Wangchen Chattering alarms

download Wangchen Chattering alarms

of 11

Transcript of Wangchen Chattering alarms

  • 8/17/2019 Wangchen Chattering alarms

    1/11

    Computers and Chemical Engineering 54 (2013) 140–150

    Contents lists available at SciVerse ScienceDirect

    Computers and Chemical Engineering

     journal homepage: www.elsevier .com/ locate /compchemeng

    An online method for detection and reduction of chattering alarms

    due to oscillation

     Jiandong Wang a,∗, Tongwen Chen b

    a College of Engineering, Peking University, Beijing, Chinab Department of Electrical& Computer Engineering, Universityof Alberta, Edmonton, Alberta, Canada

    a r t i c l e i n f o

     Article history:

    Received 26 September 2012Received in revised form 20 February 2013

    Accepted 26 March2013

    Available online 12 April 2013

    Keywords:

    Process safety

    Chattering alarms

    Oscillation

    Alarm systems

    a b s t r a c t

    Chattering alarms, which repeatedly and rapidly make transitions between alarm and normal states in a

    short time period, are the most common form of nuisance alarms that severely degrade the performance

    of alarm systems for industrial plants. One reason for chattering alarms is the presence of oscillation in

    process signals. The paper proposes an online method to promptly detect the chattering alarms due to

    oscillation and to effectively reduce the number of chattering alarms. In particular, a revised chattering

    index is proposed to quantify the level of chattering alarms; the discrete cosine transform-based method

    isused to detect the presence of oscillation; two mechanisms by adjustingthe alarm trippoint and using a

    delay timer are exploited to reduce the number of chattering alarms. An industrial case study is provided

    to illustrate the effectiveness of the proposed method.

    © 2013 Elsevier Ltd. All rights reserved.

    1. Introduction

    Alarm systems have been recognized as critical assets for

    safety and efficient operation of industrial plants, including power

    stations, oil refineries, and petrochemical facilities (Bransby &

     Jenkinson, 1998; Rothenberg, 2009). However, according to indus-

    trial surveys, e.g., those in Bransby and Jenkinson (1998) and

    Rothenberg (2009), operators of industrial plants often receive

    many more alarms than they can handel promptly, among which

    many belong to the nuisance alarms.

    Chattering alarms are the most common forms of nuisance

    alarms. Rothenberg (2009) defines chattering alarms as the ones

    that activate ten or more times within 1min. The ISA 18.2 stan-

    dard (ISA, 2009) regards alarms that repeats more than three or

    more times in 1min as chattering alarms. Two closely related nui-

    sance alarmsare therepeating alarmsand fleeting alarms(Bransby

    & Jenkinson, 1998; EEMUA, 2007) that do not activate and clear as

    fast as chattering alarms, e.g., the repeating alarms activate ten ormore times within 15min (Rothenberg, 2009). It is a well-known

    factthat differenttypes of process variablesmay havevery different

    time scales in terms of variation dynamics, e.g., the Nyquist sam-

    pling period of a flow variable is usually in seconds, while that of a

    This research was partially supported by the National Natural Science Founda-

    tion of China under Grant No. 61061130559 and Natural Sciences and Engineering

    Research Council of Canada.∗   Corresponding author. Tel.: +86 10 62753856.

    E-mail addresses: [email protected] (J. Wang), [email protected](T. Chen).

    temperature variable may be in minutes. As a result, there is not a

    unanimous definition for chattering alarms in the literature. In this

    context, we refer chattering alarms, as well as repeatingalarms and

    fleeting alarms, as the ones that repeatedly and rapidly make tran-

    sitions between alarm and normal states in a short time period,

    where the time period is subject to the type of process variables in

    consideration.

    Chattering alarms, as well as repeating alarms and fleeting

    alarms, have received an increasing attention from both industrial

    and academic communities. Burnell and Dicken (1997) introduced

    a detection and auto-shelving facility and a method of changing

    the alarm display list to handle repeating alarms. Bransby and

     Jenkinson (1998) (Appendix 10) and EEMUA (2007) (Appendix 9)

    discussed a number of mechanisms for dealing with repeating and

    fleeting alarms, including filtering, deadband, delay timer, shelv-

    ing, etc. Hugo (2009) exploited the time series modeling technique

    to obtain adaptive alarm deadbands to reduce the number of chat-

    tering alarms. Kondaveeti, Izadi, Shah, Shook, and Kadali (2010)proposed a chattering index to quantify the degree of chattering

    alarms. Naghoosi, Izadi, and Chen (2011) developed a method to

    estimate the chattering indexbased on statistical properties of pro-

    cessvariablesas well asalarmparametersfor thedeadband ordelay

    timer in use.

    There are several reasons for the appearance of chattering

    alarms, such as the noise on a process variable that is operating

    close to an alarm trippoint. In this context, we focus on the reason

    of oscillation presented in process variables. Oscillation is one of 

    phenomena frequently observed in process industries (Thornhill &

    Horch,2007). If a signalis periodic or contains periodic components

    0098-1354/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.compchemeng.2013.03.025

    http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.compchemeng.2013.03.025http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.compchemeng.2013.03.025http://www.sciencedirect.com/science/journal/00981354http://www.elsevier.com/locate/compchemengmailto:[email protected]:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.compchemeng.2013.03.025http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.compchemeng.2013.03.025mailto:[email protected]:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.compchemeng.2013.03.025&domain=pdfhttp://www.elsevier.com/locate/compchemenghttp://www.sciencedirect.com/science/journal/00981354http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.compchemeng.2013.03.025

  • 8/17/2019 Wangchen Chattering alarms

    2/11

     J. Wang, T. Chen / Computers and Chemical Engineering 54 (2013) 140–150 141

    with well-defined amplitude and period, such as a sinusoidal wave

    contaminated by measurement noise, it is called an oscillatory

    signal(Choudhury,Shah, & Thornhill,2008). If the oscillation ampli-

    tude is large enough to cause repeated crossings of the process

    variable over the alarm trippoint, then chattering alarms appear;

    see an industrial case study provided later in Section 7 f or an illus-

    tration.Owing to the regularities of oscillation on the amplitude and

    period, it is expected that the chattering alarms caused by oscilla-

    tion can be effectively reduced, which is the objective of this paper.

    To achieve this objective, a critical step is to detect the presence of 

    oscillation.

