Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation ....

73
KTH ROYAL INSTITUTE OF TECHNOLOGY Wave Optics and Gaussian Beams Ruslan Ivanov OFO/ICT

Transcript of Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation ....

Page 1: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

KTH ROYAL INSTITUTE OF TECHNOLOGY

Wave Optics and Gaussian Beams

Ruslan Ivanov OFO/ICT

Page 2: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Outline

• Differential approach: Paraxial Wave equation • Integral approach: Huygens’ integral • Gaussian Spherical Waves • Higher-Order Gaussian Modes

• Lowest Order Mode using differential approach • The ”standard” Hermite Polynomial solutions • The ”elegant” Hermite Polynomial solutions • Astigmatic Mode functions

• Gaussian Beam Propagation in Ducts • Numerical beam propagation methods

2

Page 3: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

The paraxial wave equation

EM field in free space

Extracting the primary propagation factor:

3

Page 4: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

The paraxial wave equation

EM field in free space

Extracting the primary propagation factor:

Paraxial approximation:

, ,

4

Page 5: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

The paraxial wave equation

EM field in free space

Paraxial approximation:

, , The paraxial wave equation then becomes

5

Page 6: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

The paraxial wave equation

EM field in free space

Paraxial approximation:

, ,

The paraxial wave equation

, where – - transverse coordinates - Laplacian operator in theses coordinates

6

Page 7: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Validity of the Paraxial Approximation

Arbitrary optical beam can be viewed as a superposition of plane wave components travelling at various angles to z axis

7

Page 8: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Validity of the Paraxial Approximation

The reduced wave amplitude θ << 1

+

8

Page 9: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Validity of the Paraxial Approximation

The reduced wave amplitude

9

Page 10: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Validity of the Paraxial Approximation

The reduced wave amplitude

To remind: Paraxial approximation

, ,

θ2/4<<1, i.e. θ<0.5 rad

10

Page 11: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Validity of the Paraxial Approximation

The reduced wave amplitude

To remind: Paraxial approximation

, ,

θ2/4<<1, i.e. θ<0.5 rad Paraxial optical beams can diverge at cone angles up to ≈30 deg before significant corrections to approximation become necessary

11

Page 12: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Huygens' Integral: Huygens’ principle

“Every point which a luminous disturbance reaches becomes a source of a spherical wave; the sum of these secondary waves determines the form of the wave at any subsequent time”

, where

WE

12

Page 13: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Huygens' Integral: Fresnel approximation

Paraxial-spherical wave

Fresnel approximation:

PWE

13

Page 14: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Huygens' Integral

Huygens’ principle

,where ρ(r,r0) – distance between source and observation points dS0 – incremental element of surface are at (s0,z0) cosθ (r,r0) – obliquity factor j/λ – normalization factor

14

Page 15: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Huygens' Integral Huygens’ integral

θ<<1 cosθ≈1 Spherical wave Paraxial- spherical wave

15

Page 16: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Huygens' Integral Huygens’ integral

Huygens’ integral in Fresnel approximation

, or the reduced wavefunction (with L=z-z0)

θ<<1 cosθ≈1 Spherical wave Paraxial- spherical wave

16

Page 17: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Huygens’ integral in Fresnel approximation

Huygens' Integral

General form:

- Huygens kernel

- 1D kernel

cilindrical wave an initial phase shift of the Huygens' wavelet compared to the actual field value at the input point

Then, if u0 can be separated - 1D Huygens-Fresnel integral

17

Page 18: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian spherical waves

(z-z0)>>x0,y0 Paraxial approximation

Phase variations across transversal plane

The radius of curvature of the wave plane Quadratic phase variation represents paraxial approximations, so it is valid close to z axis

18

Page 19: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian spherical waves

(z-z0)>>x0,y0 Paraxial approximation

Phase variations across transversal plane

The radius of curvature of the wave plane Quadratic phase variation represents paraxial approximations, so it is valid close to z axis

Inherent problem – the wave extends out to infinity in transversal direction!

19

Page 20: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian spherical waves: Complex point source

The solution – to introduce a complex point source x0 → 0; y0 → 0; q0 - complex z0 → z0-q0

Substitute radius of curvature R(z) by complex radius

Then

Separate real and imaginary parts of q:

20

Page 21: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian spherical waves

Convert into standard notation by denoting:

the lowest-order spherical-gaussian beam solution in free space

21

Page 22: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian spherical waves

Convert into standard notation by denoting:

the lowest-order spherical-gaussian beam solution in free space

, where R(z) – the radius of wave front curvature w(z) – “gaussian spot size”

Note, that R(z) now should be derived from , while

The complex source point derivation used is only one of 4 different ways

22

Page 23: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian spherical waves: differential approach

From Paraxial Wave Equation approach:

Assume a trial solution

, with A(z) and q(z) being unknown functions

23

Page 24: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian spherical waves: differential approach

