Wallace David

download Wallace David

of 105

Transcript of Wallace David

  • 8/6/2019 Wallace David

    1/105

    JAMESCOOKUNIVERSITY

    SCHOOLOFENGINEERING

    EG4011/2

    D e s i g n o f a P o t e n t i a l l y A n t i f o u l i n g

    E n g i n e e r i n g S u r f a c e b y M i m i c k i n g

    t h e A n t i F o u l i n g F u n c t i o n o f S h e l l

    F i s h

    DavidWallace

    ThesissubmittedtotheSchoolofEngineeringinpartialfulfilmentofthe

    requirementsforthedegreeof

    BachelorofEngineering(MechanicalEngineering)

    November7th2008

  • 8/6/2019 Wallace David

    2/105

    Statement of Access

    I,theundersigned,theauthorofthisthesis,understandthatJamesCookUniversity

    willmakeitavailableforusewithintheUniversityLibraryand,bymicrofilmorother

    means,allowaccesstousersinotherapprovedlibraries. Allusersconsultingwith

    thisthesiswillhavetosignthefollowingstatement:

    Inconsultingthisthesis, Iagreenottocopyorcloselyparaphrase it in

    wholeor inpartwithoutwritten consentof theauthor;and tomake

    properpublicwrittenacknowledgementforanyassistance,whichIhave

    obtainedfromit.

    Beyondthis,Idonotwishtoplaceanyrestrictiononaccesstothisthesis.

    5/11/08

    DavidWallace Date

    ii

  • 8/6/2019 Wallace David

    3/105

    Sources Declaration

    Ideclarethatthisthesisismyownworkandhasnotbeensubmittedinanyformfor

    another degree or diploma at any university or other institution of tertiary

    education. Informationderivedfromthepublishedorunpublishedworkofothers

    hasbeenacknowledgedinthetextandalistofreferencesisgiven.

    5/11/08

    DavidWallace Date

    iii

  • 8/6/2019 Wallace David

    4/105

    Abstract

    Foulinginfluencesawidevarietyofindustriesandasaresulthasmanyundesirable

    physical, ecological and economical effects. Many efforts have been made to

    prevent fouling via different defence mechanisms, with the most common being

    chemicalbased. Thetoxicantifoulingsystemsthatareusedarehighlynonspecific

    andthusoftenaffectspeciesthatarenotthedirecttargetofthechemical. Natural

    antifouling deterrents can be broken down into three main groups being the

    chemical, mechanical and physical. Previous research has shown that the

    morphology of a surface is strongly correlated to the way in which it deters the

    settlementoffouling.

    Therefore, the aim of this thesis was to determine the surface parameters for

    shellfish thatarenaturallyclean in theirenvironment, thenengineerand surface

    thathadthesamecharacteristics. Todothisthreespeciesofshellfishwerechosen

    for their antifouling properties. The Mytilus galloprovincialis and TellinaplicataspeciesofshellfishhaveahighdegreeoffoulingresistanceandtheAmusiumballotispecieshasalowresistancetofouling. Fromthesethreespecies,several3Dimages

    were taken using the Laser Scanning Confocal Microscope to capture the

    morphology of the surface. The 3D images were then converted into height

    encodedimagessothatanumericalanalysisofthesurfacecouldbeperformed.

    From the information that was gathered in the numerical analysis, correlations

    weremadebetweentheknownantifoulingcharacteristicsoftheshellfishandthe

    parameters that were calculated during the numerical analysis. Surfaces were

    generatedonapieceof stainless steel togetgroundingonwhat surface finishes

    were achievable with different surface finishing techniques. These generated

    surfaceswerethenanalysedinthesamewaythattheshellfishweretodetermine

    theparametersofthegeneratedsurfaces. Onceparameterswerecollectedforthe

    Optimum shellfish surface and the generated surfaces, they were compared to

    determinethesimilarities. Oncethesimilaritiesbetweenthethreesurfaceswere

    determined,arevisedsurfacefinishingtechniquewasproposed. Oncethissurface

    finishingprocesshasbeen finalisedand thesurface finishhasbeenverifiedasan

    iv

  • 8/6/2019 Wallace David

    5/105

    v

    antifoulingsurfacethenitcanbeappliedinmanyapplicationtohelpminimiseand

    insomecaseeliminatefoulingaccumulation.