    The existing methods for detection of oscillation in a univari-

    ate signal include the integrated absolute error-based method

    (Hagglund, 1995; Thornhill & Hagglund, 1997), the correlation

    function-based method and the spectral peak-basedmethod (Karra

    & Karim, 2009; Thornhill,Huang, & Zhang, 2003), the wavelet-based

    method (Matsuo, Sasaoka, & Yamashita, 2003), the autoregres-

    sive and moving-average model-based method (Salsbury & Singhal,

    2005), the discrete cosine transform (DCT)-based method (Li,

    Wang, Huang, & Lu, 2010), the empirical mode decomposition

    (EMD)-based method (Srinivasana, Rengaswamy, & Miller, 2007)

    and its improved version (Srinivasana & Rengaswamy, 2012).

    Among these methods, the DCT-based method (Li et al., 2010) and

    theEMD-basedmethod(Srinivasana& Rengaswamy, 2012) areper-

    haps the most advanced ones. In this paper, we would exploit the

    DCT-based method in Liet al. (2010) to detectthe presence of oscil-

    lation. To make thepaperself-sustained, thestepsof theDCT-based

    method (with some modifications) are listed in Appendix A. Note

    that other oscillation detection methods, such as the EMD-based

    method, are applicable too (to be clarified later at Section 6).

    The contribution of this paper is to propose an online methodto

    promptlydetectthe presence of chatteringalarmsdue to oscillation

    and to effectively reduce the number of these chattering alarms. In

    particular, a revised chattering index is provided to quantify the

    level of chattering alarms, with a correction of a drawback in the

    original chattering index proposed in Kondaveeti et al. (2010) and

    Naghoosi et al. (2011); two mechanisms, namely, the adjustment

    of alarm trippoint and the usage of a delay timer, are exploitedto reduce the number of chattering alarms due to oscillation that

    is detected via the DCT-based method. The reduction of chattering

    alarms certainly is accompanied by some costs.To control thecosts

    within an acceptable level, the two mechanisms are designed with

    the consideration of requirements on three performance indices,

    namely, the false alarm rate (FAR), missed alarm rate (MAR) and

    averaged alarm delay (AAD). By contrast, the existing methods in

    Burnell and Dicken (1997), Bransby and Jenkinson (1998), EEMUA,

    2007 and Hugo (2009) f or handling chattering alarms are rather

    empirical, lack of quantitative measures on the benefits and costs.

    The rest of the paper is organized as follows. Section 2 describes

    the considered problem. Section 3 discusses the mechanisms to

    reduce the number of chattering alarms. Section 4 investigates the

    run length distributions of chattering alarms. A revised chatter-ing index is provided in Section 5. The proposed online method

    is presented in Section 6, and its effectiveness is illustrated via an

    industrial case study in Section 7. Finally, Section 8 provides some

    concluding remarks.

    2. Problem description

    Consider a discrete-time process signal x(t ) with the sampling

    number t = 1 , 2 , . . . and the sampling periodh (a positive real num-ber). Without loss of generality, xtp is assumed to be a high-alarm

    trippointassociated with x(t ). That is,an alarm signal xa(t ) takes the

    0 500 1000 1500 2000 2500 3000

    −1

    −0.5

    0

    0.5

    1

    1.5

    Sample number t 

         A    m

        p     l     i     t    u     d    e

    Fig. 1. The process signal x(t ) (solid) and its alarm trippoint  xtp   (dotted) with the

    sampling period h.

    value ‘1’ if  x(t ) exceeds  xtp, and the value ‘0’ if   x(t ) is smaller than

     xtp, i.e.,

     xa (t ) =

    1, if  x (t ) ≥ xtp0, otherwise

    . (1)

    Chattering alarms may be arisen due to the presence of oscil-

    lation when x(t ) is under the normal condition, as shown in Fig. 1.

    The oscillation causesmany repeated crossings of  x(t ) over the trip-

    point xtp so that chattering alarmsappear as thefalsealarms, which

    severely degrade the performance of the alarm system on  x(t ).

    The performance of an alarm system can be measured by different

    indices. The basic indices are the number of alarms per hour, peak

    numberof alarms per hour, numberof high/low priority alarmsper

    hour, and alarm acknowledge ratio (Bransby & Jenkinson, 1998;Rothenberg, 2009). For a univariate alarm system, its performance

    can be assessed by three indices, namely, the FAR, MAR and AAD

    (Xu, Wang, Izadi, & Chen, 2012). The FAR (MAR) is the probability

    of false (missed) alarms when x(t ) is under the normal (abnormal)

    condition. The FAR and MAR measure the accuracy of an alarm sys-

    tem in detecting the normal and abnormal conditions. The AAD is

    the expected value of the delay between the alarm activating time

    and the time instant that x(t ) switches from the normal condition

    to abnormal. Thus, the AADmeasures the alarm latency of an alarm

    system. A proper design of the alarm system, such as the selection

    of the alarm trippoint xtp in (1), should satisfy certain requirements

    on the FAR, MAR and AAD, e.g., FAR ≤5 %,MAR ≤5% andAAD≤10s.Our objective is to design an online method that can promptly

    detect the presence of the chattering alarms due to oscillation and

    effectively reduce thenumber of these chattering alarms, while the

    requirements on FAR, MAR and AAD are satisfied.

    3. Mechanisms to remove chattering alarms

    Due to the regularity of oscillation, a proper mechanism can be

    taken to reduce the number of chattering alarms. Three mecha-

    nisms that arecommonlyadoptedin practice areinvestigatedhere,

    namely, the shelving operation, adjustment of the alarm trippoint

     xtp and delay timer.

    Let the probability distribution functions (PDFs) of the process

    signal  x (t )  in the normal and abnormal conditions be denotedby q ( x) and  p ( x), respectively, as shown by the solid and dotted

    curves in Fig. 2. If  x(t ) is assumed to be independent and identically

  • 8/17/2019 Wangchen Chattering alarms

    3/11

    142   J. Wang, T. Chen / Computers andChemical Engineering 54 (2013) 140–150

    −2 −1.5 −1 −0.5 0 0.5 1 1.5 20

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    q(x)

    q(x)

    x

         P

         D     F

    p(x)

    xtp

    Fig. 2. The PDFsof  x(t ) in thenormal (solid), oscillation (dash), and abnormal (dot-

    ted) conditions.

    distributed (IID), it is straightforward to obtain the FAR, MAR andAAD,

    FAR = q1  :=   +∞ xtp

    q ( x)dx, (2)

    MAR = p2  :=   xtp−∞

     p ( x)dx, (3)

    AAD = h   p21 − p2

    . (4)

    There exist some tradeoffsamongthe FAR, MAR andAAD.The value

    of  xtp can be designed in an optimal manner based on the informa-

    tion of q ( x) and  p ( x) as well as the requirements on the FAR, MAR and AAD. Xu et al. (2012) suggested the following approach,

     xtp = arg min J ( xtp) (5)

    where

     J  xtp= ω1

    FAR 

    RFAR  + ω2

    MAR 

    RMAR  + ω3

    AAD

    RAAD, (6)

    subject to the constraints,

    FAR  ≤ RFAR , MAR  ≤ RMAR , AAD ≤ RAAD. (7)

    Here RFAR, RMAR and RAAD arethe acceptable upper limits of FAR,

    MAR and AAD, respectively, and ω1, ω2  and ω3  are the weighting

    terms.

