Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass...

28
Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos 1 with G. Tizziotti FAMAT - UFU 10 de julho de 2017 1 Universidade Federal de Uberlândia - FAPEMIG A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 1 / 13

Transcript of Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass...

Page 1: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup over Kummer Extensions

Alonso Sepúlveda Castellanos1with G. Tizziotti

FAMAT - UFU

10 de julho de 2017

1Universidade Federal de Uberlândia - FAPEMIGA.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 1 / 13

Page 2: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Table of Contents

1 Weierstrass Semigroup

2 Weierstrass semigroup and Discrepancy

3 Weierstrass Semigroup H(P1, . . . ,Pm) for certain types of curves

4 Example

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 2 / 13

Page 3: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup

Weierstrass SemigroupLet X be a non-singular, projective, geometrically irreducible,algebraic curve of genus g over a finite field Fq.

Fq(X ) be the field of rational functions and Div(X ) be the setof divisors on XFor f ∈ Fq[X ], the divisor of f will be denoted by (f ) and thedivisor of poles of f by (f )∞. We denote N0 = N ∪ {0}Let P1, . . . ,Pm be distinct rational points on X . The set

H(P1, . . . ,Pm) ={

(a1, . . . , am) ∈ Nm0 ; ∃f ∈ Fq[X ] with (f )∞ =

m∑i=1

aiPi

}

is called the Weierstrass semigroup at the points P1, . . . ,Pm.The set G(P1, . . . ,Pm) = Nm

0 \ H(P1, . . . ,Pm) is called gap setof P1, . . . ,Pm.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 3 / 13

Page 4: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup

Weierstrass SemigroupLet X be a non-singular, projective, geometrically irreducible,algebraic curve of genus g over a finite field Fq.Fq(X ) be the field of rational functions and Div(X ) be the setof divisors on X

For f ∈ Fq[X ], the divisor of f will be denoted by (f ) and thedivisor of poles of f by (f )∞. We denote N0 = N ∪ {0}Let P1, . . . ,Pm be distinct rational points on X . The set

H(P1, . . . ,Pm) ={

(a1, . . . , am) ∈ Nm0 ; ∃f ∈ Fq[X ] with (f )∞ =

m∑i=1

aiPi

}

is called the Weierstrass semigroup at the points P1, . . . ,Pm.The set G(P1, . . . ,Pm) = Nm

0 \ H(P1, . . . ,Pm) is called gap setof P1, . . . ,Pm.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 3 / 13

Page 5: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup

Weierstrass SemigroupLet X be a non-singular, projective, geometrically irreducible,algebraic curve of genus g over a finite field Fq.Fq(X ) be the field of rational functions and Div(X ) be the setof divisors on XFor f ∈ Fq[X ], the divisor of f will be denoted by (f ) and thedivisor of poles of f by (f )∞. We denote N0 = N ∪ {0}

Let P1, . . . ,Pm be distinct rational points on X . The set

H(P1, . . . ,Pm) ={

(a1, . . . , am) ∈ Nm0 ; ∃f ∈ Fq[X ] with (f )∞ =

m∑i=1

aiPi

}

is called the Weierstrass semigroup at the points P1, . . . ,Pm.The set G(P1, . . . ,Pm) = Nm

0 \ H(P1, . . . ,Pm) is called gap setof P1, . . . ,Pm.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 3 / 13

Page 6: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup

Weierstrass SemigroupLet X be a non-singular, projective, geometrically irreducible,algebraic curve of genus g over a finite field Fq.Fq(X ) be the field of rational functions and Div(X ) be the setof divisors on XFor f ∈ Fq[X ], the divisor of f will be denoted by (f ) and thedivisor of poles of f by (f )∞. We denote N0 = N ∪ {0}Let P1, . . . ,Pm be distinct rational points on X . The set

H(P1, . . . ,Pm) ={

(a1, . . . , am) ∈ Nm0 ; ∃f ∈ Fq[X ] with (f )∞ =

m∑i=1

aiPi

}

is called the Weierstrass semigroup at the points P1, . . . ,Pm.The set G(P1, . . . ,Pm) = Nm

0 \ H(P1, . . . ,Pm) is called gap setof P1, . . . ,Pm.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 3 / 13

Page 7: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup

The case m = 1, It was observed that to using the arithmeticalstructure of the Weierstrass semigroup we can improvements inthe bounds for minimal distance in Algebraic GeometricOne-point-Codes by Garcia, Kim, Lax.