  • 8/6/2019 Wallace David

    6/105

    Acknowledgements

    ThankstoZhongxiaoPengforhertirelesseffortinsupportingmethisyear.

    ThankstoKevinBlakeandShaneAskewattheAdvancedAnalyticalCentre,JCUfor

    theirassistanceincapturingexcellentimagesintheAdvancedAnalyticalCentre.

    ThankstoNickPaulforhisassistanceinanalysingthedatacapturedintheAAC.

    vi

  • 8/6/2019 Wallace David

    7/105

    TableofContentsAbstract................................................................................................................. ivAcknowledgements............................................................................................... viIntroduction.......................................................................................................... 1Chapter1:LiteratureReview................................................................................. 41.1 FoulinganditsEffects.........................................................................................4

    1.1.1. Typesoffouling...........................................................................................4

    1.1.2. ApplicationsAffectedByFouling.................................................................6

    1.1.3. Methodsusedtocontrolfouling.................................................................7

    1.2 HeatExchangers.................................................................................................8

    1.2.1. TypesofHeatExchangers............................................................................8

    1.2.2. Methodsusedtocombatfoulinginheatexchangers...............................10

    1.3 SurfaceTopographyandAntifoulingProperties..............................................12

    1.4 Surfacefinishingtechniques.............................................................................18

    1.4.1. Electropolishing.........................................................................................18

    1.4.2. Sanding......................................................................................................19

    1.4.3. SurfaceGrinding........................................................................................19

    1.5 SurfaceAnalysismethod..................................................................................20

    1.5.1. QualitativeAnalysis...................................................................................20OpticalMicroscope.................................................................................21

    ScanningElectronMicroscope................................................................22

    1.5.2. QuantitativeAnalysis.................................................................................23

    StylusProfiler..........................................................................................23

    AtomicForceMicroscopy........................................................................24

    LaserScanningConfocalMicroscopy......................................................25

    1.6 TestingandEvaluationTechniques..................................................................26

    1.7 Summary...........................................................................................................27

    Chapter2:Methodology...................................................................................... 282.1 CharacterisationofShellFishSurfaces.............................................................28

    2.1.1. Sampleselection........................................................................................28

    2.1.2. ImageAcquisition......................................................................................31

    2.1.3. ImageProcessingandAnalysis..................................................................33

    2.1.4. VerificationoftheMatlabandOptimassoftware....................................35

    2.2 Generationofstainlesssteelsurfaceswithantifoulingfunction....................36

    2.2.1. Surfacefinishingtechnique.......................................................................37

    2.2.2. Stainlesssteelsurfacesvs.shellfishsurfacesusingnumericalparameters

    ...................................................................................................................38

    2.3 Testingandevaluationofsurfacefinishes.......................................................38

    vii

  • 8/6/2019 Wallace David

    8/105

    viii

    2.3.1. Experimentalapparatus............................................................................39

    2.3.2. Testingprocedures....................................................................................40

    2.3.3. Performanceevaluation............................................................................40

    Chapter3:ResultsandDiscussion....................................................................... 413.1 ImageAcquisitionandprocessing....................................................................41

    3.1.1. LCSMandLasersharp2000settings..........................................................42

    3.1.2. 3DImageProcessinginMatlab.................................................................42

    Tellinaplicata..........................................................................................44

    Mytilusgalloprovincialis..........................................................................45

    Amusiumballoti......................................................................................47

    3.2 ValidationDatafromStylusProfiler.................................................................48

    3.3 QuantitativeSurfaceAnalysisResults..............................................................51

    3.3.1. TabulatedSurfaceAnalysisResults...........................................................51

    3.3.2. GraphicalSurfaceAnalysis.........................................................................54

    3.4 StudyofAntifoulingProperties........................................................................58

    3.5 SurfaceParametersfromstainlesssteelsurfaces............................................60

    Chapter4:ConclusionandFutureWork..............................................................62References..67AppendixA:StylusProfilerCharts69AppendixB:SPSSAnalysisGraphs73