    When  x(t ) stays at the normal condition and oscillation ispresent, the original PDF q ( x) could be dramatically different fromthe one shown by the dash curve in Fig. 2. As a result, chattering

    alarms appear as the false alarms so that the FAR may increase

    severely. Then, the objective is to reduce the FAR subject to the

    tradeoffs among FAR, MAR and AAD.

    The shelving operation is perhaps the mostly adopted one

    (Hollifield & Habibi, 2010). When oscillation is found to be present,

    the shelving operation temporarily isolates the chattering alarms

    into a shelve. In other words, there will be no alarms from xa (t ) tobe presented to operators when xa(t ) is under the shelving oper-

    ation. When oscillation is absent,  xa (t )  is removed for the list of shelving operation. However, the shelving operation has a serious

    drawback.That is, when abnormalconditionoccurs during the time

    that xa (t ) is under the shelving operation, no alarms will be given,

    which is a potentially dangerous situation. In terms of the perfor-

    mance measures, this situation implies MAR =100% and AAD= +∞so that the loss function J ( xtp) in (6) becomes unacceptable. Hence,

    Hollifield and Habibi (2010) (p. 166) stated that “it is essential that

    operators must know, each shift,which alarms have been removed

    from service andfor howlong”, which,however,increases thelabor

    efforts of operators.

    An alternative way is to adjustthe alarm trippoint xtp temporar-

    ilytoanothervalue ˜ xtp

    larger thanthe oscillationamplitude in order

    to accommodate the presence of oscillation. Doing so can decrease

    the FAR by removing the chattering alarms due to oscillation in

     x (t ), but with the cost of increasing MAR and AAD, as implied by(4). If the adjustment of  xtp  leads to a smaller loss function J (˜ xtp)than J ( xtp), then the adjustment of  xtp can be exploited, without the

    danger of using the shelving operation that maymiss the detection

    of abnormal conditions.

    The third choice is the m-sample delay timer. That is, an alarm

    will be raised/cleared if and only if more than m consecutive sam-

    ples of  x (t ) are larger/smaller than the trippoint xtp. For IID processsignal  x (t ), the FAR, MAR and AAD for the m-sample delay timerare (Xu et al., 2012)

    FAR =qm−1

    11 − qm2

    qm−11

    1− qm

    2

    + qm−1

    2

    1 − qm

    1

    , (8)

    MAR = pm−1

    2

    1 − pm

    1

     pm−12

    1− pm1

    + pm−11

    1 − pm2

    , (9)

    AAD = h (1− pm

    1 −  p2 pm1 )

     p2 pm1

    , (10)

    where q1   and  p2   are defined in (2) and (3), respectively, and

     p1 : =1− p2  and q2 : =1−q1. When oscillation is present, the factorm can be tuned to be larger than the half of oscillation period, so

    that no alarms will be triggered. Using the delay timer can reduce

    the FAR and MAR, but with an increment of the AAD, as implied

    by (8)–(10). Analogously to J ( xtp) in (6), another loss function J (m)

    can be defined. Thus, the usage of the delay timer may lead to a

    smaller loss function J (m) than the original one J (m= 1). Inthiscase,

    the delay timer does not suffer from the drawback of the shelving

    operation too.

    Based on the above observations and analysis, the adjustment

    of the alarm trippoint and the delay timer are exploited further to

    reduce the number of chattering alarms, while the shelving opera-

    tion is no longer considered in the sequel.

    4. Run length distribution for alarm signals

    This section introduces the run lengths of alarm signals that are

    the information source for the detection of chattering alarms.

    The run length is defined for alarm signals that are generated

    in a way different from that in (1). That is, the alarm signal  xa(t )

    takes the value of ‘1’ only at the time instant when x(t ) goes into

    the alarm state from the non-alarm state, i.e., for the high-alarm

    trippoint xtp,

     xa (t ) =

    1, if  x (t − 1) < xtp and x (t ) ≥ xtp0, otherwise

    . (11)

    The run length, denoted as r , is defined as the number of samples

    between two consecutive ‘1’s in xa(t ), i.e.,

  • 8/17/2019 Wangchen Chattering alarms

    4/11

     J. Wang, T. Chen / Computers and Chemical Engineering 54 (2013) 140–150 143

    r  := t 2 − t 1   (12)

    where

     xa (t 1) = 1, xa (t 2) = 1,t 2

    t =t 1

     xa (t ) = 2, for t 2 > t 1.

    It is useful to investigate the distribution of the run length r  for

    two special cases: (a) the process signal  x(t ) is IID and (b)  x(t ) is

    oscillatory.

    Case-(a). If  x(t )isIID,thetotalnumberof‘1’sin  xa(t ) generatedby

    (11) is a randomvariable denoted by X a with binomial distribution,

    i.e.,

    B ( X a; N,q1(1− q1))

    = N !(N − X a)! X a!

    (q1(1− q1)) X a(1− q1(1− q1))N − X a,

    where q1  is defined in (2), and N is the length of collected samples

    of  xa(t ). Owing to the triangular inequality, q1(1−q1) is less than1/4, i.e.,

    q1(1− q1) ≤ q1+ 1− q1

    2 2

    = 14.   (13)

    If the data length N  is large and the probability of  xa(t ) taking ‘1’s

    is small (as implied by (13)), then the binomial random variable X acan be well approximated by Poisson distribution (Devore, 2005),

    P ( X a;N) =e−N(N) X a

     X a!  .