The case m = 2, started to be studied by Kim and Homma,where several properties were presented. A similar result forTwo-point-Codes was obtained by Homma and Kim using thenotion of pure gaps that they introduced.For m > 2, this semigroup has been studied for some specificcurves as Hermitian and Norm-trace curves by Gretchen.With increasing interest in this semigroup, many results havebeen produced with several applications in coding theory byTorres and Carvalho, Garcia, Kim, Lax, Homma, Gretchen, andothers.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 4 / 13

Page 8: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup

The case m = 1, It was observed that to using the arithmeticalstructure of the Weierstrass semigroup we can improvements inthe bounds for minimal distance in Algebraic GeometricOne-point-Codes by Garcia, Kim, Lax.The case m = 2, started to be studied by Kim and Homma,where several properties were presented. A similar result forTwo-point-Codes was obtained by Homma and Kim using thenotion of pure gaps that they introduced.

For m > 2, this semigroup has been studied for some specificcurves as Hermitian and Norm-trace curves by Gretchen.With increasing interest in this semigroup, many results havebeen produced with several applications in coding theory byTorres and Carvalho, Garcia, Kim, Lax, Homma, Gretchen, andothers.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 4 / 13

Page 9: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup

The case m = 1, It was observed that to using the arithmeticalstructure of the Weierstrass semigroup we can improvements inthe bounds for minimal distance in Algebraic GeometricOne-point-Codes by Garcia, Kim, Lax.The case m = 2, started to be studied by Kim and Homma,where several properties were presented. A similar result forTwo-point-Codes was obtained by Homma and Kim using thenotion of pure gaps that they introduced.For m > 2, this semigroup has been studied for some specificcurves as Hermitian and Norm-trace curves by Gretchen.With increasing interest in this semigroup, many results havebeen produced with several applications in coding theory byTorres and Carvalho, Garcia, Kim, Lax, Homma, Gretchen, andothers.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 4 / 13

Page 10: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup

The case m = 1, It was observed that to using the arithmeticalstructure of the Weierstrass semigroup we can improvements inthe bounds for minimal distance in Algebraic GeometricOne-point-Codes by Garcia, Kim, Lax.The case m = 2, started to be studied by Kim and Homma,where several properties were presented. A similar result forTwo-point-Codes was obtained by Homma and Kim using thenotion of pure gaps that they introduced.For m > 2, this semigroup has been studied for some specificcurves as Hermitian and Norm-trace curves by Gretchen.With increasing interest in this semigroup, many results havebeen produced with several applications in coding theory byTorres and Carvalho, Garcia, Kim, Lax, Homma, Gretchen, andothers.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 4 / 13

Page 11: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass semigroup and Discrepancy

For u1, . . . ,ut ∈ Nm0 , where, for all k , uk = (uk1 , . . . , ukm), we

define the least upper bound (lub) by:

lub{u1, . . . ,ut} = (max{u11 , . . . , ut1}, . . . ,max{u1m , . . . , utm}) ∈ Nm0 .

Proposition (Gretchen)Suppose that 1 ≤ t ≤ m ≤ q and u1, . . . ,ut ∈ H(P1, . . . ,Pm).Then lub{u1, . . . ,ut} ∈ H(P1, . . . ,Pm).

Definition: (Minimal Generating Set)Let Γ(P1) = H(P1) and, for m ≥ 2, define

Γ(P1, . . . ,Pm) := {n ∈ Nm : for some i , 1 ≤ i ≤ m,n is minimal in ∇i (n)}.

where ∇i (n) := {(p1, . . . , pm) ∈ H(P1, . . . ,Pm) ; pi = ni}.

