MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO)...

73
MIMO Wireless Communications: An Introduction Dr. Rakhesh Singh Kshetrimayum

Transcript of MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO)...

Page 1: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications:

An IntroductionAn Introduction

Dr. Rakhesh Singh Kshetrimayum

Page 2: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Single Input Single Output (SISO)

Tx Rx

• What will happen if Tx and Rx employs multiple antennas?

Ant 1 Ant 1

Fig. 1 SISO system

Page 3: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Multiple Input Multiple Output (MIMO)?Ant 1

Ant 1

Ant 2

. .

Tx Rx

Ant 2

Ant NT

Ant NR

.

.

.

.

.

.

Fig. 2 NT × NR MIMO system

channel

Page 4: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• What are advantages of MIMO?

• Capacity (C) for Single Input Single Output (SISO) system

( )SNRBWC += 1log2

• Data rate increase when

– Bandwidth (BW) and

– Signal to noise (SNR) power increase

Inherent problems:

• BW is precious, almost and always fixed for different applications

( )SNRBWC += 1log2

Page 5: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Signal power increase

– battery lifetime decrease

– creates higher interference

– needs expensive RF amplifier – needs expensive RF amplifier

• In MIMO, spectral efficiency increase

– Without increasing BW and

– Signal power

Page 6: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• But, how?

• Basically two gains for MIMO systems:

– (i) MUX/rate gain

– Capacity behavior ( )SNRrR log≈– Capacity behavior

( )( )SNR

SNRR

SNRr

2log

lim

∞→=

( )SNRrR 2log≈

Page 7: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications• For instance

• How much is the achievable rate gain?Ant 1

Ant 1

Ant 2

Tx RxAnt 2

Ant 3

Ant 3

Fig. 3 Achievable rate gain with 3 × 3 MIMO system

P/SS/P

r=3

( )SNRR 2log3≈

Page 8: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

(ii) Diversity gain

• Error probability behavior (minimize it)

• Slope of symbol error rate/ bit error rate (SER/BER curve

increases)

( ) d

e SNRSNRP−≈

increases)

• Behavior of error probability w.r.t. average transmit

power in log-log scale

• for asymptotically high power

( ){ }( )

2

2

loglim

log

eP SNR

dSNR SNR

= −→ ∞

Page 9: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications• How much is diversity gain?

Ant 1Ant 1

Ant 2

( ) 9−≈ SNRSNRPe

• For SISO (Rayleigh fading case), d=1,

Tx Rx

Ant 2

Ant 3Ant 3

Fig. 4 Diversity gain of 3 × 3 MIMO system

d=9

( ) 1−≈ SNRSNRPe

Page 10: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• How much is rate and diversity gain?Ant 1

Ant 1

Ant 2

r=1

Tx Rx

Ant 2

Ant 3

Ant 3

Fig. 5 Rate and diversity gain of 3 ×

3 MIMO system (Case I)

d=4

( )SNRR 2log≈

( ) 4−≈ SNRSNRPe

Page 11: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• How much is rate and diversity gain?Ant 1

Ant 1

Ant 2r=2

Tx Rx

Ant 2

Ant 3

Ant 3

Fig. 6 Rate and diversity gain of

3 × 3 MIMO system (Case II)

d=1

( )SNRR 2log2≈

( ) 1−≈ SNRSNRPe

Page 12: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Need for a proper design for MIMO systems

• As r decrease, d increase

• As r increase, d decrease• As r increase, d decrease

• Diversity-multiplexing trade-off [1]

( )( ) ( )RTRTopt NNrrNrNd ,min0, ≤≤−−=

Page 13: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Narrowband MIMO System ModelAnt 1

Ant 1

h12

h11

x1

y1

Tx Rx

Ant 2

Ant 2

Fig. 7 Narrowband MIMO system model for 2 × 2

MIMO system

h21

h22x2 y2

Page 14: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

12121111 nxhxhy ++=At receiving antenna 1 (receives mixture of signals 1 &2)

At receiving antenna 2 (receives mixture of signals 1 &2,

a major problem in MIMO detection)a major problem in MIMO detection)

22221212 nxhxhy ++=

In matrix form, y=Hx+n

+

=

2

1

2

1

2221

1211

2

1

n

n

x

x

hh

hh

y

y

Page 15: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• For NT × NR MIMO system