    Here =q1(1−q1) may be interpreted as the mean number of ‘1’sper sample. Thus, the run length r , as the time difference between

    consecutive ‘1’s, has the exponential distribution (Devore, 2005),

    E (r ;) =

    1

    ˇe−(r )/ˇ, r > 0

    0, elsewhere

    , (14)

    where ˇ = 1/=1/(q1(1−q1)).Case-(b). If  x(t ) is oscillatory, the oscillation period P (a positive

    integer) and amplitude M (a positive real number) can be defined

    as

    E  x (t + kP )

      = E 

     x (t )

    ,∀t,∀k,

    M  := maxt 

    E  x (t )

    − min

    E  x (t )

    ,

    whereE { · } is the quasi-expectation operator to unifythe stochasticand deterministic signals in the same roof,

     x (t )

    = lim

    N →∞1

    t E 

     x (t )

    .

    For a high-alarm trippoint xtp, it is reasonable to assume that xtp is

    largerthan theaverage level of  x(t ), denoted bym x, butsmallerthan

    m x +M /2. If  x(t ) is a deterministic periodic sequence, then the run

    length sequence is equal to a constant, the same as the oscillation

    period of  x(t ), i.e., r (l) =P ,∀ l. In practice, x(t ) is usually contaminatedby measurement noise, so that  xa(t ) may take the value ‘1’ when

     x(t ) is close to  xtp. As a result, the distances between consecutive

    points crossing xtp may take two values of P 1 and P 2 for P 1 ≤P 2 andP 1 +P 2 =P . Thus, the run lengths could take the values around P , P 1and P 2 as well as some much smaller valuesdue to thenoise effects,

    which is illustrated in the next example.

    Example 1. Let the process signal be generated as

     x (t )=

    sin (2ft )+

    e (t ) ,

    40 60 80 100  120  140  1600

    50

    100(a)

         F    r    e    q    u    e    n    c    y

    0 20 40 60 80 100 1200

    20

    40(b)

         F    r    e    q    u    e    n    c    y

    0 20 40 60 80 100  1200

    50

    100(c)

         F    r    e    q    u    e    n    c    y

    0 20 40 60 80 100  1200

    200

    400(d)

         F    r    e    q    u    e    n    c    y

    Run length r 

    Fig.3. Histograms of therun lengthsfor  e =0 (a), e = 0.05 (b), e  =0.1(c) and e = 1

    (d).

    wheree (t )∼

     N (0,  e)

     is Gaussian white noise with zero mean and

    standard deviation  e, and  f is a constant equal to 0.01. The alarmtrippoint is  xtp =0.6. Fig. 3(a)–(d) presents the histograms of the

    run lengths r  in (12) f or four values of  e =

    0, 0.05, 0.1, 1

    with thedata lengthN = 10,000.When e = 0,all the run lengths areequal to the period P = 1/ f = 100, as shown in Fig. 3(a). When e (t ) ispresent, the points of sin (2ft ) close to xtp  have certain probabil-ities to trigger an alarm due to the noise effect; as an illustration,

    some parts of  x (t ) and its alarm signal xa (t ) for  e = 0.05 are shownin Fig. 4. Thus, the histogram of the run length may consist of four

    parts as shown in Fig. 3(b) and (c). When e is increasing, e (t ) mayoverwhelm the oscillatory component so that x(t ) is dominated by

    the Gaussian white noise e(t ). As expected, the distribution of the

    run length approaches to the exponential distribution in (14), as

    shown in Fig. 3(d) for  e = 1. The observation on the run length dis-tribution for oscillatory signals in this example will be used later at

    Step 3 of theproposedmethod in Section 6 where thedata segment

    is determined for the detection of oscillation.

    The run length r  in (12) is exploited in the next section to for-

    mulate an index to detect the occurrence of chattering alarms.

    8200  8250  8300  8350  8400  8450  8500  8550

    −1

    −0.5

    0

    0.5

    1

         A    m    p     l     i     t    u     d    e

    (a)

    8200  8250  8300  8350  8400  8450  8500  85500

    0.5

    1

    Sample number t 

         A    m    p     l     i     t    u     d    e

    (b)

    PP2

    P1

    Fig. 4. Parts of  x(t ) (a) and its alarm signal xa(t ) (b) for  e  =0.05 with the sampling

    period h.

  • 8/17/2019 Wangchen Chattering alarms

    5/11

    144   J. Wang, T. Chen / Computers andChemical Engineering 54 (2013) 140–150

    5. Revised chattering index 

    This section proposes a revised chattering index. For the time

    being, let the sampling periodh of  x (t ) be 1 s.A chattering index was proposed in Kondaveeti et al. (2010)and

    Naghoosi et al. (2011),

    = r  AC r /r r  AC r 

    , (15)

    where r isthe run lengthin (12) and AC r  is thetotalnumber of r .The

    index may lead to an exaggerated impression on thefrequency of appearance ofalarms.For instance,if thereare only twoalarms with

    the time distance 2 s between them in the time duration of 100 s,

    then r = 2,  AC r = 1 and =0.5. However, if the alarms occur every2s in the 100s, then the chattering index is also equal to 0.5. Both

    cases reach at the upper limit of  as the range of  is [0, 0.5] forthe alarm generation mechanisms in (11). This drawback is clearly

    due to the absence of the number of samples in the calculation of 

    . Hence, we would like to revise the chattering index as

    =

    2r  AC r /r N 

      ,   (16)

    where N  is the data length of the alarm signal. The coefficient 2 is

    to make the range of  to be [0, 1].A cutoff threshold of  is 0 = 3/60= 0.05 alarms/s (Kondaveeti

    et al., 2010; Naghoosi et al., 2011), based on a rule of thumb from

    ISA 18.2 standard that alarms that repeat more than three times

    per minute are considered chattering. This cutoff threshold does

    notconsider theeffectof the weighting 1/r that penalizes small run

    lengths.Intermsof  in (16), ifthesameruleofthumbisapplied,theworst scenario is that thethreealarms in oneminute arepositioned

    closest to each other, so that the chattering index is

    =

    6 ·  1260   =

    0.05.

     Table 1

    Comparison between two chattering indices.

     xa(t ) N X a  

    Fig. 5(a) 207 2 7.8552×10−5 0.0081Fig. 5(b) 234 2 0.0028 0.3333

    Fig. 5(c) 500 9 0.0024 0.0754

    Fig. 5(d) 185 11 0.0064 0.0596

    If oscillation is present and the three alarms are spread evenly in

    1 min, then the chattering index is

    = 6 ·  120

    60  = 0.005. (17)

    Thus, =0.005 is taken as the cutoff threshold. That is, if the cal-culated chattering index for a given data segment of  xa (t ) is larger

    than 0.005, then we claim that the segment contains chattering

    alarms, and some proper actions need to be taken to deal with the

    chattering alarms.