H(P1,P2) = {lub(x, y) | x, y ∈ Γ(P1,P2)∪(H(P1)×{0})∪({0}×H(P2))}.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 5 / 13

Page 12: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass semigroup and Discrepancy

For u1, . . . ,ut ∈ Nm0 , where, for all k , uk = (uk1 , . . . , ukm), we

define the least upper bound (lub) by:

lub{u1, . . . ,ut} = (max{u11 , . . . , ut1}, . . . ,max{u1m , . . . , utm}) ∈ Nm0 .

Proposition (Gretchen)Suppose that 1 ≤ t ≤ m ≤ q and u1, . . . ,ut ∈ H(P1, . . . ,Pm).Then lub{u1, . . . ,ut} ∈ H(P1, . . . ,Pm).

Definition: (Minimal Generating Set)Let Γ(P1) = H(P1) and, for m ≥ 2, define

Γ(P1, . . . ,Pm) := {n ∈ Nm : for some i , 1 ≤ i ≤ m,n is minimal in ∇i (n)}.

where ∇i (n) := {(p1, . . . , pm) ∈ H(P1, . . . ,Pm) ; pi = ni}.

H(P1,P2) = {lub(x, y) | x, y ∈ Γ(P1,P2)∪(H(P1)×{0})∪({0}×H(P2))}.A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 5 / 13

Page 13: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass semigroup and Discrepancy

DiscrepancyDuursma and Park introduced the concept of discrepancy as follows.

DefinitionA divisor A ∈ Div(X ) is called a discrepancy for two rational pointsP and Q on X if L(A) 6= L(A− P) = L(A− P − Q) andL(A) 6= L(A− Q) = L(A− P − Q).

The next result relates the concept of discrepancy with the setΓ(P1, . . . ,Pm).

LemmaLet n = (n1, . . . , nm) ∈ H(P1, . . . ,Pm). Then n ∈ Γ(P1, . . . ,Pm) ifand only if the divisor A = n1P1 + · · ·+ nmPm is a discrepancy withrespect to P and Q for any two rational points P,Q ∈ {P1, . . . ,Pm}.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 6 / 13

Page 14: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass semigroup and Discrepancy

DiscrepancyDuursma and Park introduced the concept of discrepancy as follows.

DefinitionA divisor A ∈ Div(X ) is called a discrepancy for two rational pointsP and Q on X if L(A) 6= L(A− P) = L(A− P − Q) andL(A) 6= L(A− Q) = L(A− P − Q).

The next result relates the concept of discrepancy with the setΓ(P1, . . . ,Pm).

LemmaLet n = (n1, . . . , nm) ∈ H(P1, . . . ,Pm). Then n ∈ Γ(P1, . . . ,Pm) ifand only if the divisor A = n1P1 + · · ·+ nmPm is a discrepancy withrespect to P and Q for any two rational points P,Q ∈ {P1, . . . ,Pm}.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 6 / 13

Page 15: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass semigroup and Discrepancy

DiscrepancyDuursma and Park introduced the concept of discrepancy as follows.

DefinitionA divisor A ∈ Div(X ) is called a discrepancy for two rational pointsP and Q on X if L(A) 6= L(A− P) = L(A− P − Q) andL(A) 6= L(A− Q) = L(A− P − Q).

The next result relates the concept of discrepancy with the setΓ(P1, . . . ,Pm).

LemmaLet n = (n1, . . . , nm) ∈ H(P1, . . . ,Pm). Then n ∈ Γ(P1, . . . ,Pm) ifand only if the divisor A = n1P1 + · · ·+ nmPm is a discrepancy withrespect to P and Q for any two rational points P,Q ∈ {P1, . . . ,Pm}.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 6 / 13

Page 16: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass semigroup and Discrepancy

DiscrepancyDuursma and Park introduced the concept of discrepancy as follows.

DefinitionA divisor A ∈ Div(X ) is called a discrepancy for two rational pointsP and Q on X if L(A) 6= L(A− P) = L(A− P − Q) andL(A) 6= L(A− Q) = L(A− P − Q).