+

=

T

N

N

n

n

x

x

hhh

hhh

y

y

L

L

2

1

2

1

22221

11211

2

1

+

=

RTTRRR

T

R NNNNNN

N

N n

n

x

x

hhh

hhh

y

y

MM

L

MOOM

L

M

22

21

222212

Channel matrixReceived signal

vector

Transmitted

signal vector

Noise

signal

vector

Page 16: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• In order to have performance analysis of

MIMO channel

– we need Analytical MIMO channel models

• Analytical MIMO channel model• Analytical MIMO channel model

– i.i.d. MIMO channel model

– Separately correlated MIMO channel model

– Uncorrelated keyhole MIMO channel model

Page 17: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• i.i.d. MIMO channel model (each element of

the channel matrix H is complex random

variable)

==+= ,2,1;,2,1; TR

imag

ij

real

ijij NjNijhhh LL

( ) ( )

×

×

=⇒

2

12

exp

2

12

1

2

1,0~

2/

/

/

imagreal

ijimagreal

ij

imagreal

ij

TRijijij

hhp

Nh

π

Page 18: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

( )

Complex Gaussian distribution

�Joint distribution of real and imaginary part

� They are assumed independent

�PDF can be multiplied

( )

( ) ( )( ) ( )( )

( ) ( ) ( )( )( )

( ) ( )2

22

22

exp1

exp1

exp1

exp1

1,0~

ijij

imag

ij

real

ijij

imag

ij

real

ijij

Cij

hhp

hhhp

hhhp

Nh

−=⇒

+−=⇒

−−=⇒

π

π

ππ

Page 19: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

( ) { }, ,

2 2

, ,

, 1, 1

1 1exp exp

R T R T

R T

N N N N

i j i jN Ni ji j

p h hπ π ==

= − = − ∑∏H H

( ) ( )( )1 H

For i.i.d. case,

( ) ( )( )1exp

R T

H

N Np Trace

π= −H H HH

“etr” is the abbreviation for “exponential trace”.

( ) { }HNNetrp TR HHHH −= −π

Page 20: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

( )*

11 12 1 11 21 1

21 22 2 12 22 2

1 2 1 2

T R

T R

H

N N

N N

N N N N N N N N

trace

h h h h h h

h h h h h htrace

h h h h h h

=

HH

L L

L L

M O O M M O O M

L L1 2 1 2

22 2

11 12 1

22 2

21 22 2

2

1

R R R T T T R T

T

T

R

N N N N N N N N

N

N

N N

h h h h h h

h h h

h h htrace

h h

+ + +

+ + +=

+

L L

L L L L

L L L L

M O O M

L L L2 2

2

,2

,

, 1

R R T

R T

N N

N N

i j

i j

h

h

=

+ +

= ∑

L

Page 21: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• MIMO channel parallel decomposition

• To see how much is the capacity increase in MIMO systems

yx~ xy~

Fig. 8 Transmit precoding and receiver shaping (needs CSIR and CSIT)

nHxy +=

y

xVx ~=

x~ x

yUyH=~

y

Page 22: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• From SVD of the channel matrix H, we have,

( ) ( )nxVΣUUnHxUyUy +=+== HHHH~

HVUH ∑=

( ) ( )nxVΣUUnHxUyUy +=+==

( )nxVVΣUUy +=⇒ ~~ HH

nxΣy ~~~ +=⇒

Page 23: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Component-wise

n

n

x

x

y

y~

~

~

~

00000

00000~

~

2

1

2

1

2

1

2

1

σ

σ

+

=

R

H

T

HH

R

H

N

R

N

RR

N

R

n

n

n

x

x

x

y

y

y

~

~

~

~

000000

00000

00000

00000

00000

~

~

2222

M

M

M

M

O

O

M

M

σ

σ

Page 24: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Parallel RH Gaussian channels

nxy

nxy~~~

~~~

2222

1111

+=

+=

MOM

σ

σ

• Capacity?

• increases RH fold

RR

HHHH

NN

RRRR

ny

nxy

~~

~~~

=

+=

MOM

MOM

σ

Page 25: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Rate Gain √

• Diversity gain ×

Space-time codes

Implemented at the transmitter side, needs CSIR Implemented at the transmitter side, needs CSIR

and block fading

• Why space-time codes?