    Example 2. Four sets of alarm signals with the sampling period

    h= 1 sec are presented in Fig. 5. The total numbers of alarms,

    denoted by X a, and the chattering indices are listed in Table 1.

    For the alarm signals in Fig. 5(a) and (b), both have 2 alarms;however, the alarms in Fig. 5(b) occur quite close to each other; as

    a result, the chattering index in (16) f or xa (t ) in Fig. 5(b) is higherthan that in Fig. 5(a). The original chattering index in (15) f or

    Fig.5(b)isquitelarge, = 0.3333, leading to an incorrectconclusionthat chattering alarms present.

    For the alarm signal in Fig. 5(c), the alarm frequency is

    9/500 = 0.0180, and =0.0024 is smaller than the cutoff thresh-

    old 0.005. For the alarm signal in Fig. 5(d), the alarm frequency is

    11/185= 0.0595, and the alarms are distributed quite evenly; thus,

    for Fig. 5(d) is close to the cutoff threshold 0.005. The chatter-ing index says that chattering alarms are present in Fig. 5(d), and

    absent in Fig. 5(c), while the original chattering index incorrectlyconcludes that chattering alarms are present in both Fig. 5(c) and

    (d), and for Fig. 5(c) is even larger than that for Fig. 5(d).

    0 50 100  150  200

    0

    0.5

    1

    (a)

    Sample number t 

         A    m    p     l     i     t    u     d    e

    0 50 100  150  200  250

    0

    0.5

    1

    (b)

    Sample number t 

         A    m    p     l     i     t    u     d    e

    0 50 100  150  200

    0

    0.5

    1

    (d)

    Sample number t 

         A    m    p     l     i     t    u     d    e

    0  200  400

    0

    0.5

    1

    (c)

    Sample number t 

         A    m    p     l     i     t    u     d    e

    Fig. 5. Four alarm signals xa(t ) in Example 2 with thesampling periodh=1 s .

  • 8/17/2019 Wangchen Chattering alarms

    6/11

  • 8/17/2019 Wangchen Chattering alarms

    7/11

    146   J. Wang, T. Chen / Computers andChemical Engineering 54 (2013) 140–150

     x(m)a   (n) aredenoted as,

    (tp) and(m), respectively. Next, the alarm

    trippoint  x(tp)tp   or the coefficient m in the m-sample delay timer is

    updated for different cases as follows:

    •   Case I. If (tp) xm + 0.5M +  M ) ≤ RFAR ,

    where

     M  =

     (0.5M std)

    2

    RFAR   . (23)

    Similarly, another inequality can be obtained,

    Pr (T > 0.5P +  P ) ≤ RFAR ,

    where

     P  = (0.5P std)

    2

    RFAR   (24)

    with P std   b eing the standard deviation of  P  in (A.8). Here

    the random variable T  measures the distance between con-

    secutive zero-crossing positions of   xd (t ) := x (t ) − E ( x), i.e.,T (l) : = z (l+ 1)− z (l), where  z (l) = t  for  xd (t ) xd (t + 1) ≤ 0, and weuse 0.5P  and 0.5P std   in (A.8) as the estimates of the mean and

    standard deviation of T .

    (b) If no oscillation is detected, then the chattering alarms are

    not caused by oscillation, and there is no need to adjust the trip-

    point or usethe delay timer,so that ˜ xtp or m returns to theoriginalvalue, i.e., ˜ xtp = xtp or m= 1.

    •  Case III. If  (tp)

  • 8/17/2019 Wangchen Chattering alarms

    8/11

     J. Wang, T. Chen / Computers and Chemical Engineering 54 (2013) 140–150 147

    0 200 400 600 800 1000  1200  1400  1600  1800  2000

    4344454647(a)

         A    m    p     l     i     t    u     d    e

    0 200 400 600 800 1000 1200 1400 1600 1800 200040

    60

    80(b)

         A    m    p     l     i     t    u     d    e

    0 200 400 600 800 1000  1200  1400  1600  1800  200045

    50

    55

    60(c)

         A    m    p     l     i     t    u     d    e

    0 200 400 600 800 1000 1200 1400 1600 1800 200050

    60

    70

    80(d)

         A    m    p     l     i     t    u     d    e

    Sampling number t 

    Fig. 7. Collecteddata of two level control loops with thesampling period 1min: (a)the drum level (solid) and reference(dash) forcontroller LTC1, (b) controller outputfor

    LTC1, (c) thetowerlevel (solid) andreference (dash) for controller LTC2 and(d) controller output forLTC2.

    Under Assumptions A4 and A5, using the estimates of q( x) and p( x)

    in Fig. 10, the upper limits of  xtp  and m are obtained as xH tp = 47.5and mH = 30 from (8) to (10) based on the requirements in (25).

    Second, the proposed method is applied to the real-time mea-

    surements of  x(t ) shown in Fig. 11. The obtained results are listed

    in Table 2. For a better visualization, the enlarged versions of  x(t )

    in Fig. 11 are provided in Figs. 12–15, for different data segments.

    In Table 2, and  X a, respectively are the chattering index and thetotal numberof ‘1’s in xa(t ) forthe original alarm configurationwith

     xtp = 46.0 and m=1, while

    (tp), X (tp)a

    and

    (m), X (m)a

    , respec-

    tively are the counterparts from the two mechanisms, namely, the

    adjustment of  xtp

     and the m-sample delay timer.

    For the first two data segments  x(1:500) and  x(501 : 1000)

    shown in Fig. 12, the initialization is ˜ xtp = 46.0 or m= 1, and thereare noalarmsor one single alarm;as a result, the lengths of the first

    twodata segments reach at the upper boundN H = 500. The chatter-

    ing indices (tp) ((m)) and are smaller than the cutoff threshold

    4000  4100  4200  4300  4400  4500

    42

    44

    46

    48(a)

         A    m    p     l     i     t    u     d    e

    4000  4100  4200  4300  4400  45000

    0.2

    0.4

    0.6

    0.8

    1(b)

    Sample number t 

         A    m    p     l     i     t    u     d    e

    Fig. 8. The oscillatory process signal x(t ) (a) and its alarm signal xa(t ) (b), with the

    sampling period 1 min.