  • 8/6/2019 Wallace David

    9/105

    TableofFiguresFigure1:TubeandShellHeatExchanger.....................................................................9

    Figure2:PlateHeatExchanger..................................................................................10

    Figure3:FouledShellandTubeheatexchanger.......................................................11

    Figure4:Parametersforsurfacecharacterisation....................................................13

    Figure 5: Scanning Electron Microscope images of the engineered

    microtopographies.....................................................................................................14

    Figure6:Electropolishingmethod.............................................................................18

    Figure7:Surfacegrindingmachine...........................................................................20

    Figure8:OpticalMicroscope.....................................................................................21

    Figure9:ScanningElectronMicroscope....................................................................22

    Figure10:StylusProfiler............................................................................................23

    Figure11:AtomicForceMicroscope.........................................................................24

    Figure12:LaserConfocalScanningMicroscope........................................................25

    Figure13:AntifoulingtestingapparatusproposedbyZettler(2005).......................27

    Figure14:Tellinaplicata(Brownpigment)sample...................................................29

    Figure15:Tellinaplicata(Whitepigment)sample....................................................30

    Figure16:Mytilusgalloprovincialissample...............................................................30

    Figure17:Amusiumballotisample............................................................................30

    Figure18:LaserScanningConfocalMicroscopeatJamesCookUniversity..............32

    Figure19:ComputercontainingtheLasersharp2000imagecapturingsoftware....33

    Figure20:Testingapparatus(Friedrich,2008)..........................................................39

    Figure21:(a)MBIand(b)HEIforTellinaplicata.......................................................44

    Figure 22: Analysis results from the Tellina plicata sample separated into form,

    wavinessandroughnessprofiles...............................................................................44

    Figure23:(a)MBIand(b)HEIforMytilusgalloprovincialis......................................45

    Figure24:AnalysisresultsfromtheMytilusgalloprovincialissampleseparatedinto

    form,wavinessandroughnessprofiles.....................................................................46

    Figure25:(a)MBIand(b)HEIforAmusiumballoti...................................................47

    Figure26:Analysis results from theAmusiumballoti sample separated into form,

    wavinessandroughnessprofiles...............................................................................47

    ix

  • 8/6/2019 Wallace David

    10/105

    Figure27:Combinedaveragesofthevalidationdata...............................................50

    Figure28:RavaluesforallSubsamples. (321referstosubsample1,ofindividual2

    ofspecies3)................................................................................................................55

    Figure29:RavaluesforallIndividuals. (32referstoindividual2ofspecies3).......56

    Figure30:RavaluesforallSpecies. (3referstospecies3)......................................57

    Figure34:RavaluesforgivenSubSamples..............................................................70

    Figure35:RavaluesforgivenIndividuals..................................................................70

    Figure36:RavaluesforgivenSpecies.......................................................................71

    Figure37:RqvaluesforgivenSubsamples...............................................................72

    Figure38:RqvaluesforgivenIndividuals..................................................................72

    Figure39:RqvaluesforgivenSpecies.......................................................................73

    Figure40:RskvaluesforgivenSubsamples.............................................................74

    Figure41:RskvaluesforgivenIndividuals................................................................74

    Figure42:RskvaluesforgivenSpecies......................................................................75

    Figure43:RkudataforgivenSubsamples................................................................76

    Figure44:RkuvaluesforgivenIndividuals................................................................76

    Figure45:RkuvaluesforgivenSpecies.....................................................................77

    Figure46:FdvaluesforgivenSubsamples...............................................................78

    Figure47:FdvaluesforgivenIndividuals..................................................................78

    Figure48:FdvaluesforgivenSpecies.......................................................................79

    Figure49:StrvaluesforgivenSubsamples..............................................................80

    Figure50:StrvaluesforgivenIndividuals.................................................................80

    Figure51:StrvaluesforgivenSpecies.......................................................................81

    Figure52:WavaluesforgivenSubsamples.............................................................82

    Figure53:WavaluesforgivenIndividuals................................................................82

    Figure54:WavaluesforgivenSpecies......................................................................83

    Figure55:WqvaluesforgivenSubsamples.............................................................84

    Figure56:WqvaluesforgivenIndividuals................................................................84

    Figure57:WqvaluesforgivenSpecies......................................................................85

