 for k 6= `

Proof

1 〈ϕk(t), ϕ`(t)〉 =∫ ∞−∞ ϕk(t)ϕ∗` (t)dt

2 〈ϕk(t), ϕ`(t)〉 = 12π

∫ ∞−∞ Φk(jω)Φ∗` (jω)dω

3 〈ϕk(t), ϕ`(t)〉 = 12π

∫ ∞−∞ T2 rect

( 2ωΩ

)e−jω[tk−t`]dω

4 〈ϕk(t), ϕ`(t)〉 = T 1Ω

∫ Ω/2−Ω/2 e−jω[k−`]T dω

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 88: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signal Space 55 / 152

Signal Space

Energy

Ex =

∫ ∞

−∞|x(t)|2dt = T

∞∑k=−∞

|xk|2

Proof

1 Ex = 〈x(t), x(t)〉 = ‖x(t)‖2

2 Ex = 〈∞∑

k=−∞xkϕk(t),

∞∑`=−∞

x`ϕ`(t)〉

3 Ex =∞∑

k=−∞

∞∑`=−∞

xkx∗` 〈ϕk(t), ϕ`(t)〉

4 Ex = T∞∑

k=−∞|xk|2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 89: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Signal Space 56 / 152

Signal Space

Signal Vector (finite number of symbols)

x =[

x1, x2, . . . , xK]T

power

Px =Ex

T= ‖x‖2 , with ‖x‖2 = xHx =

K∑k=1

|xk|2

law of large numbers

1K

K∑k=1

|xk|2 ≈ E|X |2

relation to stochastic power

Px ≈ KPx , with Px = E|X |2Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 90: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Single Input Single Output Systems AWGN Channel

Contents

1 Signal Space

2 AWGN Channel

3 Flat Fading Channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 91: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 57 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

U

equivo

cation

mutual information

irrelev

ance

V

u(k)x(k)

1z(k)

y(k)v(k)Tx Rx

Remarkstransmitter sends message U to the receiver

K channel uses: Tx = KT ≤ Tc , k ∈ 1, . . . ,K

transmitter signal x(k) ∈ C with limited power Px ≤ P

additive noise z(k) ∈ C

independent and identically distributed

normal distribution, with zero mean and variance σ2z = Pz

receiver signal y(k) ∈ C

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 92: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 57 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

u(k)x(k)

1z(k)

y(k)v(k)Tx Rx

Remarks

transmitter sends message U to the receiver

K channel uses: Tx = KT ≤ Tc , k ∈ 1, . . . ,K

transmitter signal x(k) ∈ C with limited power Px ≤ P

additive noise z(k) ∈ Cindependent and identically distributed

normal distribution, with zero mean and variance σ2z = Pz

receiver signal y(k) ∈ C

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 93: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 58 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

Signal flow diagram

x(k)

z(k)

y(k)

Mathematical model

y(k) = x(k) + z(k) , 1 ≤ k ≤ K

Px =1K

K∑k=1

|x(k)|2 ≤ P

z(k) ∼ N (0,Pz)

Communication

encoding of message U

x(k) ∈ C is a symbol of a finite alphabet A

y(k) ∼ N (x(k),Pz)

Highest data rate for a reliable transmission?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 94: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 59 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

Signal flow diagram

x

z

y

Mathematical model

y = x+ z

‖x‖ =√

KPx

‖z‖ =√

KPz

Remarks

transmitted signal vector x =[

x(1), . . . , x(K)]T

noise vector z =[

z(1), . . . , z(K)]T

received signal vector y =[

y(1), . . . , y(K)]T

Received vector y lies in a hypersphere with center x and radius√

KPz !Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 95: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 60 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

Illustration

xz

y0

noise hypersphere

Mathematical model

y = x+ z

E‖y‖2 = E‖x‖2+ E‖z‖2x and z are independent

Remarks

E‖y‖ ≤√E‖y‖2 , Jensen’s inequality

E‖y‖2 = E‖x‖2+ E‖z‖2 , independence

E‖x‖2 ≈ KPx , E‖z‖2 ≈ KPz , law of large numbers

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 96: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 60 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

Illustration

√ KPx

√KPz

E‖y‖≤√

K[Px +Pz]

noise hypersphere

Mathematical model

y = x+ z

E‖y‖2 = E‖x‖2+ E‖z‖2x and z are independent

Upper bound

E‖y‖ ≤√

K[Px + Pz]

All received signal vectors lie in a hypersphere of radius√

K[Px + Pz]!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 97: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 61 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Decoding

transmitted vector x is center of thehypersphere

M nonoverlapping hypersheres

received vector y within hypershperebelongs to the center x

How many noise hyperspheres fit into the received vector hypersphere?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 98: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 62 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Hypersphere

K (real) dimensions

radius r

volume VK(r) ∼ rK

Nonoverlapping hyperspheres

K complex dimensions

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 99: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 62 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Hypersphere

K (real) dimensions

radius r

volume VK(r) ∼ rK

Nonoverlapping hyperspheres

2K real dimensions

M ≤ V2K(√

2K[Px + Pz])

V2K(√

2KPz)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 100: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 62 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Hypersphere

K (real) dimensions

radius r

volume VK(r) ∼ rK

Nonoverlapping hyperspheres

2K real dimensions

M ≤ VK(2K[Px + Pz])

VK(2KPz)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 101: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 62 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Hypersphere

K (real) dimensions

radius r

volume VK(r) ∼ rK

Nonoverlapping hyperspheres

2K real dimensions

M ≤ [1 + Px/Pz]K

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 102: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 62 / 152

Channel with Additive White Gaussian Noise

AWGN Channel

Illustration

1

2

3

M

√KPz

√KPz

√KPz

√KPz

√K[Px + Pz ]

Hypersphere

K (real) dimensions

radius r

volume VK(r) ∼ rK

Nonoverlapping hyperspheres

2K real dimensions

M ≤ [1 + Px/Pz]K

Upper bound for nonoverlapping hyperspheres

M ≤ [1 + ΓSNR]K , with ΓSNR =

Px

Pz=E|x(k)|2E|z(k)|2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 103: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 63 / 152

Channel with Additive White Gaussian Noise

AWGN Channel Upper bound for the data rate

ld(M) ≤ K ld (1 + ΓSNR)

M different messages can be reliably distinguished

each message can be encoded with ld(M) bits

data rate R is the ratio of bits per channel use

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 104: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 63 / 152

Channel with Additive White Gaussian Noise

AWGN Channel Upper bound for the data rate

R =ld(M)

K≤ ld (1 + ΓSNR)

M different messages can be reliably distinguished

each message can be encoded with ld(M) bits

data rate R is the ratio of bits per channel use

Maximum data rate for a reliable communication?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 105: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 63 / 152

Channel with Additive White Gaussian Noise

AWGN Channel Upper bound for the data rate

R =ld(M)

K≤ ld (1 + ΓSNR)

M different messages can be reliably distinguished

each message can be encoded with ld(M) bits

data rate R is the ratio of bits per channel use

Maximum data rate for a reliable communication?

AWGN channel capacity

C = ld(1 + ΓSNR) in bits/channel use

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 106: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

AWGN Channel 63 / 152

Channel with Additive White Gaussian Noise

AWGN Channel Upper bound for the data rate

R =ld(M)

K≤ ld (1 + ΓSNR)

M different messages can be reliably distinguished

each message can be encoded with ld(M) bits

data rate R is the ratio of bits per channel use

Maximum data rate for a reliable communication?