    0 = 0 .005; Case III is applicable so that we stay with   ˜ xtp = 46.0(m=1).

    Forthe third data segment x(1001: 1399) shown in Fig. 13, there

    are 20 alarms andthe chattering index(tp) = 0.0130((m) = 0.0130)that is higher than thecutoff threshold0 = 0.005,leading to Case II.

    The DCT-based method does not detect the presence of oscillation

    in the third data segment, which is a correct result, because the

    oscillation therein is developing from lower amplitudes to larger

    ones and the oscillatory amplitudes do not have sufficient regular-

    ity (the inequality (A.9) f or the amplitude regularity test does not

    hold). Thus, Case II-b is applicable, i.e., ˜ xtp = xtp = 46.0 (m=1).For the fourth data segment  x(1400 : 1600) also shown in

    Fig. 13, there are 14 alarms and the chattering index (tp)

    = 0.0190((m) = 0.0190) that is higher than 0 =0.005. The DCT-basedmethod detects the presence of oscillation with amplitude

    M = 2.8264 andstandarddeviationM std = 0.5178 around the average

    level xm = 44.9835,and with periodP = 18.3810 and standard devia-

    tionP std = 1.2032. ForRFAR= 5%,Eqs.(23) and(24)yield M = 1.1577and P = 2.6904, respectively. Case II-a is applicable so that Eqs. (20)

    0 500 1000 1500 2000 2500 3000 3500 4000 4500

    43

    44

    45

    46

    47

    48

    49

    50

    Sample number t 

         A    m    p     l     i     t    u     d    e

    Fig. 9. Typical data of  x(t ) (solid) in the normal and abnormal conditions with the

    sampling period 1 min (dotted line: the alarm trippoint xtp).

  • 8/17/2019 Wangchen Chattering alarms

    9/11

    148   J. Wang, T. Chen / Computers andChemical Engineering 54 (2013) 140–150

    42 44 46 48 50 520

    0.5

    1

    1.5

         A    m    p

         l     i     t    u     d    e

    q(x) p(x)

    Fig. 10. The estimated normal and abnormal PDFsq( x) (solid) and p( x) (dash).

    0 1000 2000 3000 4000  5000  6000  7000  8000  900034

    36

    38

    40

    42

    44

    46

    48

    50

    52

    Sample number t 

         A    m    p     l     i     t    u     d    e

    Fig. 11. The process signal x(t ) (solid) and its alarm trippoint  xtp   (dash) with the

    presence of oscillations (the sampling period h = 1min).

     Table 2

    Results of theproposedmethod for x(t ) in Fig. 11.

     xa(t ) N X a   ×10−2   X (tp)a  

    (tp)

    ×10−2  ˜ xtp   X 

    (m)a  

    (m)

    ×10−2  m

    1 500 0 0 0 0 46.0 0 0 1

    2 500 1 0 1 0 46.0 1 0 1

    3 399 20 1.3 20 1.3 46.0 20 1.3 1

    4 201 14 1.9 14 1.9 46.0 14 1.9 1

    5 247 14 1.07 0 0 47.5 0 0 12

    6 500 33 1.6 0 0 47.5 0 0 127 500 25 1.22 2 0.13 47.5 0 0 12

    8 500 28 1.56 0 0 47.5 0 0 12

    9 500 25 0.96 0 0 47.5 0 0 12

    10 334 22 1.3 1 0 47.5 0 0 12

    11 184 13 1.44 0 0 47.5 0 0 12

    12 191 13 1.25 2 0.02 47.5 0 0 12

    13 201 15 1.8 0 0 47.5 0 0 12

    14 233 16 1.76 1 0 47.5 0 0 12

    15 191 12 0.84 1 0 47.5 0 0 12

    16 500 29 1.37 4 0.04 47.5 2 0.01 12

    17 500 15 0.66 0 0 47.5 0 0 12

    18 500 5 0.15 1 0 47.5 1 0 12

    19 500 0 0 0 0 46.0 0 0 1

    20 500 4 0.04 4 0.04 46.0 4 0.04 1

    21 500 4 0.4 4 0.4 46.0 4 0.4 1

    22 319 0 0 0 0 46.0 0 0 1

    0 200 400 600 800 1000

    40

    42

    44

    46

    48

    50   1(a)

         A    m    p     l     i     t    u     d    e

    2  3

    0 200 400 600 800 10000

    0.2

    0.4

    0.6

    0.8

    1(b)

    Sample number t 

         A    m    p     l     i     t    u     d    e

    Fig.12. The processsignal x(t ) andalarmsignal xa(t )inthefirstandsecondsegments

    (the sampling period h = 1min).

    1000 1100 1200 1300 1400 1500 1600

    40

    42

    44

    46

    48

    50(a)

         A    m    p     l     i     t    u     d    e

    5

    1000 1100 1200 1300 1400 1500 16000

    0.2

    0.4

    0.6

    0.8

    1(b)

    Sample number t 

         A    m    p     l     i     t    u     d    e

    Fig. 13. The process signal  x(t ) and alarm signal xa(t ) in the third and fourth seg-

    ments (the sampling period h = 1min).

    1600 1800 2000 2200 2400 2600 2800

    45

    50

         A    m    p     l     i     t    u     d    e   5  6  7

    3000 3200 3400 3600 3800 4000

    4244

    464850

         A    m

        p     l     i     t    u     d    e   8  9 10

    4200 4300 4400 4500 4600 4700 4800 4900

    4244464850

         A    m    p     l     i     t    u     d    e

      11 12 13 14

    5000 5200 5400 5600 5800 6000

    40

    45

    50

         A    m    p     l     i     t    u     d    e 15

    Sample number t 

    16 17

    Fig. 14. The process signal  x(t ) in the 5th–17th segments (the sampling period

    h = 1min).

  • 8/17/2019 Wangchen Chattering alarms

    10/11

     J. Wang, T. Chen / Computers and Chemical Engineering 54 (2013) 140–150 149

    6200  6300  6400  6500  6600 6700 6800 6900 7000 7100

    35

    40

    45

    50

         A    m    p     l     i     t    u     d    e

    18 19

    7200  7400  7600 7800 8000 8200 840035

    40

    45

    50

         A    m    p     l     i     t    u     d    e

    20

    Sample number t 

    21 22

    Fig. 15. The process signal x(t ) in the 18th–22nd segments (the sampling period h

    = 1min).

    and (21) with  xH tp = 47.5 and mH =30 give  ˜ xtp = 47.5 and m=12,respectively. For the 5th–17th data segments shown in Fig. 14, the

    chattering index for  xtp =46.0 is always larger than 0 = 0.005,

    while (tp) ((m)) for  ˜ xtp = 47.5 (m= 12) is smaller than 0 = 0.005,so that CaseI is applicable and the value of   ˜ xtp = 47.5 (m= 1 2) ispreserved for these data segments.