From Paraxial Wave Equation approach:

Leads to the exactly the same solution for the lowest-order spherical-gaussian beam

24

Page 25: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Higher-Order Gaussian Modes #1 Let’s again use a trial solution approach and restrict the problem to the 1D case

the paraxial wave equation in 1D

Trial solution:

Considering the propagation rule

( )xh h

p z

= ( )q q z= ( )p p z=

25

Page 26: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Higher-Order Gaussian Modes #1 Let’s again use a trial solution approach and restrict the problem to the 1D case

the paraxial wave equation in 1D

Trial solution:

Considering the propagation rule

differential equation for the Hermite polynomials

26

Page 27: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Higher-Order Gaussian Modes #1

- defines different families of solutions

27

Page 28: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

The "Standard" Hermite Polynomial Solutions

Main assumption

Motivation: solutions with the same normalized shape at every transverse plane z

After proper normalization, one gets expression for the set of higher-order Hermite-Gaussian mode functions for a beam propagating in free space

28

Page 29: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

The "Standard" Hermite Polynomial Solutions

Rewrite involving the real spot size w(z) and a phase angle ψ(z)

“After some algebra”:

And the lowest order gaussian beam mode:

reason for the choice: ψ(z)=0 at the waist w(z)=w0

29

Page 30: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Guoy phase shift

Rewrite involving the real spot size w(z) and a phase angle ψ(z)

“After some algebra”:

reason for the choice: ψ(z)=0 at the waist w(z)=w0

at n>0 – gives pure phase shift

Only half of the phase shift comes from each transversal coordinate

30

Page 31: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Properties of the "Standard" Hermite Polynomial Solutions

• Provide a complete basis set of orthogonal functions

arbitrary paraxial optical beam And expansion coefficients depending on arbitrary choice of w0 and z0

n = 2

31

Page 32: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Properties of the "Standard" Hermite Polynomial Solutions

• Provide a complete basis set of orthogonal functions

• Astigmatic modes ( , , ) ( , ) ( , )nm n mu x y z u x z u y z= ⋅

q0 (and w0,z0) can have different values in x and y directions of transversal plane astigmatic Gaussian beam modes

32

Page 33: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Properties of the "Standard" Hermite Polynomial Solutions

• Provide a complete basis set of orthogonal functions

• Astigmatic modes ( , , ) ( , ) ( , )nm n mu x y z u x z u y z= ⋅

q0 (and w0,z0) can have different values in x and y directions of transversal plane astigmatic Gaussian beam modes

• Cylindrical coordinates: Laguerre-Gaussian modes

0p ≥ m - radial index - asimuthal index

33

Page 34: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Properties of the "Standard" Hermite Polynomial Solutions

Hermite-Gaussian laser modes Laguerre-Gaussian laser modes

34

Page 35: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

The "Elegant" Hermite Polynomial Solutions

Main assumption

Motivation: having the same complex argument in Hermite ploynomial and gaussian exponent

• biorthogonal to a set of adjoint functions

• significant difference in high order modes with “standard” sets

35

Page 36: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

The “standard” and “elegant” sets high-order solutions

2wRπαλ

=, with

36

Page 37: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian beam propagation in ducts

Duct – is a graded index optical waveguided

37

Solution:

w<< 1/221/ n

Gaussian eigenmode of the duct

Page 38: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian beam propagation in ducts

Duct – is a graded index optical waveguided

38

Beating of excited lower and higher-order eigenmodes propagating with different phase velocities

Page 39: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Numerical Beam Propagation Methods

39

1. Finite Difference Approach Beam propagation through inhomogeneous regions

Page 40: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Numerical Beam Propagation Methods

40

1. Finite Difference Approach

2. Fourier Transform Interpretation of Huygens Integral

x1 FFT xN FFT

remains a Gaussian

Page 41: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Numerical Beam Propagation Methods

41

3. Alternative Fourier Transform Approach

the Huygens-Fresnel propagation integral appears as a single (scaled) Fourier transform between the input and output functions u0 and u

single FT, but applied to a more complex input fucntion

Page 42: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Paraxial Plane Waves and Transverse Spatial Frequencies

42

FT → expansion of the optical beam in a set of infinite plane waves traveling in slightly different directions

Set of infinite plane waves

θx,θy or spatial frequencies: sx, sy

Page 43: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

KTH ROYAL INSTITUTE OF TECHNOLOGY

Physical Properties of Gaussian Beams

Ruslan Ivanov OFO/ICT

Page 44: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Outline

• Gaussian beam propagation • Aperture transmission • Beam collimation • Wavefront radius of curvature

• Gaussian beam focusing • Focus spot sizes and focus depth • Focal spot deviation

• Lens law and Gaussian mode matching • Axial phase shifts • Higher-order Gaussian modes