AWGN channel capacity

C = ld(1 + ΓSNR) in bits/channel use

This is only a heuristic approach!Information theory provides a fundamental derivation!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 107: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Single Input Single Output Systems Flat Fading Channel

Contents

1 Signal Space

2 AWGN Channel

3 Flat Fading Channel

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 108: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Flat Fading Channel 64 / 152

Flat Fading Channel

Flat Fading Channel

u(k)x(k)

h(k)z(k)

y(k)v(k)Tx Rx

Remarks

transmitter signal x(k) ∈ C with limited power Px ≤ P

channel gain h(k) ∈ Csmall-scale fading caused by echoes of the transmitted signaltransmitted signal period is larger than multi-path delay spread

additive noise z(k) ∈ Cindependent and identically distributed (i.i.d.)

normal distribution, with zero mean and variance σ2z = Pz

receiver signal y(k) ∈ CLehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 109: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Flat Fading Channel 65 / 152

Flat Fading Channel

Flat Fading Channel

x(k)

h(k) z(k)

y(k)

Channel capacity?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 110: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Flat Fading Channel 65 / 152

Flat Fading Channel

Flat Fading Channel

x(k)

h(k) z(k)z(k)

y(k)y(k) h(k)x(k)

Idea

equivalent to AWGN channel

surrogate input signal is product of input signal times channel gain

time-variant signal to noise ratio

γSNR(k) =E|h(k)x(k)|2E|z(k)|2 = ΓSNR|h(k)|2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 111: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Flat Fading Channel 65 / 152

Flat Fading Channel

Flat Fading Channel

x(k)

h(k) z(k)

y(k)

Idea

equivalent to AWGN channel

surrogate input signal is product of input signal times channel gain

time-variant signal to noise ratio

γSNR(k) =E|h(k)x(k)|2E|z(k)|2 = ΓSNR|h(k)|2

Channel capacity

C(k) = ld(1 + ΓSNR|h(k)|2) , with ΓSNR =E|x(k)|2E|z(k)|2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 112: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Flat Fading Channel 66 / 152

Flat Fading Channel

Rayleigh Fading Channel gain

distribution of real and imaginary part

Reh, Imh ∼ N (0, σ2)

transformation to polar coordinates h = re jϕ

magnitude r > 0 has Rayleigh distribution

fr(r) = u(r)rσ2 e−

r2

2σ2

phase ϕ ∈ (−π, π] has uniform distribution

fϕ(ϕ) =1

2πrect

(ϕπ

)

Real- and imaginary part have zero-mean, which indicates no line of sight!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 113: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Flat Fading Channel 67 / 152

Flat fading Channel

Rayleigh Distribution (σ = 1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

f r(r)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 114: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Flat Fading Channel 68 / 152

Flat Fading Channel

Rician Fading Channel gain

distribution of real and imaginary part

Reh ∼ N (µRe, σ2) , Imh ∼ N (µIm, σ

2)

transformation to polar coordinates h = re jϕ

magnitude r > 0 has Rice distribution

fr(r) = u(r)rσ2 I0

( rµσ2

)e−

r2+µ2

2σ2 , with µ =√µ2

Re + µ2Im

and modified Bessel function of the first kind with order zero I0

Rician factor K =µ

2σ2

K = 0 yields Rayleigh fading

Line of sight if Rician factor is greater than zero!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 115: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Flat Fading Channel 69 / 152

Flat Fading Channel

Rician Distribution (σ = 1)

0 1 2 3 4 5 6 7 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

f r(r)

µ = 0µ = 0.5µ = 1µ = 2µ = 4

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 116: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Flat Fading Channel 70 / 152

Flat Fading Channel

Nakagami Fading Channel gain

sum of multiple i.i.d. Rayleigh fading signals has Nakagami distributedmagnitude

magnitude r > 0 has Nakagami distribution

fr(r) = u(r)2

Γ (m)

[mΩ

]mr2m−1 e−

mr2Ω ,

with

gamma function Γ (m) =

∫ ∞0

e−rrm−1dr

received signal average power Ω = Er2

shape factor m =Ω2

E[r −Ω]2≥

12

m = 1 yields Rayleigh fading

Useful to model urban radio multipath channels!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 117: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Flat Fading Channel 71 / 152

Flat Fading Channel

Nakagami Distribution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 30

0.2

0.4

0.6

0.8

1

1.2

1.4

r

f r(r

)

Ω = 1,m = 0.5Ω = 1,m = 1Ω = 2,m = 1Ω = 3,m = 1Ω = 1,m = 2Ω = 2,m = 2Ω = 1,m = 3

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 118: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communications Multiple Input Multiple Output Systems

Wireless CommunicationsMultiple Input Multiple Output Systems

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 119: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Multiple Input Multiple Output Systems

Contents

1 Transmission Scenario

2 MIMO Detectors

3 Random Channels

4 Eigenmode Decomposition

5 Capacity and Degrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 120: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Multiple Input Multiple Output Systems Transmission Scenario

Contents

1 Transmission Scenario

2 MIMO Detectors

3 Random Channels

4 Eigenmode Decomposition

5 Capacity and Degrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 121: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 72 / 152

MIMO Passband Transmitter

MIMO Passband Transmitter

u(t)

S

P

symbolmapping

symbolmapping

δT (t− t0)

δT (t− t0)

q(t)

q(t)

ejω0t

ejω0t

Re

Re

u1(t)

um(t)

x1(t)

xm(t)

x10(t)

xm0(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 122: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 73 / 152

MIMO Passband Receiver

MIMO Passband Receiver

PAM

PAM

e−jω0t

e−jω0t

LP

LP

r(t)

r(t)

δT (t− t0)

δT (t− t0)

detection

v(t)

w10(t)

wn0(t)

y10(t)

yn0(t)

y1(t)

yn(t)

v1(t)

vn(t)

Instead of single decisions a combined detection of transmitted symbols!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 123: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 74 / 152

MIMO passband transmission

MIMO Passband Transmitterm transmit antennas

symbol vector u(tk) ∈ Am , with u(t) =[

u1(t), . . . , um(t)]T

equivalent low-pass signal vector x(t) =∞∑

k=−∞

u(tk)q(t − tk)

baseband signal vector x0(t) = Rex(t)e jω0t

,

with x0(t) =[

x10(t), . . . , xm0(t)]T

MIMO Passband Receivern receive antennas

additive noise w0(t) =[

w10(t), . . . ,wn0(t)]T

baseband signal y0(t) =[

y10(t), . . . , yn0(t)]T

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 124: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 75 / 152

MIMO Baseband Transmission

MIMO Baseband Transmission

AM

AM

u(t)

S

P

P

P

symbolmapping

symbolmapping

δT (t− t0)

δT (t− t0)

δT (t− t0)

δT (t− t0)

q(t)

q(t)

u1(t)

um(t)

x1(t)

xm(t)

c11(t)

cn1(t)

c1m(t)

cnm(t)

r(t)

r(t)

detection

v(t)

w1(t)

wn(t)

y1(t)

yn(t)

v1(t)

vn(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 125: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 76 / 152

MIMO Baseband Transmission (simplified)

MIMO Baseband Transmission (simplified)

AM

AM

u(t)

S

P

P

P

symbolmapping

symbolmapping

δT (t− t0)

δT (t− t0)

δT (t− t0)

δT (t− t0)

s(t)

s(t)

u1(t)

um(t)

x1(t)

xm(t)

h11(t)

hn1(t)

h1m(t)

hnm(t)

detection

v(t)

z1(t)

zn(t)

y1(t)

yn(t)

v1(t)

vn(t)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 126: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 77 / 152

MIMO Digital Baseband Transmission

MIMO Digital Baseband Transmission

u(k)

x1(k)

xm(k)

h11(k)

hn1(k)

h1m(k)

hnm(k)

z1(k)

zn(k)

y1(k)

yn(k)

v(k)Tx Rx

Flat fading channel

y1(k)...

yn(k)

=

h11(k) · · · h1m(k)...