( ) dGc

eSG

cP ≈

Page 26: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• where S is the SNR

• c is a scaling constant specific to the

– modulation employed and

– the nature of the channel– the nature of the channel

• Gc≥ 1 denotes the coding gain and

• Gd is the diversity order of the system

Page 27: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Diversity gain/order determines the

– negative slope of an error rate curve plotted vs

SNR on a log-log scale

( )

• Space-time coded scheme with diversity order

Gd has

– an error probability at high SNR behaving as

( )2 2 2 2log log log loge d c d

P c G G G S≈ − −

( ) dG

eP S−

Page 28: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

If there is some coding gain, then

– average probability of error will be of the form

• If there were no array or power gain then

– the probability of error expression will be of the

form

( )

1d

e G

c

PG S

( )

1d

e G

c

PG S

Page 29: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• The coding gain determines the

– horizontal shift of uncoded system error rate

curve to the

• space time coded error rate curve • space time coded error rate curve

• plotted on a log-log scale obtained for the same

diversity order

Page 30: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

Fig. 9 Illustration of diversity and coding gains

• BER curves are usually waterfall type but

– we have shown straight lines for illustration purpose only

Page 31: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Alamouti Space-Time Codes

Fig. 10 A block diagram of Alamouti space-

time encoder

( )1 2 1 2, 0H

= =s s s s

Page 32: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

r

r%

sFig. 11 Alamouti’s space-time decoding

Page 33: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Received signal vector

• Received signals in two time intervals

= +r Hs n

• the output of the combiner

1 1 2 1 1

* *

2 2 1 2 2

r s s h n

r s s h n

= + −

+=

−=

*211

*2

*221

*1

*2

1

1*2

2*1

2

1

~

~

rhrh

rhrh

r

r

hh

hh

r

r

H= +r H Hs n% %

Page 34: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• For 2×1 MIMO system, two signals are picked up by

– the receiving antenna at the receiver

( ) ( ) 22

2

2

2

1211

2

2

2

11~~;~~ nshhrnshhr ++=++=

– the receiving antenna at the receiver

• Two signals are completely decoupled after the combining operation

– for Alamouti Space Time Codes

• Simplifies greatly the detection strategy in comparison

– to conventional MIMO detection

Page 35: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Applying MLD

• For 0≤t≤T, we have

( )2 2args r h h s= − +% { }M

• For T≤t≤2T, we have,

( )2 2

1 1 1 2

argˆ

min{ }m

s r h h sm

= − +%

( )2 2

2 2 1 2

argˆ

min{ }ms r h h s

m= − +%

{ }M

kkm ss1=∈

Page 36: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

MIMO detection

• Detect signals jointly

– since many signals are transmitted from the transmitter to the receiver

• Maximum likelihood (ML) detection outputs the • Maximum likelihood (ML) detection outputs the vector which

• minimizes the Euclidean distance between

– the received vector and

– all possible combinations of the transmitted symbol vectors 2min

argˆ Hsrx

s −=

Page 37: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Consider 2 × 2 MIMO system

=

=

=

=

2

1

2

1

2221

1211

2

1;;;

n

n

s

s

hh

hh

r

rnsHr

2222212

+

=

+=

2

1

2

1

2221

1211

2

1

n

n

s

s

hh

hh

r

r

nHsr

Page 38: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• At the detector,

– we want to detect s1 and s2 at time t,

– but there exist interference between these two

signalssignals

• Assume that sk are modulated in M-ary

constellation i.e., sk є {s1,s2,…,sM}

2222121212121111 ; nshshrnshshr ++=++=

Page 39: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• We need to find the minimum metric of the

Euclidean distance

{ }( ) ( )

+−++−

2

22212

2

12111,,2,1,

min jijiMji

shshrshshrL

• For instance, 16-QAM, (s1,s2) are (1 of 16

symbols, 1 of 16 symbols) implies 16×16 pairs

{ }

{ }( ) ( ) ( ) ( )

+−++++−++

2

22212222121

2

12111212111,,2,1,

,,2,1,

min jijiMji

Mji

shshnshshshshnshshL

L

Page 40: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Metric calculations of 256 are required