    For the 18th data segment shown in Fig. 15, both (tp) ((m))

    and are smaller than the cutoff threshold 0 =0.005; Case III isapplicable so that   ˜ xtp  or m returns to ˜ xtp = xtp = 46.0 or m= 1 forthe next data segment. Case III prevails for the rest data segments

    in Fig. 15.

    The proposed method detects the presence of chattering alarms

    due to oscillation promptly at the four data segment, and removes

    most of these chattering alarmsfromthe 5thto 17th data segments.

    In particular, the adjustment of  ˜ xtp  (or the m-sample delay timer)reduces the total number of alarms in the 5th-17th data segments

    from260 to12 (or from260 to3). This is a significant improvement

    in terms of reduction the number of chattering alarms due to oscil-

    lation. Meanwhile, the quantitative requirements on MAR andAAD

    in (25) are satisfied, because ˜ xtp = 47.5 and m= 1, respectively arenot larger than their upper limits xH tp = 47.5 and mH =30.

    8. Conclusion

    The paper proposed an online method to detect the presence of 

    chatteringalarms dueto oscillation in process signals, and to reduce

    the number of these chattering alarms. The method measured the

    level of chattering alarms via a revised chattering index, exploitedthe DCT-based method to detect the presence of oscillation, and

    reduced the number of chattering alarms by adjusting the alarm

    trippoint or using an m-sample delay timer. The effectiveness of 

    the proposed method was illustrated via an industrial case study.

    Theproposedmethod could be further improved.First, itmay be

    necessary to add a step to differentiate special types of oscillation

    for choosing a proper mechanism. For instance, some oscilla-

    tory signals are accompanied with slowly time-varying trends, for

    which using a delay timer is more suitable than adjusting the alarm

    trippoint. Second, as discussedin Bransby and Jenkinson (1998) and

    EEMUA (2007), there are other techniques along with adjusting the

    alarm trippoint and introducing an m-sample delay timer to han-

    dle chattering alarms. These techniques certainly deserve a careful

    investigation.

     Acknowledgment

    The authors would like to thank Sinopec Yangzi Petro-chemical

    Co., Nanjing, China, for providing industrial data used in this study.

     Appendix A. DCT-basedmethod

    Given the data segment x (n− N + 1 : n) determined at Step 3 of 

    the proposed online method in Section 6, the DCT-based methodconsists of the following steps.

    Step A1. Remove the average level xm, i.e.,

     xd(1 : N ) = x(n−N + 1 : n) − xm

    where

     xm =1

    nt =n−N +1

     x(t ), (A.1)

    and perform the DCT on the segment  xd (1 : N ) to obtain

    the DCT component y (k), i.e.,

     y(k) = w(k)N 

    t =1 xd(t )cos

     (2t − 1)(k− 1)2N 

      , k = 1, . . . ,N  

    where

    w(k) =

    1√ N , k = 1, 

    2

    N , 2 ≤ k ≤ N.

    Step A2. Computer a high sea-level (SL) parameter from y(k),

    SL

    =3S y, (A.2)

    where S  y is the sample standard deviation of  y(k),

    S y =

      1N 

    N k=1

     y (k) − 1

    N k=1

     y (k)

    2.

    Suppress the elements of  y (k) that are smaller than thehigh SL parameter in (A.2) to yield a sequence y f (k) as

     y f (k) = y(k), | y(k)| ≥ SL,0, | y(k)|< SL.

    Generate the i-th DCT component  yi(k) having the same

    length N as y(k) for i= 1 , 2, . . ., I ,

     yi(k) =

     y f,i(k), for ks,i ≤ k ≤ ke,i0, otherwise,

    (A.3)

    where y f ,i(k) standsfor the i-thsegment of  y f (k),andits the

    starting pointks,i  and the ending point ke,i are determined

    by the conditions:

     y f (ks,i) /= 0and y f (ks,i − k0) = 0, for k0 = 1,

     y f (ke,i) /= 0and y f (ke,i + k0) = 0, for k0 = 1,2,3,4,

    ks,i ≤ ke,i.

  • 8/17/2019 Wangchen Chattering alarms

    11/11

    150   J. Wang, T. Chen / Computers andChemical Engineering 54 (2013) 140–150

    Step A3. Perform the inverse discrete cosine transform (iDCT) on

     yi(k) to get the i-th component xi(1 :N ) as

     xi(t ) =N 

    k=1

    w(k) yi(k)cos (2t − 1)(k − 1)

    2N   , t = 1, . . . ,N.

    (A.4)

    Find the zero crossing position sequence of  xi (1 : N ),

    denoted as z (l) for l=1, 2, . . ., L, i.e., z (l) = t , where the sam-ple index t satisfies the condition xi(t ) xi(t + 1)≤0. Obtainthe period sequence T i (l) as

    T i (l) := 2 ( z (l + 1) − z (l)) .

    Check if  xi(1 :N ) can pass the period regularity test

    RT i,˛  > 3 (A.5)

    where

    RT i,˛  :=

     2L−1,˛/2

    √ L − 1ST i/T i

    . (A.6)

    HereT i and ST i respectivelyare thesample mean andstan-

    dard deviation of T i(l),

    T i =1

    L

    Ll=1

    T i (l) , ST i =

      1L − 1

    Ll=1

    T i (l) − T i

    2, (A.7)

    and 2L−1,˛/2 is the 100˛-th percentile of a chi-square dis-

    tribution with L−1 degree of freedom. Here ˛ is a smallpositive real number, e.g., ˛=0.05. If none of  xi(1 :N ) for

    i= 1 , 2, . . ., I passes the period regularity test (A.5), then x(n−N + 1 :n) is concluded to be non-oscillatory; other-wise, proceed to Step A4.