. . ....

hn1(k) · · · hnm(k)

x1(k)

...xm(k)

+

z1(k)...

zn(k)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 127: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 78 / 152

MIMO Digital Baseband Transmission

MIMO Digital Baseband Transmission

Eu(k) Txx(k)

H(k)z(k)

y(k)v(k)

Transmitter

maps message U to signal x(k)

transmitter signal has limited power

Flat fading channel

y(k) =H(k)x(k) + z(k)

channel matrix has almost sure full rankReceiver

knows the channel state from estimationretrieves message V from signal y(k)

Channel capacity?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 128: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Multiple Input Multiple Output Systems MIMO Detectors

Contents

1 Transmission Scenario

2 MIMO DetectorsZero-Forcing DetectorMinimum Mean-Squared Error DetectorMaximum Likelihood Detector

3 Random Channels

4 Eigenmode Decomposition

5 Capacity and Degrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 129: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors 79 / 152

MIMO Detectors

MIMO Detector

x(k)

H(k) z(k)

y(k) MIMO-detector

x(k)

Remarks

m transmit and n receive antennas

flat fading channel

y(k) =H(k)x(k) + z(k)

channel matrix has (almost sure) full rank

H(k) ∈ Cn×m , with rankH(k) = minm, n

MIMO detector estimates transmitted signalLehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 130: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Zero-Forcing Detector 80 / 152

Zero-Forcing Detector

Scenario 1same number of antennas at transmitter and receiverrank(H(k)) = m = n

equation system

x(k)H(k) z(k)y(k) +=

Zero-Forcing Detection

x =H−1y ⇒ x = x+H−1z

Remarkssimple case

multiplication with H−1 can significantly amplify the noiseLehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 131: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Zero-Forcing Detector 81 / 152

Zero-Forcing Detector

Scenario 2

more transmit antennas than receive antennas

rank(H(k)) = n < m

m− n times underdetermined equation system

x(k)H(k) z(k)z(k)y(k) +=

Zero-Forcing Detection

x =H sy + [1−H sH]v , v arbitrary ⇒ Hx =Hx+HH sz

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 132: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Zero-Forcing Detector 82 / 152

Zero-Forcing Detector

Remarks

semi-inverse H s , with HH sH =H and H sHH s =H s

Moore-Penrose right pseudoinverse can be used

H s =H+ =HH[HHH]−1

1−H sH is projection matrix to null space of H

Hx =HH sy

multiplication with HH s can significantly amplify the noise

Improper approach because of infinite many solutions!

Remedy

time variance of the channel is helpful

sent x again to increase number of linearly independent equationsLehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 133: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Zero-Forcing Detector 83 / 152

Zero-Forcing Detector

Scenario 3

more receive antennas than transmit antennas

rank(H(k)) = m < n

n− m times overdetermined equation system

x(k)H(k) z(k)z(k)y(k) +=

Zero-Forcing Detection

x =H+y ⇒ x = x+H+z

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 134: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Zero-Forcing Detector 84 / 152

Zero-Forcing Detector

Remarks

Moore-Penrose left pseudoinverse H+ = [HHH]−1HH

multiplication with H+ can significantly amplify the noise

Solution is an optimal approximation!

Optimization problem

x = argminxJ

, with J = ‖y −Hx‖2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 135: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Zero-Forcing Detector 85 / 152

Zero-Forcing Detector

Solution

necessary and sufficient conditions

∂J∂x

= 0T and∂J∂xH = 0

Wirtinger derivatives, x and xH independent

J = J∗ ⇒ ∂J∂x

=

[∂J∂xH

]H

,∂J∂x

= 0T ⇔ ∂J∂xH = 0

J = [yH − xHHH][y −Hx]

∂J∂xH = −HH[y −Hx]

HHy =HHHx

x =[HHH

]−1HHy

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 136: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Minimum Mean-Squared Error Detector 86 / 152

Minimum Mean-Squared Error Detector

Detection

x =Dy , with y =Hx+ z

A minimum mean-squared error detector considers noise!

Optimization problem

D = argminDJ

, with J = E‖x− x‖2

Approach

J = J∗

necessary and sufficient conditions

∂J∂D

= 0T and∂J∂DH = 0

Wirtinger derivatives, D and DH independentLehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 137: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Minimum Mean-Squared Error Detector 87 / 152

Minimum Mean-Squared Error Detector

Realness

J = J∗

necessary and sufficient condition

∂J∂DH = 0

Some basics

‖x‖2 = xHx = tr(xxH)

Kxy = ExyH

E‖x‖2

= tr (Kxx)

∂Mtr (AMB) = ATBT

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 138: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Minimum Mean-Squared Error Detector 88 / 152

Minimum Mean-Squared Error Detector

Error reformulation

x− x = x−Dy

[x−Dy][xH − yHDH] = xxH −DyxH +DyyHDH − xyHDH

J = tr(Kxx −DKyx +DKyyDH −KxyD

H)

J = tr(Kxx)− tr(DKyx) + tr(DKyyDH)− tr(KxyD

H)

Solution

∂J∂DH = [DKyy]

T −KTxy

DKyy =Kxy , regularity of Kyy is assumed!

Minimum Mean-Squared Error Detection

x = Dy , with D =KxyK−1yy

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 139: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Minimum Mean-Squared Error Detector 89 / 152

Minimum Mean-Squared Error Detector

Uncorrelation

x,z uncorrelated

Kxy = Ex[xHHH + zH] =KxxH

H

Kyy = E[Hx+ z]

[xHHH + zH] =Kzz +HKxxH

H

Detection matrix

D =KxxHH [Kzz +HKxxH

H]−1

Minimum Mean-Squared Error Detection

x =KxxHH [Kzz +HKxxH

H]−1[Hx+ z]

Solution plausible?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 140: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Minimum Mean-Squared Error Detector 90 / 152

Minimum Mean-Squared Error Detector

Simplifying assumptions

1 Symbols and noise are spatially uncorrelated

Kxx = Px1 , Kzz = Pz1 , with Pz = σ2z

Detection matrix

D =HH[HHH +

1ΓSNR

1]−1

, with ΓSNR =Px

Pz

2 No noise

z = 0 , Pz = 0 ,1

ΓSNR= 0 , Kyy = PxHH

H

Detection matrix

D =H+ , with H+ =HH [HHH]−1

This MMSE detector is weak for high SNR and m < n!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 141: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Maximum Likelihood Detector 91 / 152

Maximum Likelihood Detector

Stochastic Channel Model

y =Hx+ z , with known fy|x(y|x)

Detection

x = argmaxx∈Am fy|x(y|x)

Interpretation

fy|x(y|x) ≥ fy|x(y|x) for all x ∈ Am

A maximum likelihood detector chooses the most likely sent x!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 142: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Maximum Likelihood Detector 92 / 152

Maximum Likelihood Detector

Reformulation

z = y −Hx

fy|x(y|x) = fz(y −Hx)

Maximum Likelihood Detection

x = argmaxx∈Am fz(y −Hx)

Simplifying assumptions

1 circularly symmetric complex Gaussian random variables

fz =1

det(πKzz)exp

(−zHK−1

zzz)

2 spatially uncorrelated noise

Kzz = Pz1 , with Pz = σ2z

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 143: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

MIMO Detectors Maximum Likelihood Detector 93 / 152

Maximum Likelihood Detector

Intermediate results

fz =1

[πσ2z ]n

exp

(− 1σ2

z‖z‖2

)

x = argmaxx∈Am

1

[πσ2z ]n

exp

(− 1σ2

z‖y −Hx‖2

)Exponential function is strictly monotonically increasing!