• Hermite-Gaussian patterns • Higher-order mode sizes and aperturing • Spatial-frequency consideration

2

Page 45: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian beam Beam waist w0: R0=inf

“Standard” hermite-gaussian solution (n=0)

, where

3

Page 46: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian beam Beam waist w0: R0=inf

“Standard” hermite-gaussian solution (n=0)

, where

4

Page 47: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Aperture transmission

The radial intensity variation of the beam

5

Page 48: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Aperture transmission

The radial intensity variation of the beam

6

Page 49: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Aperture transmission

The radial intensity variation of the beam

+ diffraction on aperture sharp edges

7

Page 50: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian beam collimation

0( ) 2Rw z w=

zR characterizes switch from near-field (collimated beam) to far-field (linearly divergent beam)

8

Page 51: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Collimated Gaussian beam propagation

(99% criterion) 02D wπ=

9

Page 52: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Far-field Gaussian beam propagation

1. The “Top-hat” criterion

20

2THwA π

= - effective source aperture area

10

Page 53: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Far-field Gaussian beam propagation

1. The “Top-hat” criterion

2. The 1/e criterion

- Antenna theorem

11

Page 54: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Far-field Gaussian beam propagation

1. The “Top-hat” criterion

2. The 1/e criterion

3. The conservative criterion far-field beam angle

12

Page 55: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Far-field Gaussian beam propagation Wavefront radius of curvature

13

Page 56: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Far-field Gaussian beam propagation Wavefront radius of curvature

Put two curved mirrors of radius R at the points ±zR to match exactly the wavefronts R(z)

- Symmetric confocal resonator

2Rf =

14

Page 57: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian beam focusing

99% criterion

( )D w fπ=

0 02d w=1/e criterion

1. Focused spot size lens radius a

Larger gaussian beam is required for stronger focusing

Lens is in the far-field

15

Page 58: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian beam focusing

1. Focused spot size

2. Depth of focus - Region in which the beam can be thought collimated

99% criterion

( )D w fπ=

The beam focused to a spot Nλ in diameter will be N2λ in length

16

Page 59: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian beam focusing

1. Focused spot size

2. Depth of focus

3. Focal spot deviation

_ _f depth of focus∆ << - The effect is usually negligible (zR<<f)

17

Page 60: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian Mode Matching The problem: convert w1 at z1 to w2 at z2

Thin lens law

The lens law for gaussian beams

18

Page 61: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian Mode Matching The problem: convert w1 at z1 to w2 at z2

Thin lens law:

The lens law for gaussian beams

19

Page 62: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Gaussian Mode Matching The problem: convert w1 at z1 to w2 at z2

Gaussian-beam (Collins) chart

The lens law for gaussian beams

20

Page 63: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Axial phase shifts Cumulative phase shift variation on the optical axis:

Plane wave phase shift Added phase shift

/ 2 when z( ) arctan( / )

/ 2 when zRz z zπ

ψπ

→ +∞= → − → −∞

The phase factor yields a phase shift relative to the phase of a plane wave when a Gaussian beam goes through a focus.

21

Page 64: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Axial phase shifts: The Guoy effect Valid for the beams with any reasonably simple cross section

Each wavelet will acquire exactly π/2 of extra phase shift in diverging from its point source or focus to the far field

More pronounced for the higher modes:

1D→

22

Page 65: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Higher-Order Gaussian Modes

Hermite-Gaussian TEMnm

( ) arctan( / )Rz z zψ =, where

23

Page 66: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Higher-Order Gaussian Modes

Hermite-Gaussian TEMnm

( ) arctan( / )Rz z zψ =, where

24

Page 67: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Higher-Order Gaussian Modes

The intensity pattern of any given TEMnm mode changes size but not shape as it propagates forward in z-a given TEMnm mode looks exactly the same

Inherent property of the “Standard” Hermite-Gaussian solution

25

Page 68: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Higher-Order Mode Sizes

- spatial period of the ripples

• An aperture with radius a

- works well for big n values Common rule:

26

Page 69: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Numerical Hermite-Gaussian Mode Expansion

w, N - ?

27

Page 70: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Numerical Hermite-Gaussian Mode Expansion

w, N - ?

28

Page 71: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Numerical Hermite-Gaussian Mode Expansion

29

Page 72: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

Spatial Frequency Considerations

Expand arbitrary function f(x) across an aperture 2a with a finite sum of N+1 gaussian modes : w, Nmax - ? 1. Calculate maximum spatial frequency of fluctuations in the function f(x)

variations slower than

2. Select w, N so that the highest order TEMN:

• at least fill the aperture

• handle the highest spatial variation in the signal

30

Page 73: Wave Optics and Gaussian Beams - KTH/Gaussi… · Huygens’ integral in Fresnel approximation . Huygens' Integral . General form: - Huygens kernel - 1D kernel . cilindrical wave

31