    Figure58:WskvaluesforgivenSubsamples.............................................................86

    Figure59:WskvaluesforgivenIndividuals...............................................................86

    Figure60:WskvaluesforgivenSpecies....................................................................87

    x

  • 8/6/2019 Wallace David

    11/105

    xi

    Figure61:WkuvaluesforgivenSubsamples...........................................................88

    Figure62:WkuvaluesforgivenIndividuals..............................................................88

    Figure63:WkuvaluesforgivenSpecies....................................................................89

    Figure64:FdvaluesforgivenSubsamples...............................................................90

    Figure65:FdvaluesforgivenIndividuals..................................................................90

    Figure66:FdvaluesforgivenSpecies.......................................................................91

    Figure67:StrvaluesforgivenSubsamples..............................................................92

    Figure68:StrvaluesforgivenIndividuals.................................................................92

    Figure69:StrvaluesforgivenSpecies.......................................................................93

  • 8/6/2019 Wallace David

    12/105

    TableofTablesTable1:2DSurfaceParameters.................................................................................15

    Table2:SurfaceParameters......................................................................................16

    Table3:3DSurfaceParameters.................................................................................17

    Table4:FinalisedSurfaceParameters.......................................................................35

    Table5:ValidationData.............................................................................................49

    Table6:Combinedaveragesofthevalidationdata..................................................49

    Table7:Raw roughnessprofiledata fromMatlabandOptimas software (1&2

    Tellinaplicata,3 Mytilusgalloprovincialis,4 Amusiumballoti).............................52

    Table 8: Raw waviness profile data from Matlab and Optimas software (1 & 2

    Tellinaplicata,3 Mytilusgalloprovincialis,3 Amusiumballoti).............................53

    Table9:AveragedroughnessdatafromTable7.......................................................54

    Table10:AveragedwavinessdatafromTable8.......................................................54

    Table11:Hypothesisedantifoulingparameters........................................................60

    Table12:ComparisonbetweenOptimumshellvaluesandgeneratedstainlesssteel

    values.........................................................................................................................61

    xii

  • 8/6/2019 Wallace David

    13/105

    INTRODUCTION

    Introduction

    Foulinginfluencesawidevarietyindustry,frommarinetominingandeventhefood

    industry. Fouling can be described as the undesirable build up of material on a

    surface and is a side effect of the environment in which the surface is exposed.

    Therearemanynegativeeffectsthatfoulingcanhaveonasystemandallofthese

    effects can be put into one of the following categories: physical, ecological and

    economicalfactors. Heatexchangersarewidelyusedinavarietyofindustriesthat

    arehighlysusceptibletofoulinganditcanbeforeseenthatfoulingwouldbeoneof

    themostprominentproblems thatwouldcommonlyoccurduring theiruse. The

    physical, ecological and economical factors in turn affect the design,

    implementationandmaintenanceofasystemwithaheat transfersurface. Inall

    cases,thesideeffectsoffoulingbuildupshouldbeminimised ifnoteliminated in

    ordertomaximisetheefficiencyofasurface.

    Thephysicalpartoftheinefficiencyoffoulingcanbeattributedtothehindranceof

    the water flow over a surface, the obstruction of the heat transfer through the

    surfaceandthedamagethatthefoulingcausestothesurface. Forexampleinheat

    exchangers the hindrance of water flow and the added resistance of the heat

    transfersurfacecanbeattributedtothebuildupofbothscaleandbiofilmonthe

    pipesandplatesoftheheatexchangeraswellasthepipesthat leadtoandfrom

    theunit. Thelossinconductivityminimisestheeffectivenessoftheheatexchanger

    and thus, over time the heat exchanger loses its efficiency and needs to be

    shutdownandmaintainedinordertoreclaimtheitslosses.

    Ecologically theadditionofantifoulants to thewateradds to the toxic chemicals

    that are released back into the environment. The antifoulants are not the only

    addedpollutantsthatfoulingcauses,duetotheadditionalemissionsofgreenhouse

    gassesandthelikeintotheatmospherebecauseofthehigherenergyneedstopush

    the water through the system in the case of a heat exchanger. Because of the

    physicalinefficiencies inthesystem,thereareseriouseconomicalramificationson

    thesystemasthecosttorunandmaintainthesystemrisesandtheprofitdecreases

    astheoutputofthesystemdecreases.