Maximum Likelihood Detection

x = argminx∈Am

‖y −Hx‖

Remarksgeometrical task to find x ∈ Am, such that Hx has minimal distance to ythere are |A|m possible vectors x ∈ Am

Effort increases exponentially with the number of transmit antennas!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 144: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Multiple Input Multiple Output Systems Random Channels

Contents

1 Transmission Scenario

2 MIMO Detectors

3 Random ChannelsSpatially Uncorrelated ChannelSpatially Correlated Channel

4 Eigenmode Decomposition

5 Capacity and Degrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 145: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Random Channels 94 / 152

Random MIMO Channel

Random MIMO Channel

x(k)

H(k) z(k)

y(k)

flat fading (frequency-non-selective)

channel matrix H(k) has (almost sure) full rank

elements hµν(k) of H(k) are random variables

Random channel matrix!

Example

no line of sight between transmit antenna µ and receive antenna ν

modeled e. g. with Rayleigh-distributed |hνµ(k)|Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 146: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Random Channels Spatially Uncorrelated Channel 95 / 152

Spatially Uncorrelated Channel

Independent and Identically Distributed Random MIMO Channel

Elements hµν(k) of channel matrix

independent and identically distributed random variableszero-mean

Ehµν(k) = 0

spatially uncorrelated

Ehνµ(k)hλκ(k) =σ2 for ν = λ and µ = κ0 otherwise

Channel Correlation Matrix

KHH = σ21 , with KHH = E

vec(H)vec(H)H =KHHH

Spatially uncorrelated MIMO channels are of minor practical importance!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 147: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Random Channels Spatially Correlated Channel 96 / 152

Spatially Correlated Channel

Dense antenna array

improved directional characteristiccorrelation between antenna signals

Spatially Correlated Channel

x(k)

√Kx(k) HIID(k)

√Ky(k)

Hz(k)

y(k)

at transmitter Kx =KHx ≥ 0 , with Kx =

√Kx

H√Kx

at receiver Ky =KHy ≥ 0 , with Ky =

√Ky

H√Ky

Random channel matrix

H =√Ky

HHIID√Kx

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 148: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Random Channels Spatially Correlated Channel 97 / 152

Spatially Correlated Channel

Intermediate calculations

vec(H) = vec(√

KyHHIID√Kx

)=[√Kx

T ⊗√Ky

H]

vec(HIID)

vec(H)H = vec(HIID)H[√Kx∗ ⊗

√Ky

]Derivation of the channel correlation matrix

KHH =[√Kx

T ⊗√Ky

H]E

vec(HIID)vec(HIID)H [√Kx

∗ ⊗√Ky

]= σ2

[√Kx

T ⊗√Ky

H] [√

Kx∗ ⊗

√Ky

]= σ2

[√Kx

T√Kx∗]⊗[√Ky

H√Ky

]= σ2

[√Kx

H√Kx

]∗⊗[√Ky

H√Ky

]Channel Correlation Matrix

KHH = σ2K∗x ⊗Ky

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 149: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Multiple Input Multiple Output Systems Eigenmode Decomposition

Contents

1 Transmission Scenario

2 MIMO Detectors

3 Random Channels

4 Eigenmode DecompositionSingular Value DecompositionEigenmodes of a MIMO Channel

5 Capacity and Degrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 150: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Eigenmode Decomposition Singular Value Decomposition 98 / 152

Singular Value Decomposition

Singular Value Decomposition

H = UΣV H =[U1 U2

] [ Σr 00 0

] [V H

1

V H2

],

with

H ∈ Cn×m , r = rank(H) ≤ minm, n

U ∈ Cn×n , UHU = UUH = 1n , U1 ∈ Cn×r , U2 ∈ Cn×n−r

V ∈ Cm×m , V HV = V V H = 1m , V1 ∈ Cm×r , V2 ∈ Cm×m−r

Σ ∈ Cn×m , Σr = diag(σ1, . . . , σr) > 0

For every matrix H ∈ Cn×m with rank r there exists asingular value decomposition with positive singular values σ1, . . . , σr!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 151: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Eigenmode Decomposition Eigenmodes of a MIMO Channel 99 / 152

Eigenmodes of a MIMO Channel

Scenario

PSfrag

x(k)Pre-

Encoder

x′(k)

H(k) z′(k)

y′(k)Post-

Encodery(k)

Transmitter has channel state information (CSIT)!

Channel

y′ =Hx′ + z′

Encoders

use encoders to decouple transmission paths

exploit singular value decomposition

H = UΣV H ⇔ UHHV = Σ

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 152: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Eigenmode Decomposition Eigenmodes of a MIMO Channel 100 / 152

Eigenmodes of a MIMO Channel

Scenario

PSfrag

x(k)

V (k)

x′(k)

H(k) z′(k)

y′(k)

UH(k)

y(k)

Encoders

pre-encoding

x′ = V x

post-encoding

y = UHy′

Encoded channel

y = UH [HV x+ z′]

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 153: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Eigenmode Decomposition Eigenmodes of a MIMO Channel 101 / 152

Eigenmodes of a MIMO Channel

Scenario

x(k)

V (k)

x′(k)

H(k) UH(k) UH(k)z′(k)

y(k)

Equivalent channel

y = UHHV x+UHz′

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 154: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Eigenmode Decomposition Eigenmodes of a MIMO Channel 101 / 152

Eigenmodes of a MIMO Channel

Scenario

x(k)

Σ(k) z(k)

y(k)

Equivalent channel

y = Σx+ z ,

with

encoded channel

Σ = UHHV

encoded noise

z = UHz′ , with ‖z‖2 =∥∥z′∥∥2

Noise power conserved after unitary transformation!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 155: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Eigenmode Decomposition Eigenmodes of a MIMO Channel 101 / 152

Eigenmodes of a MIMO Channel

Scenario

x(k)

Σ(k) z(k)

y(k)

Equivalent channel

y = Σx+ z

[yr

yn−r

]=

[Σr 00 0

] [xr

xm−r

]+

[zr

zn−r

]

yν = σνxν + zν for ν = 1, . . . , ryν = zν for ν = r + 1, . . . , n

Encoding yields r (relevant) parallel SISO channels!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 156: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Eigenmode Decomposition Eigenmodes of a MIMO Channel 102 / 152

Eigenmodes of a MIMO Channel

Unitary transformation

Noise with circularly-symmetric and zero mean complex normal distribution

z = UHz′

z′ ∼ N (0,Kz′z′) i. e. f ′z(z) =exp

(−zHK−1

z′z′z)

|πKz′z′ |

z ∼ N (0,Kzz) , Kzz = UHKz′z′U

In addition, spatially uncorrelated with identical power

Kz′z′ = σ2z 1

z ∼ N(

0, σ2z 1)