    StepA4. Repeat Step A2 for a low SL parameter, SL=S  y, find the

    high-SL DCT component yi(k) in (A.3) that has passed theperiod regularity test (A.5), and extract the low-SL DCT

    component  y j(k) for  j = 1 , 2, . . .,  J that has the same max-imum absolute value as  yi(k), i.e.,  yi,max = y j,max, where

     yi,max := maxk

     yi (k) , y j,max := maxk

     y j (k) .Step A5. Perform the iDCT on y j(k) to get  x j(1 :N ) as in (A.4), and

    conduct the period regularity test on x j(1 :N ) analogously

    to Step A3.

    Step A6. Find the low-SLcomponent x jmax (1 : N ) having the largest

    fitness

    F ( x, x jmax ) = max j

    F ( x, x j)

    among these x j(1 :N )’s thatsuccess in the period regularitytest. Here the fitness of  x j(t ) to x(t ) isdefined as

    F ( x, x j) = 100(1− x j(t ) − x(t )2 x(t ) − E { x(t )}2

    )

    where · 2 is theEuclidean norm.Locate thehigh-SLcom-ponent  ximax (1 : N )  associated with  x jmax (1 : N )   as well.Choose the oscillationperiod P with its standard deviation

    P std as

    P ± P std =

    T imax ± ST imax if RT imax ,˛ ≥ RT  jmax ,˛T  jmax ± ST  jmax otherwise

    . (A.8)

    where RT  jmax ,˛  and RT imax ,˛

      are the regularity indices

    (defined in (A.6)) for ximax (1 : N ) and  x jmax (1 : N ), respec-tively. The standard deviation

    Step A7. Calculate the magnitude sequence M (l) as

    M (l) = max

     xd (t )1+lp

    t =1+(l−1) p

    − min

     xd (t )

    1+lpt =1+(l−1) p

    for l= 1 , 2, . . ., L. Let the sample mean and standard devi-

    ation of M (l) be M and S M , defined similarly as T i  and ST iin (A.7). Analogously to (A.5), if the magnitude regularity

    test

    RM,˛  :=

     2L−1,˛/2

    √ L− 1SM /M 

    > 2.73 (A.9)

    is passed, then x (n−N + 1 : n) is concluded to be oscilla-tory with the periodP and standard deviationP std in (A.8),

    and the amplitude M  and standard deviation S M  aroundthe average level  xm   in (A.1); otherwise, it is concluded

    that x (n− N + 1 : n) is not oscillatory.

    References

    Bransby, M. L., & Jenkinson, J. (1998). Themanagement of alarm systems. Sheffiled:Health and Safety Executive.

    Burnell, E., & Dicken, C. R. (1997). Handling of repeating alarms. London: IEE Collo-quium on Stemming the Alarm Flood.

    Choudhury, M. A. A. S., Shah, S. L., & Thornhill, N. F. (2008). Diagnosis of processnonlinearities and valve station. Berlin: Springer.

    Devore,J. L. (2005). Probabilityandstatistics forengineeringand thesciences (5thEd.).Boston: Brooks/Cole Publishing Co.

    EEMUA (Engineering Equipment and Materials Users’ Association) (2007). Alarmsystems—A guide to design, management and procurement,Version 2. London:EEMUA Publication 191.

    Hagglund,T. (1995). A control-loop performance monitor.Control EngineeringPrac-tice, 3, 1543–1551.

    Hollifield, B.,& Habibi, E. (2010). The alarmmanagementhandbook (2nd ed.). Hous-ton: PAS.

    Hugo, A. J. (2009). Estimation of alarm deadbands. In Proc. the 7th IFAC safeprocessBarcelona, Spain,

    ISA(Instrumentation, Systems& Automation Society)(2009).Managementof alarmsystems for the process industries. North Carolina: ISA 18.02.

     Jelali, M., & Huang, B. (Eds.). (2010). Detection and diagnosis of stiction in controlloops: State of theart andadvanced methods. London: Springer Verlag.

    Karra, S., & Karim, M. N. (2009). Comprehensive methodology for detection anddiagnosis of oscillatory control loops. Control Engineering Practice, 17 , 939–956.

    Kondaveeti, S., Izadi, I., Shah, S. L., Shook, D., & Kadali, R. (2010). Quantification of alarm chatter basedon run lengthdistributions.In Proc. 49th IEEEconf. decision& control Atlanta, GA, USA, (pp. 6809–6814).

    Li,X., Wang, J.,Huang,B., & Lu,S. (2010). TheDCT-based oscillationdetection methodfor a singletime series. Journal of Process Control,  20, 609–617.

    Matsuo, T., Sasaoka, H., & Yamashita, Y. (2003). Detection and diagnosis of oscilla-tions in process plants. In Proc. 7th int conf. knowledge-based intelligent info. & eng. systems (KES 2003) UK,(pp. 1258–1264).

    Naghoosi, E., Izadi, I., & Chen, T. (2011). Estimation of alarm chattering.  Journal of Process Control, 21, 1243–1249.

    Rothenberg, D. (2009).  AlarmManagement for Process Control. New Jersey: Momen-tum Press.

    Salsbury, T.I., & Singhal, A. (2005). A newapproach for ARMA poleestimation usinghigher-order crossings. In  2005 American control conf Portland, OR, USA, (pp.4458–4463).

    Srinivasana, R., Rengaswamy, R., & Miller, R. (2007). A modified empirical modedecomposition (EMD) process for oscillation characterization in control loops.Control Engineering Practice, 15, 1135–1148.

    Srinivasana,R., & Rengaswamy,R. (2012). Automatic oscillation detectionand char-acterization in closed-loop systems.Control EngineeringPractice, 20, 733–746.

    Thornhill, N. F., & Hagglund, T. (1997). Detection and diagnosis of oscillations incontrol loops. Control EngineeringPractice, 5, 1343–1354.

    Thornhill, N. F., & Horch, A. (2007). Advances and new directions in plant-widedisturbance detection and diagnosis. Control Engineering Practice, 15, 1196–1206.

    Thornhill, N. F., Huang, B., & Zhang, H. (2003). Detection of multiple oscillations incontrol loops. Journal of Process Control, 13, 91–100.

    Xu, J., Wang, J., Izadi, I., & Chen, T. (2012). Performance assessment and designfor univariate alarm systems based on FAR, MAR and AAD. IEEE Transactions on Automation Science and Engineering , 9, 296–307.

    http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0115http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0110http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0105http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0100http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0095http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0090http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0085http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0080http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0075http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0070http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0065http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0060http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0055http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0050http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0040http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0035http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0030http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0020http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0015http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0010http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005http://refhub.elsevier.com/S0098-1354(13)00090-2/SBREF0005