The next result relates the concept of discrepancy with the setΓ(P1, . . . ,Pm).

LemmaLet n = (n1, . . . , nm) ∈ H(P1, . . . ,Pm). Then n ∈ Γ(P1, . . . ,Pm) ifand only if the divisor A = n1P1 + · · ·+ nmPm is a discrepancy withrespect to P and Q for any two rational points P,Q ∈ {P1, . . . ,Pm}.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 6 / 13

Page 17: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup H(P1, . . . , Pm) for certain types ofcurves

Weierstrass Semigroup H(P1, . . . ,Pm)Consider a curve X over Fq given by affine equation

f (y) = g(x)

deg(f (y)) = a and deg(g(x)) = b, with gdc(a, b) = 1, andgenus g = (a − 1)(b − 1)/2.Let P1,P2, . . . ,Pa+1 be a + 1 distinct rational points such that

aP1 ∼ P2 + · · ·+ Pa+1 , (1)

andbPi ∼ bPj , for all i , j ∈ {1, 2, . . . , a + 1}, (2)

Note that H(P1) = 〈a, b〉.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 7 / 13

Page 18: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup H(P1, . . . , Pm) for certain types ofcurves

Weierstrass Semigroup H(P1, . . . ,Pm)Consider a curve X over Fq given by affine equation

f (y) = g(x)

deg(f (y)) = a and deg(g(x)) = b, with gdc(a, b) = 1, andgenus g = (a − 1)(b − 1)/2.

Let P1,P2, . . . ,Pa+1 be a + 1 distinct rational points such that

aP1 ∼ P2 + · · ·+ Pa+1 , (1)

andbPi ∼ bPj , for all i , j ∈ {1, 2, . . . , a + 1}, (2)

Note that H(P1) = 〈a, b〉.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 7 / 13

Page 19: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup H(P1, . . . , Pm) for certain types ofcurves

Weierstrass Semigroup H(P1, . . . ,Pm)Consider a curve X over Fq given by affine equation

f (y) = g(x)

deg(f (y)) = a and deg(g(x)) = b, with gdc(a, b) = 1, andgenus g = (a − 1)(b − 1)/2.Let P1,P2, . . . ,Pa+1 be a + 1 distinct rational points such that

aP1 ∼ P2 + · · ·+ Pa+1 , (1)

andbPi ∼ bPj , for all i , j ∈ {1, 2, . . . , a + 1}, (2)

Note that H(P1) = 〈a, b〉.A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 7 / 13

Page 20: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup H(P1, . . . , Pm) for certain types ofcurves

Let 1 ≤ m ≤ a + 1 ≤ q. For

t +m∑

j=2sj = a + 1−m , 0 < ia < tb, sj ≥ 0 . (3)

Equivalence of the divisors and the before conditions, we have

(tb− ia)P1 + (sb + i)P2 + i(P3 + · · ·+Pm) ∼a+1∑

j=m+1(b− i)Pj (4)

PropositionLet a, b, t, i , s2, . . . , sm be as above. Then, the divisor(tb − ia)P1 + ∑m

j=2(sjb + i)Pj is a discrepancy with respect to P andQ for any two distinct points P,Q ∈ {P1, . . . ,Pm}.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 8 / 13

Page 21: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup H(P1, . . . , Pm) for certain types ofcurves

Let 1 ≤ m ≤ a + 1 ≤ q. For

t +m∑

j=2sj = a + 1−m , 0 < ia < tb, sj ≥ 0 . (3)

Equivalence of the divisors and the before conditions, we have

(tb− ia)P1 + (sb + i)P2 + i(P3 + · · ·+Pm) ∼a+1∑

j=m+1(b− i)Pj (4)

PropositionLet a, b, t, i , s2, . . . , sm be as above. Then, the divisor(tb − ia)P1 + ∑m

j=2(sjb + i)Pj is a discrepancy with respect to P andQ for any two distinct points P,Q ∈ {P1, . . . ,Pm}.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 8 / 13

Page 22: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup H(P1, . . . , Pm) for certain types ofcurves