, Kzz =Kz′z′

Stochastic properties conserved after unitary transformation!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 157: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Multiple Input Multiple Output Systems Capacity and Degrees of Freedom

Contents

1 Transmission Scenario

2 MIMO Detectors

3 Random Channels

4 Eigenmode Decomposition

5 Capacity and Degrees of FreedomCapacityDegrees of Freedom

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 158: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Capacity and Degrees of Freedom Capacity 103 / 152

Capacity of SISO Channels

Capacity of SISO Channels

AWGN channel

x(k)

z(k)

y(k)

C = ld(1 + ΓSNR) , with ΓSNR =Px

Pz=E|x(k)|2E|z(k)|2

Flat fading channel

x(k)

h(k) z(k)

y(k)

C(k) = ld(1 + ΓSNR|h(k)|2)

Capacity of a MIMO channel?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 159: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Capacity and Degrees of Freedom Capacity 104 / 152

Capacity of MIMO Channels

Capacity of a Decomposed MIMO Channel

Parallel SISO channels

x (k)

σ (k) z(k)

y(k)

y%(k) = σ%(k) x%(k) + z%(k) for % = 1, . . . , r

Simplifying assumption

ΓSNR =E|x%(k)|2E|z%(k)|2

Capacity

C(k) =r∑

%=1

C%(k) , with C%(k) = ld(

1 + ΓSNRσ2% (k)

)Reformulation independent from singular value decomposition?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 160: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Capacity and Degrees of Freedom Capacity 105 / 152

Capacity of MIMO Channels

Capacity of a Decomposed MIMO Channel

C(k) =r∑

%=1

ld(

1 + ΓSNRσ2% (k)

)

Refomulation

1r∑

%=1ld(ξ%) = ld

(r∏

%=1ξ%

)

C(k) = ld

(r∏

%=1

[1 + ΓSNRσ

2% (k)

])

2r∏

%=1ξ% = |diag(ξ%)|

C(k) = ld(∣∣∣diag

(1 + ΓSNRσ

2% (k)

)∣∣∣)Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 161: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Capacity and Degrees of Freedom Capacity 106 / 152

Capacity of MIMO Channels

Refomulation

3 diag(1 + ξ%) = 1 + diag(ξ%) , diag(αξ%) = α diag(ξ%) ,

C(k) = ld(∣∣∣1 + ΓSNR diag

(σ2% (k)

)∣∣∣)4 diag(ξ2

%) = diag(ξ%)2

C(k) = ld(∣∣∣1 + ΓSNRΣ

2r (k)

∣∣∣)

5

∣∣∣∣[ A 00 1

]∣∣∣∣ = |A|C(k) = ld

(∣∣1m + ΓSNRΣH(k)Σ(k)

∣∣)6 HHH = V ΣHΣV H i. e. ΣHΣ = V HHHHV

C(k) = ld(∣∣V H(k)

[1m + ΓSNRH

H(k)H(k)]V (k)

∣∣)Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 162: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Capacity and Degrees of Freedom Capacity 107 / 152

Capacity of MIMO Channels

Refomulation

7 |AB| = |A| |B| ,∣∣A−1

∣∣ = |A|−1

C(k) = ld(∣∣1m + ΓSNRH

H(k)H(k)∣∣)

8 |1n +AB| = |1m +BA| for A ∈ Cn×m , B ∈ Cm×n

C(k) = ld(∣∣1n + ΓSNRH(k)HH(k)

∣∣)Hint

m ≤ n

C(k) = ld(∣∣1m + ΓSNRH

H(k)H(k)∣∣)

n ≤ m

C(k) = ld(∣∣1n + ΓSNRH(k)HH(k)

∣∣)No need for singular value decomposition!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 163: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Capacity and Degrees of Freedom Capacity 108 / 152

Capacity of MIMO Channels

Capacity of a MIMO Channel

C(k) = maxKxx

ld(∣∣Kzz +HKxxH

H∣∣)− ld (|Kzz|)

s. t. trace(Kxx) ≤ P

This is a (convex) optimization problem!

Special case

Kxx = Px1 , Kzz = σ2z 1 , ΓSNR =

Px

σ2z

C(k) = ld(∣∣1n + ΓSNRH(k)HH(k)

∣∣)Capacity of r parallel SISO channels with constant signal to noise ratio!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 164: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Capacity and Degrees of Freedom Degrees of Freedom 109 / 152

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

average of symbols per channel use

synonymous DoF

closely related to multiplexing gain

SISO channel

η = 1

MIMO channel

η = r

The degrees of freedoms are equal to the rank of the channel matrix!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 165: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Capacity and Degrees of Freedom Degrees of Freedom 110 / 152

Degrees of Freedom

Proof

1 SISO is a special case of MIMO with r = 1

2 η = limΓSNR→∞

r∑%=1

ld(1+σ2%ΓSNR)

ld(ΓSNR)=

r∑%=1

limΓSNR→∞

ld(1+σ2%ΓSNR)

ld(ΓSNR)

3 limΓSNR→∞

ld(1+σ2%ΓSNR)

ld(ΓSNR)= limΓSNR→∞

ld(σ2%ΓSNR)

ld(ΓSNR)

4 limΓSNR→∞

ld(1+σ2%ΓSNR)

ld(ΓSNR)= limΓSNR→∞

[ld(σ2

%)

ld(ΓSNR)+ 1]

5 limΓSNR→∞

ld(1+σ2%ΓSNR)

ld(ΓSNR)= 1

6 η =r∑

%=11 = r

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 166: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Capacity and Degrees of Freedom Degrees of Freedom 111 / 152

Degrees of Freedom

Degrees of Freedom

η = limΓSNR→∞

Cld(ΓSNR)

Interpretation

η = limΓSNR→∞

CCSISO

, with CSISO = ld(1 + |σ|2ΓSNR)

Multiplexing Gain

C ≈ ηCSISO for ΓSNR →∞

Asymptotic measurement for the high signal to noise ratio regime!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 167: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communications Optimal Transmission Strategies

Wireless CommunicationsOptimal Transmission Strategies

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 168: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Optimal Transmission Strategies

Contents

1 Maximum Ratio Combining

2 Maximum Ratio Transmission

3 Water-Filling

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 169: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Optimal Transmission Strategies Maximum Ratio Combining

Contents

1 Maximum Ratio Combining

2 Maximum Ratio Transmission

3 Water-Filling

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 170: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Maximum Ratio Combining 112 / 152

Maximum Ratio Combining

Scenario

w(k) Txx(k)

h1(k)

hn(k)

z1(k)

zn(k)

y1(k)

yn(k)

Rx w(k)

Transmitter has no channel state information (no CSIT)

Channel

y(k) = h(k)x(k) + z(k) , with Kzz = σ2z 1

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 171: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Maximum Ratio Combining 113 / 152

Maximum Ratio Combining

Strategy

x(k) = hH(k)y(k)

Channel with strategy

x(k)

‖h(k)‖2 hH(k)z(k)

x(k)

x(k) = ‖h(k)‖2x(k) + hH(k)z(k)

Maximum achievable data rate?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 172: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Maximum Ratio Combining 114 / 152