• For 3×3 MIMO system,

– NT=NR=3, metric calculations of 163=4096 are

requiredrequired

• For 5×5 MIMO system,

– NT=NR=5, metric calculations of 165 =10,48,576

are required

• which is obviously impractical

Page 41: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• ML detectors are optimal but impractical

• Low complexity suboptimal detectors like

– Zero forcing (ZF) and

– Minimum mean square error (MMSE) – Minimum mean square error (MMSE)

• are preferable

• In linear detector,

• a linear preprocessor (W) is first applied

– to the received signal vector

rWsH=ˆ

Page 42: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• For instance in ZF

• H+ is the Moore Penrose pseudo-inverse of H

nHsrHrWs++ +=== H

ZFˆ

• H is the Moore Penrose pseudo-inverse of H

• Performance is not so good

• Consider a 2×2 MIMO system with s є S={-3,-

1,1,3}

( ) HHHZF HHHHW

1−+ ==

Page 43: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• The channel matrix is given by H=[2 0.5; 1 2;]

• Suppose the received signal vector is r=[1 0.9]T

• The ZF detector’s output is given by

• Thus the hard decision of for s becomes [1 1]T

– which is different from the ML decision of [1 -1]T

• ZF less complex than MLD, but poor performance

[ ]T2.05.0ˆ == +rHs

Page 44: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

Antenna selection [2]

• Reduce hardware complexity

• A subset of total available antennas selected

– Based on capacity maximization – Based on capacity maximization

– Based on maximum received SNR

– Done at transmitter, at receiver or both

Page 45: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications• Transmit Antenna Selection/Maximal Ratio

Combining (TAS/MRC) [3]Ant 1

Ant 1

Ant 2Select

antenna 2,

then use

Tx Rx

Ant 2

Ant 3Ant 3

Fig. 12 3 × 3 TAS/MRC MIMO system

then use

only this 3

path

Page 46: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• How to select antenna?

• By maximizing the received SNR

• For Rayleigh fading channel,

– C are i.i.d. Chi square distributed with the probability

2

,

1

arg max{ | | }rN

i i j

j

I C h=

= =∑

– Ci are i.i.d. Chi square distributed with the probability

density function (PDF) and cumulative distribution

function (CDF) as

1

1

0

1( ) , 0

( 1) !

( ) 1 , 0!

r

r

N x

r

N ix

i

p x x e xN

xP x e x

i

− −

−−

=

= ≥−

= − ≥∑

Page 47: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Order statistics

• PDF of maximum received SNR C(Nt) such that

C(1)≤ C(2) ≤…≤ C(Nt) can be given as [4]

1N −= 1

( )

11 1

0

( ) [ ( )] ( )

(1 ) ·( 1)! !

t

t

r

t r

N

N t

N iN Nx xt

it

p x N P x p x

N xe x e

N i

−− −− −

=

=

= −−

Page 48: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Assume binary phase shift keying (BPSK) for

TAS/MRC MIMO system

• Instantaneous SNR at the MRC receiver

2

• The average BER

2

0

( 2 ) ( )bb b b

P Q p dγγ γ γ∞

= ∫

Conditional error probability (CEP) for BPSK

( )t

r

t N

N

j

jNb Ch γγγ == ∑=

2

1

,

Page 49: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Thus, closed form expression for BER Rayleigh fading is

( )

( )

( )( )( )

( )11

2

0 0

11

, 1 ! 11 ! 12 1

rrt

r

k tN t

k NN

tt r rN

k tr

N

kNP a N k N t

N kk

γ

γ

+−−

= =

− − = × + − × − − + ++

∑ ∑

• where, is the coefficient of in the expansion of

1( )

0

12 1

1

r

jN t

rj

j

N t j

j k

γ

γ

+ −−

=

+ − + × × + + + ∑

( , )t r

a N k 2tz

( )

2

1

0

2 1

!

r

ki

N

i

z

k

i

=

+

Page 50: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• η − µ distribution proposed by M. Yacoub in 2000 (can analyze non LOS propagation)

• Can model many distributions

• Some of the special cases of η − µ distribution are

– Rayleigh distribution for η → 1, µ = 0.5, – Rayleigh distribution for η → 1, µ = 0.5,

– one sided Gaussian distribution for η → 1, µ = 0.25,

– Nakagami-m distribution for η → 1, µ = m/2 and

– Hoyt distribution for η → q2, µ = 0.5

• BER analysis for TAS/MRC over η − µ fading channel can be carried out in the similar way

Page 51: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

Fig. 13: BER performance of (2, 1; 1) TAS/MRC system over η

− µ fading channels for η = 1 with BPSK modulation

Page 52: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

Spatial modulation

• Two information bearing units

– Transmit antenna index : estimated at receiver

– A symbol from signal constellation : transmitted from antenna corresponding to transmit antenna indexantenna corresponding to transmit antenna index

–Advantages

• Higher capacity

• Reduced hardware complexity

• Avoidance of transmit antenna synchronization

• How?