Let 1 ≤ m ≤ a + 1 ≤ q. For

t +m∑

j=2sj = a + 1−m , 0 < ia < tb, sj ≥ 0 . (3)

Equivalence of the divisors and the before conditions, we have

(tb− ia)P1 + (sb + i)P2 + i(P3 + · · ·+Pm) ∼a+1∑

j=m+1(b− i)Pj (4)

PropositionLet a, b, t, i , s2, . . . , sm be as above. Then, the divisor(tb − ia)P1 + ∑m

j=2(sjb + i)Pj is a discrepancy with respect to P andQ for any two distinct points P,Q ∈ {P1, . . . ,Pm}.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 8 / 13

Page 23: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Weierstrass Semigroup H(P1, . . . , Pm) for certain types ofcurves

Main TheoremLet X and P1,P2, . . . ,Pa+1 be as above. For 2 ≤ m ≤ a + 1, let

Sm ={

(tb − ia, s2b + i , . . . , smb + i); t +m∑

j=2sj = a + 1−m, 0 < ia < tb, sj ≥ 0

}.

Then, Γ(P1, . . . ,Pm) = Sm.

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 9 / 13

Page 24: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Example

Kummer ExtensionLet a Kummer extensions over Fq

yb = g(x) =a∏

i=1(x − αi)

gcd(a, b) = 1, genus (b − 1)(a − 1)/2.1 (x − αi ) = bPi − bP1 for every i , 2 ≤ i ≤ a + 1,2 (y) = P2 + · · ·+ Pa+1 − aP1,

For a = 5 and b = 7 we have thatΓ(P1, P2) = {(23, 1), (18, 2), (13, 3), (8, 4), (3, 5), (16, 8),

(11, 9), (6, 10), (1, 11), (9, 15), (4, 16), (2, 22)} .

Γ(P1, P2, P3) = {(2, 8, 8), (2, 15, 1), (2, 0, 15), (9, 8, 1), (9, 1, 8),(4, 9, 2), (4, 2, 9), (16, 1, 1), (11, 2, 2), (6, 3, 3), (1, 4, 4)} .

Γ(P1, P2, P3, P4) = {(2, 8, 1, 1), (2, 1, 8, 1), (2, 1, 1, 8), (9, 1, 1, 1), (4, 2, 2, 2)} .

Γ(P1, P2, P3, P4, P5) = {(2, 1, 1, 1, 1)} .

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 10 / 13

Page 25: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Example

Other ApplicationsWe apply the same idea in:The GK curve over Fq2 is the curve of P3(Fq2) with affine equations{

Z n2−n+1 = Yh(X )X n + X = Y n+1 ,

(5)

where h(X ) =n∑

i=0(−1)i+1X i(n−1).

H(P∞) = 〈n3 − n2 + n, n3, n3 + 1〉

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 11 / 13

Page 26: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Example

Other ApplicationsWe apply the same idea in:The GK curve over Fq2 is the curve of P3(Fq2) with affine equations{

Z n2−n+1 = Yh(X )X n + X = Y n+1 ,

(5)

where h(X ) =n∑

i=0(−1)i+1X i(n−1).

H(P∞) = 〈n3 − n2 + n, n3, n3 + 1〉

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 11 / 13

Page 27: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Example

Bibliography

I. Duursma and S. Park, Delta sets for divisors supported in twopoints, Finite Fields and Their Applications, 18 (5), 2012,865-885.A.S. Castellanos and G. Tizziotti, On Weierstrass semigroup at mpoints on curves of the type f (y) = g(x). To appear in JournalPure on Applied Algebra (2017).

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 12 / 13

Page 28: Weierstrass Semigroup over Kummer Extensionscimpars/schedule/castellanos.pdf · Weierstrass Semigroup over Kummer Extensions Alonso Sepúlveda Castellanos1 with G. Tizziotti FAMAT

Example

Muchas Gracias !!!

Muito Obrigado !!!

God Bless You

A.S. Castellanos (FAMAT - UFU) Weierstrass Semigroup over Kummer Extensions 10 de julho de 2017 13 / 13