Maximum Ratio Combining

Signal to noise ratio

γSNR = E|‖h‖2x|2E|hHz|2 = ‖h‖4E|x|2

EhHzzHh = ‖h‖4PxhHKzzh

= ‖h‖4Pxσ2

zhHh

= ‖h‖2ΓSNR

Achievable data rate

R(k) ≤ Rmax(k) = ld(

1 + ‖h(k)‖2ΓSNR

)Capacity of the (MIMO) channel

C(k) = ld(1 + hH(k)h(k)ΓSNR

)Performance of strategy

Rmax(k) = C(k)

Maximum ratio combining is optimal!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 173: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Optimal Transmission Strategies Maximum Ratio Transmission

Contents

1 Maximum Ratio Combining

2 Maximum Ratio Transmission

3 Water-Filling

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 174: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Maximum Ratio Transmission 115 / 152

Maximum Ratio Transmission

Scenario

w(k) Tx

x1(k)

xm(k)

h1(k)

hm(k)

z(k)

y(k)Rx w(k)

feed-back channel

Transmitter has perfect channel state information (CSIT)

Channel

y(k) = hH(k)x(k) + z(k) , with Pz = σ2z

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 175: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Maximum Ratio Transmission 116 / 152

Maximum Ratio Transmission

Strategy

x(k) =h(k)‖h(k)‖w(k)

Channel with strategy

w(k)

‖h(k)‖ z(k)

y(k)

y(k) = ‖h(k)‖w(k) + z(k)

Maximum achievable data rate?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 176: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Maximum Ratio Transmission 117 / 152

Maximum Ratio Transmission

Signal to noise ratio

γSNR = E|‖h‖w|2E|z|2 = ‖h‖2E|w|2

σ2z

=‖h‖2E

∥∥∥ h‖h‖ w

∥∥∥2

σ2z

=‖h‖2E‖x‖2

σ2z

= ‖h‖2ΓSNR

Achievable data rate

R(k) ≤ Rmax(k) = ld(

1 + ‖h(k)‖2ΓSNR

)Capacity of the (MIMO) channel

C(k) = ld(1 + hH(k)h(k)ΓSNR

)Performance of strategy

Rmax(k) = C(k)

Maximum ratio transmission is optimal!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 177: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Optimal Transmission Strategies Water-Filling

Contents

1 Maximum Ratio Combining

2 Maximum Ratio Transmission

3 Water-Filling

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 178: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Water-Filling 118 / 152

Water-Filling

Scenario

w(k)

x1(k)

xm(k)

h11(k)

hn1(k)

h1m(k)

hnm(k)

z1(k)

zn(k)

y1(k)

yn(k)

w(k)Tx Rx

feed-back channel

Transmitter has perfect channel state information (CSIT)

Problem

Power allocation strategy to achieve maximum data rate?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 179: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Water-Filling 119 / 152

Water-Filling

Prerequisite

CSIT allows for singular value decomposition

exploit SVD to reduce problem to parallel SISO channels

r = rank(H) , with H = UΣV H ,

same noise power at each receiver antenna

Pz% = Pz = σ2z for % = 1, . . . , r = rank(H)

variable transmit signal power

Px% = α%Px , with α% ≥ 0

limited total transmit power

E‖x(k)‖2 ≤ mPx , respectively Px

r∑%=1

α% ≤ mPx

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 180: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Water-Filling 120 / 152

Water-Filling

Equivalent Scenario

w(k)

α1

αr

x1(k)

xr(k)

σ1(k)

σr(k)

z1(k)

zr(k)

y1(k)

yr(k)

w(k)Tx Rx

feed-back channel

Transmitter has perfect channel state information (CSIT)

Reduced problem

Power allocation strategy to achieve maximum data rate?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 181: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Water-Filling 121 / 152

Water-Filling

Equivalent parallel SISO channels

y%(k) = σ(k)√α%(k)x%(k) + z%(k) for % = 1, . . . , r = rank(H)

Capacity

C = maxα1,...,αr

r∑

%=1

ld(

1 + α%σ2%ΓSNR

)

r∑%=1

α% ≤ m

α% ≥ 0

How to compute this maximum?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 182: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Water-Filling 122 / 152

Water-Filling

Optimization problem formulation

minα f (α) s. t. g(α) ≤ 0 , α 0

Objective function

f (α) = −r∑

%=1

ld(

1 + α%σ2%ΓSNR

)differentiable, convex

Inequality constraint function

g(α) =r∑

%=1

α% − m

differentiable, convex

Convex optimization problem!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 183: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Water-Filling 123 / 152

Water-Filling

Karush-Kuhn-Tucker conditions In particular , with % = 1, . . . , r

1 µ ≥ 0 1 µ = 0 or µ > 0

2 f ′(α) + µg′(α) = 0T 2 − σ2%ΓSNR

ln(2)[1 + α%σ2

%ΓSNR] + µ = 0

3 µg(α) = 0 3 µ

[r∑

%=1

α% − m

]= 0

4 g(α) ≤ 0 4

r∑%=1

α% − m ≤ 0

5 α ≥ 0 5 α% ≥ 0

For this convex optimization problem theKarush-Kuhn-Tucker conditions are necessary and sufficient!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 184: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Water-Filling 124 / 152

Water-Filling

Consequences

2 ⇒ µ =σ2%ΓSNR

ln(2)[1 + α%σ2

%ΓSNR] > 0

1 is feasible

3 ⇒r∑

%=1

α% = m

4 is feasible

2 ⇒ α% =1

µ ln(2)− 1σ2%ΓSNR

Solution

5 ⇒ α% =

(1

µ ln(2)− 1σ2%ΓSNR

)+

for % = 1, . . . , r

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 185: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Water-Filling 125 / 152

Water-Filling

Water-Filling Algorithm σ1 ≥ σ2 ≥ · · · ≥ σr > 0

1 2 3 4 • • • r − 1 r

1σ21ΓSNR

1σ22ΓSNR

1σ23ΓSNR

1µ ln(2)

1σ24ΓSNR

1σ2r−1

ΓSNR

1σ2rΓSNR

α1 α

2

α3

α4=0

αr−1=0

αr=0

•••

Who has will be given more!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 186: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communications Multiple Access Channel

Wireless CommunicationsMultiple Access Channel

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 187: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Multiple Access Channel

Contents

1 Scenario

2 Time Division Multiple Access

3 Time Sharing

4 Successive Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 188: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Multiple Access Channel Scenario

Contents

1 Scenario

2 Time Division Multiple Access

3 Time Sharing

4 Successive Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 189: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Scenario 126 / 152

Scenario

Scenario

w1(k)

w2(k)

Tx1

Tx2

x1(k)

x2(k)

h∗1

h∗2

z(k)

y(k)Rx w1(k), w2(k)

Transmitters have no channel state information (no CSIT)

Channel

y(k) = hHx(k) + z(k) , with Kxx = diag(Px1 ,Px2) , Pz = σ2z

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 190: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Scenario 127 / 152

Scenario

Signal flow diagram

x1(k)

x2(k)

h∗1

h∗2

z(k)

y(k)

Channel

y(k) = h∗1 x1(k) + h∗2 x2(k) + z(k)

Objective

R1 + R2 → max

Optimal transmission strategy?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 191: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Multiple Access Channel Time Division Multiple Access

Contents

1 Scenario

2 Time Division Multiple Access

3 Time Sharing

4 Successive Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 192: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time Division Multiple Access 128 / 152

Time Division Multiple Access

Time Division Multiple Access Strategy

x1(k)

x2(k)

k ∈ K1

k ∈ K2

h∗1

h∗2

z(k)

y(k)