Page 53: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

Page 54: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

Fig. 14 SM system model [5]

Page 55: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• k bit information blocks

• Sub blocks of m bits and n bits

• n bits spatially modulated

• m bits modulated using digital modulation • m bits modulated using digital modulation

schemes

• m bits are transmitted physically, effectively similar to

transmitting k=m+n bits

• Restriction on the number of transmit antennas

• Integer exponent of 2

Page 56: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

SM Receiver

• MRC diversity scheme

• Two step detection of transmitted symbol

• Antenna index estimation ((h )Hy is noise except for • Antenna index estimation ((hj)Hy is noise except for

actual transmit antenna)

• ML symbol detection, only one transmit antenna [6]

ˆ arg maxj

j =

H

j

2

j

h y

h

{ }*ˆ

2

ˆˆ Re2min

arg q

H

jqjq xxj

yhhx −=

Page 57: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Assume two estimation processes are independent

– Transmit antenna index estimate

– Estimation of the transmit symbol– Estimation of the transmit symbol

• Notation

– Pa is probability that the antenna index estimation is incorrect

– Ps is probability is that the transmitted symbol estimation is incorrect

Page 58: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Probability of correct estimation

• Probability of error

( )( )sac PPP −−= 11

• Assume QAM

• CEP

( )( ) sasasace PPPPPPPP −+=−−−=−= 1111

( ) ( )2( )eP aQ b cQ bγ γ γ= −

Page 59: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Table 2 MODULATION PARAMETERS FOR

VARIOUS MODULATION SCHEMES [8]

Page 60: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Q-function as sum of exponentials [7]

• CEP becomes

( )22 2

321 1

12 4

xx

Q x e e−−

≈ +

• CEP becomes

• where a=2, b=1, and c=1 for 4-QAM

2 4 7

3 3 62( )12 4 144 16 24

,b b bb

b

e

a a c c cP e e e e e

γ γ γγγγ

− − −−−≅ + − − −

Page 61: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• the integral of fits the definition of MGF [9] of

the received SNR, MGF(γ).

( ) ( ) ( )dxxpxMGF X∫∞

−= exp γγ

• Probability of error in symbol detection

( )1 1 2 1 1 1 4 1 7

6 2 2 3 4 36 4 3 6 6s

MGF MGF MGFP MGF MGFγ γ γ γ

γ

+ − + +

∫0

Page 62: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Probability of error in transmit antenna index

estimation

• where

( )

+

≈=

34

1

412

1 γγγ MGFMGFQP effa

• where

• MGF for Rice fading case

2

ˆ2

eff

γγ = −j j

h h

( ) 1

1 1exp

Rice

K KMGF

K K

γγ

γ γ

+= −

+ + + +

Page 63: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Fig. 15 SER vs SNR (dB) for 2×2 SM MIMO system considering Rician fading

Page 64: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• SM with antenna selection [10]

• Some of the selected antennas for SM may be

completely down

• SM systems combined with antenna selection• SM systems combined with antenna selection

Antennas selected at transmitter

SM applied over selected antennas with

better links

• CSI assumed to be available at transmitter

Page 65: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• SM with antenna selectionAnt 1

Ant 1

Ant 2Ant 2

Apply SM

on

selected

antennas

Tx Rx

Ant 4

Ant 4

Fig. 16 4 × 4 TAS SM MIMO system

Ant 3 Ant 3

antennas

which

give the

best links

Page 66: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Order statistics

• Antenna Selection Parameter

2rN

( )( )

( )

2

,

1

1

1

0

, 0

1 , 0!

r

r

j

r

Aj

N

j i j

i

N x

A

r

N ix

i

A h

x ef x x

N

xF x e x

i

=

− −

−−

=

=

= ≥Γ

= − ≥

Page 67: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Ajs are arranged in ascending order