Transmitter Tx1

k ∈ K1 = 1, . . . ,κ

1K

κ∑k=1

P1 ≤ Px1

worst case κ = K, (K2 = ∅)P1 ≤ Px1

Transmitter Tx2

k ∈ K2 = κ + 1, . . . ,K

1K

K∑k=κ+1

P2 ≤ Px2

worst case κ = 0, (K1 = ∅)P2 ≤ Px2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 193: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time Division Multiple Access 129 / 152

Time Division Multiple Access

Channel usage proportions

Tx1: α =κK Tx2: 1− α

Maximum achievable data rates

Tx1: R1 ≤ αC1 ,

with C1 = ld

(1 + |h1|2 Px1

σ2z

) Tx2: R2 ≤ [1− α]C2 ,

with C2 = ld

(1 + |h2|2 Px2

σ2z

)

Rate region

R2 ≤ C2 − C2

C1R1

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 194: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time Division Multiple Access 130 / 152

Time Division Multiple Access

TDMA Rate Region

0 C10

C2

TDMA

α = 0

α = 1

R1

R2

Optimal strategy?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 195: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Multiple Access Channel Time Sharing

Contents

1 Scenario

2 Time Division Multiple Access

3 Time Sharing

4 Successive Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 196: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time Sharing 131 / 152

Time Sharing

Time Sharing Strategy

x1(k)

x2(k)

k ∈ K1

k ∈ K2

1√α

1√1−α

h∗1

h∗2

z(k)

y(k)

Transmitter Tx1

k ∈ K1 = 1, . . . ,κ

1K

κ∑k=1

P1 ≤ Px1

average power constraintαP1 ≤ Px1 , α 6= 0

Transmitter Tx2

k ∈ K2 = κ + 1, . . . ,K

1K

K∑k=κ+1

P2 ≤ Px2

average power constraint[1− α]P2 ≤ Px2 , α 6= 1

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 197: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time Sharing 132 / 152

Time Sharing

Maximum achievable data rates

Transmitter Tx1

R1 ≤ α ld

(1 +|h1|2α

Px1

σ2z

),

with C1 = R1|α=1

Transmitter Tx2

R2 ≤ [1− α] ld(

1 +|h2|2

1− αPx2

σ2z

),

with C2 = R2|α=0

Rate region

(R1(α),R2(α)) , with α ∈ [0, 1]

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 198: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Time Sharing 133 / 152

Time Sharing

Time Sharing Rate Region

0 C10

C2

TDMA

Time-Sharing

α = 0

α = 1

R1

R2

Optimal strategy?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 199: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Multiple Access Channel Successive Interference Cancelation

Contents

1 Scenario

2 Time Division Multiple Access

3 Time Sharing

4 Successive Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 200: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 134 / 152

Successive Interference Cancelation

Upper Bounds

1 Tx1 transmits only

R1 ≤ C1 , with C1 = ld

(1 + |h1|2 Px1

σ2z

)

2 Tx2 transmits only

R2 ≤ C2 , with C2 = ld

(1 + |h2|2 Px2

σ2z

)

3 Tx1, Tx2 are cooperating (MISO)

R2 ≤ −R1 + C , with C = ld

(1 + |h1|2 Px1

σ2z+ |h2|2 Px2

σ2z

)

Are the upper bounds achievable?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 201: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 135 / 152

Successive Interference Cancelation

Successive Interference Cancelation Rate Region

0 R12 C10

R21

C2Tx1 transmits only

Tx1 , Tx

2 are cooperating

Tx2

transmits

only

R1

R2

Upper bounds achievable?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 202: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 135 / 152

Successive Interference Cancelation

Successive Interference Cancelation Rate Region

0 R12 C10

R21

C2Tx1 transmits only

Tx1 , Tx

2 are cooperating

Tx2

transmits

only

TDMA

Time-Sharing

(0, C2)

(C1, 0)

(R12, C2)

(C1, R21)

R1

R2

Upper bounds achievable?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 203: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 136 / 152

Successive Interference Cancelation

Known upper bound

3 R1 ≤ ld

(1 + |h1|2 Px1

σ2z+ |h2|2 Px2

σ2z

)− R2

Achievability

(R1,R2) = (R12,C2)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 204: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 136 / 152

Successive Interference Cancelation

Known upper bound

3 R1 ≤ ld

(1 + |h1|2 Px1

σ2z+ |h2|2 Px2

σ2z

)− R2

Achievability

(R1,R2) = (R12,C2)

R12 ≤ ld

(1 + |h2|2 Px2

σ2z+ |h1|2 Px1

σ2z

)− ld

(1 + |h2|2 Px2

σ2z

)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 205: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 136 / 152

Successive Interference Cancelation

Known upper bound

3 R1 ≤ ld

(1 + |h1|2 Px1

σ2z+ |h2|2 Px2

σ2z

)− R2

Achievability

(R1,R2) = (R12,C2)

R12 ≤ ld

(1 +

|h1|2Px1

σ2z + |h2|2Px2

)

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 206: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 136 / 152

Successive Interference Cancelation

Known upper bound

3 R1 ≤ ld

(1 + |h1|2 Px1

σ2z+ |h2|2 Px2

σ2z

)− R2

Achievability

(R1,R2) = (R12,C2)

R12 ≤ ld

(1 +

|h1|2Px1

σ2z + |h2|2Px2

)

Successive interference cancelation strategy

1 receiver decodes x1 treating x2 as noise : R1 = R12

2 receiver cancels x1 by decoding x2 from y− h∗1 x1 : R2 = C2

Point (R12,C2) is achievable!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 207: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 137 / 152

Successive Interference Cancelation

Successive Interference Cancelation Rate Region

0 R12 C10

R21

C2Tx1 transmits only

Tx1 , Tx

2 are cooperating

Tx2

transmits

only

TDMA

Time-Sharing

(0, C2)

(C1, 0)

(R12, C2)

(C1, R21)

R1

R2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 208: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 138 / 152

Successive Interference Cancelation

Known upper bound

3 R2 ≤ ld

(1 + |h1|2 Px1

σ2z+ |h2|2 Px2

σ2z

)− R1

Achievability

(R1,R2) = (C1,R21)

R21 ≤ ld

(1 +

|h2|2Px2

σ2z + |h1|2Px1

)

Successive interference cancelation strategy

1 receiver decodes x2 treating x1 as noise : R2 = R21

2 receiver cancels x2 by decoding x1 from y− h∗2 x2 : R1 = C1

Point (C1,R21) is achievable!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 209: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 139 / 152

Successive Interference Cancelation

Successive Interference Cancelation Rate Region

0 R12 C10

R21

C2Tx1 transmits only

Tx1 , Tx

2 are cooperating

Tx2

transmits

only

TDMA

Time-Sharing

(0, C2)

(C1, 0)

(R12, C2)

(C1, R21)

R1

R2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 210: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 140 / 152

Successive Interference Cancelation

Achievable Points

1 Tx1 transmits only

(R1,R2) = (C1, 0)

2 Tx2 transmits only

(R1,R2) = (0,C2)

3 receiver successively cancels interference

(R1,R2) = (R12,C2)

4 receiver successively cancels interference

(R1,R2) = (C1,R21)

Use TDMA of the particular strategiesto achieve points on the connecting line!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 211: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Successive Interference Cancelation 141 / 152

Successive Interference Cancelation

Successive Interference Cancelation Rate Region

0 R12 C10

R21

C2

TDMA

Time-Sharing

(0, C2)

(C1, 0)

(R12, C2)

(C1, R21)

R1

R2

Successive interference cancelation is an optimal strategy!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 212: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Wireless Communications X Channel

Wireless CommunicationsX Channel

Karlheinz Ochs

Chair of Digital Communication Systems

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 213: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

X Channel

Contents

1 Transmission Scenario

2 Interference Alignment

3 Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 214: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

X Channel Transmission Scenario

Contents

1 Transmission Scenario

2 Interference Alignment

3 Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 215: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 142 / 152

X Channel

Transmission Scenario

u(t) h(t, t′) v(t)

Requirement specifications

k even [v1(kT)v2(kT)

]=

[u1(kT)u2(kT)

]

k odd [v1(kT)v2(kT)

]=

[u2(kT)u1(kT)

]

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 216: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 142 / 152

X Channel

Transmission Scenario

u(t) h(t, t′) v(t)

Requirement specifications

k even [v1(kT)v2(kT)

]=

[u1(kT)u2(kT)

]or H(kT, jω′) =

[1 00 1

]

k odd [v1(kT)v2(kT)

]=

[u2(kT)u1(kT)

]or H(kT, jω′) =

[0 11 0

]

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 217: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 142 / 152

X Channel

Transmission Scenario

u(t) h(t, t′) v(t) u(t) Encoderx(t)

Channely(t)

Decoder v(t)

Requirement specifications

k even [v1(kT)v2(kT)

]=

[u1(kT)u2(kT)

]or H(kT, jω′) =

[1 00 1

]

k odd [v1(kT)v2(kT)

]=

[u2(kT)u1(kT)

]or H(kT, jω′) =

[0 11 0

]

Optimal usage of channel resources?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 218: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 143 / 152

X Channel

Transmission Scenario

u1(t)

u2(t)

x1(t)

x2(t)

h11(t)

h21(t)

h12(t)

h22(t)

z1(t)

z2(t)

y1(t)

y2(t)

v1(t)

v2(t)Encoder

Encoder

Decoder

Decoder

Frequency-invariant channel with additive noise

y1(t) = h11(t)x1(t) + h12(t)x2(t) + z1(t)

y2(t) = h21(t)x1(t) + h22(t)x2(t) + z2(t)

Optimal usage of channel resources?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 219: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 144 / 152

X Channel

Simplified Transmission Scenario

u11, u21

u22, u12

x1(k)

x2(k)

h11(k)

h21(k)

h12(k)

h22(k)

y1(k)

y2(k)

u11, u12

u22, u21Encoder

Encoder

Decoder

Decoder

Frequency-invariant channel

y1(k) = h11(k)x1(k) + h12(k)x2(k)

y2(k) = h21(k)x1(k) + h22(k)x2(k)

Transmission of 4 symbols with 3 channel usages?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 220: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Transmission Scenario 145 / 152

X Channel

Transmission Scenario for 3 Channel Usages

u11, u21

u22, u12

x1

x2

H11

H21

H12

H22

y1

y2

u11, u12

u22, u21Encoder

Encoder

Decoder

Decoder

Frequency-invariant channel µ, ν ∈ 1, 2

yν =

yν(1)yν(2)yν(3)

, Hνµ =

hνµ(1) 0 00 hνµ(2) 00 0 hνµ(3)

, xµ =

xµ(1)xµ(2)xµ(3)

hνµ(1) 6= hνµ(2) 6= hνµ(3) 6= hνµ(1)Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 221: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

X Channel Interference Alignment

Contents

1 Transmission Scenario

2 Interference Alignment

3 Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 222: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Interference Alignment 146 / 152

X Channel

Transmission Scenario for 3 Channel Usages

u11, u21

u22, u12

x1

x2

H11

H21

H12

H22

y1

y2

u11, u12

u22, u21Encoder

Encoder

Decoder

Decoder

Transmitted signals

x1 = q11u11 + q21u21

x2 = q12u12 + q22u22

Vectors qνµ are design parameters!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 223: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Interference Alignment 147 / 152

X Channel

Transmission Scenario for 3 Channel Usages

u11, u21

u22, u12

x1

x2

H11

H21

H12

H22

y1

y2

u11, u12

u22, u21Interference-Alignment

Interference-Alignment

Decoder

Decoder

Received signals

y1 =H11q11u11 +H12q12u12 +H11q21u21 +H12q22u22

y2 =H21q21u21 +H22q22u22 +H21q11u11 +H22q12u12

Reasonable choice of vectors qνµ?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 224: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Interference Alignment 148 / 152

X Channel

Received signals

y1 =H11q11u11 +H12q12u12 +H11q21u21 +H12q22u22

y2 =H21q21u21 +H22q22u22 +H21q11u11 +H22q12u12

Interference Alignment

q21 =H−111 H12q22 , q12 =H−1

22 H21q11

Aligned received signals

y1 =H11q11u11 +H12H−122 H21q11u12 +H12q22[u21 + u22]

y2 =H21H−111 H12q22u21 +H22q22u22 +H21q11[u11 + u12]

Interferences lie in 1-dimensional subspaces!Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 225: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

X Channel Interference Cancelation

Contents

1 Transmission Scenario

2 Interference Alignment

3 Interference Cancelation

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 226: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Interference Cancelation 149 / 152

X Channel

Transmission Scenario for 3 Channel Usages

u11, u21

u22, u12

x1

x2

H11

H21

H12

H22

y1

y2

u11, u12

u22, u21Interference-Alignment

Interference-Alignment

Decoder

Decoder

Aligned received signals

y1 =H11q11u11 +H12H−122 H21q11u12 +H12q22[u21 + u22]

y2 =H21H−111 H12q22u21 +H22q22u22 +H21q11[u11 + u12]

Choice of q11 and q22, such that decoding is possible?Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 227: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Interference Cancelation 150 / 152

X Channel

Aligned received signals

y1 = R1

u11

u12

u21 + u22

and y2 = R2

u21

u22

u11 + u12

with matrices depending on vectors q11 and q22

R1 =[H11q11 H12H

−122 H21q11 H12q22

]R2 =

[H21H

−111 H12q22 H22q22 H21q11

]Decoding of transmitted symbols

Choice of q11 and q22, such that R1 and R2 are regular?

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 228: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Interference Cancelation 151 / 152

X Channel

Transmission Scenario for 3 Channel Usages

u11, u21

u22, u12

x1

x2

H11

H21

H12

H22

y1

y2

u11, u12

u22, u21Interference-Alignment

Interference-Alignment

Decoder

Decoder

Interference Cancelation u11

u12

u21 + u22

= R−11 y1 and

u22

u21

u11 + u12

= R−12 y2

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18

Page 229: Wireless Communications - Lecture slides - … Communications Contents 1 Motivation 2 Linear Systems 3 Wireless Communication Channel 4 Single Input Single Output Systems 5 Multiple

Interference Cancelation 152 / 152

X Channel

Transmission Scenario for 3 Channel Usages

u(t) Encoderx(t)

Channely(t)

Decoder v(t)

Remarks

encoder and decoder are time-variant transmission systems

channel state information at transmitter required

transmission of 4 symbols with 3 channel uses

strategy achieves DoF

DoF is a first order approximation of channel capacity

Information theory

Interference alignment and cancelation is a DoF-optimal strategy!

Lehrstuhl fürDigitale Kommunikationssysteme

K. Ochs Wireless Communications WS 2017/18