• S antennas corresponding to highest Ajs are

selected

• PDF of A(r) such that A ≤ A ≤…≤ A can be • PDF of A(r) such that A(1)≤ A(2) ≤…≤ A(Nt) can be

given as

• where r = Nt-S+1

( )( )

( )( ){ } ( ){ } ( )

111

, 1

t

j j jr

r N r

A A A A

t

f x F x F x f xB r N r

− −

= −− +

Page 68: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• The PDF of received SNR can be given as

• where and C (j,N ) is

( )( ) ( ) ( )

( ) ( ) ( )1

11

0 0

11 11 ,

1 , 1

t

tr

N i Mj x N i jN tr

t r

i r j tt r t

if x C j N x e

jN r N B i N iγ

−− − + ++ −

= = =

− = −

− + Γ − + ∑∑∑

• where and Ct(j,Nr) is

coefficient of xt in

( ) ( )1r tM N N i j= − − +

0

1

!

tr

N i jN i

i

x

i

− +

=

− ∑

Page 69: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• Outage probability

( ) ( )

( )

r

2 1, P

1 1t

R

out r

N

P R Aγγ

γ

−= <

= ∑

• where

( )( ) ( ) ( )

( ) ( )( )( )

( )( )

1

0 0

1 1,

1 , 1

, 111 ,

1

t

r

N

out

i rt r t

i Mj r th t

t r N tj t

t

P RN r N B i N i

N t N i jiC j N

j N i j

γ

γ γ

=

+= =

=− + Γ − +

+ − + +− × −

− + +

∑ ∑

2 1R

thγ

γ

−=

Page 70: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

Fig. 17: Outage Probability Vs. SNR curve for TAS SM MIMO

systems with antenna selection (2 bits/s/Hz)

Page 71: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

• References:

1. L. Zheng and D. N. Tse, “Diversity and multiplexing: A fundamental

trade-off in multiple antenna channels,” IEEE Trans. Information

Theory, pp. 1073-96, May 2003.

2. S. Sanayei and A. Nosratinia, “Antenna selection in MIMO 2. S. Sanayei and A. Nosratinia, “Antenna selection in MIMO

systems,” IEEE Commun. Mag., vol. 42, no. 10, pp. 68–73, 2004.

3. Z. Chen, Z. Chi, Y. Li, and B. Vucetic, “Error performance of

maximal-ratio combining with transmit antenna selection in flat

Nakagami-m fading channels,” IEEE Trans. Wireless Commun., vol.

8, pp. 424–431, Jan 2009.

4. H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed. New York:

Wiley Interscience, 2003.

Page 72: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

5. R. Mesleh, S. Engelken, S. Sinanovic, and H. Haas, “Analytical ser calculation of spatial modulation,” in Spread Spectrum Techniques and Applications, 2008. ISSSTA ’08. IEEE 10th International Symposium on, pp. 272 –276, Aug. 2008.

6. J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: optimal detection and performance analysis,” Communications Letters, IEEE, vol. 12, pp. 545 –547, Aug. 2008.Letters, IEEE, vol. 12, pp. 545 –547, Aug. 2008.

7. M. Chiani, D. Dardari, and M. K. Simon, “New exponential bounds and approximations for the computation of error probability in fading channels,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 840–845, 2003.

8. Y. Chen and C. Tellambura, “Distribution functions of selection combiner output in equally correlated Rayleigh, Rician, and Nakagami-m fading channels,” IEEE Transactions on Communications, vol. 52, no. 11, pp. 1948–1956, 2004.

Page 73: MIMO Wireless Communications · MIMO Wireless Communications • Single Input Single Output (SISO) Tx Rx • What will happen if Txand Rx employs multiple antennas? Ant 1 Ant 1

MIMO Wireless Communications

9. A. Papoulis and S. U. Pillai, Probability, Random Variables and

Stochastic Processes, Tata McGraw Hill, 2002.

10. B. Kumbhani and R. S. Kshetrimayum, "Outage Probability

Analysis of Spatial Modulation Systems with Antenna

Selection", Electronics Letters, vol. 50, Issue 2, Jan 2014, pp. Selection", Electronics Letters, vol. 50, Issue 2, Jan 2014, pp.

125-126.