    1

  • 8/6/2019 Wallace David

    14/105

    INTRODUCTION

    Asaruleofthumb,engineersdesignheattransfersystemssothatthelossesdueto

    thefoulinginthepipsandonplatesarebuiltintothedesign. Thismethodisnot

    favourable as it results in greater running and building costs. Fabrication costs

    increasedueto the largerheatexchangerandassociatedpipingthatneedstobe

    accounted for and the running costs are increased through the higher energy

    demandforalargerpump.

    Asanalternativetothepastapproachofsimplybuildingtheheatexchangeraround

    the problem, a more modern approach is to change the surface finish on the

    surfacethatispronetofoulinginordertominimiseorideally,eliminatethefouling

    completely. Withdifferentsurfacefinishes,therearedifferentpropertiesthatcan

    be changed about the surface and thus the susceptibility to fouling. Surface

    topography or microtopography describes the various surface parameters that

    describe the surface. Previous research has shown that properties of the

    topography that are of interest include the roughness, the waviness and the

    skewnessoffbothoftheseproperties(Hudleston(2004)).

    In recent years, researchers have found that a good source of fouling resistant

    surfaces is those seen on shellfish. Some shellfish naturally possess fouling

    resistance mechanisms. In addition to the physical antifouling properties,

    mechanicalandchemicaldeterrentsexist. Thephysicalpropertiesoftheshellare

    ofmostinterestastheotherpropertiesarerelatedtothematerialthattheshellis

    madeofand thechemicals thatare secreted todeter fouling. Bymimicking the

    physicalpropertiesofashellasurfacecanbecreatedthatwillhopefullypossessthe

    sameantifoulingproperties.

    Previous methods used to analyse the surfaces and capture surface parameters

    used primitive twodimensional techniques, an antifouling surface cannot be

    successfullydesignfromtheseresults,astheydonotcaptureenoughdetailabout

    the surface. To better capture the definition on the surface, new methods of

    capturingsurfacemicrotopographyneeded tobeutilisedand thesewere Atomic

    ForceMicroscopy (AFM)and LaserScanningConfocalMicroscopy (LSCM). These

    twomethodscananalysethesurfaceinthreedimensionsandthustheparameters

    2

  • 8/6/2019 Wallace David

    15/105

    INTRODUCTION

    3

    that in the past have only been attainable in the twodimensional for now are

    availableinthreedimensions. Theaddeddetailobtainedinthethreedimensional

    images allows for better insight into the antifouling nature of some species of

    shellfish. By analysing several different shells and their respective antifouling

    properties, a data set will be created which describes the necessary surface

    parameterstomaximisetheantifoulingfunctionofthesurface.

    When the data has been collected from several shells the desired surface

    parameterswillbedetermined. Theseparametersincludetheaverageroughness,

    root mean square roughness, skewness and kurtosis of the profile, the fractal

    dimension of the surfaces and the texture aspect ratio of the roughness and

    wavinessprofilesthatareobtainedfromtheshellfishsurface. Thenexttaskwillbe

    toreplicatethesurfaceontoastainlesssteelsurface. Themethodforthecreation

    of thesurfacewilldependon thesurfaceparametersthatareneeded. Once the

    surfacehasbeen created then itwillbe scrutinised in the samewayas the shell

    surfaces. Bydoingthisitcanbeconfirmedthatthesurfacesindeedhavethesame

    or similar microtopography that will result in the same of similar antifouling

    resistance as the shellfish surface. The surface will then be placed in the heat

    exchangertestapparatusandtestedagainstothersamplestofindoutthesurface

    finishwillbeapplicableinthefield.

    Ifthisconceptisprovensuccessful,itwillprovideindustrywithameansofmaking

    theirheattransfersystemsmoreefficientwithoutcompromisingtheenvironment.

    With this finish applied to heat transfer surfaces in a plate heat exchanger for

    example, the frequency of the cleaning cycle for the heat exchanger can be

    lengtheneddramaticallyifnoteliminated. Thesurfacefinishwillhavetheabilityto

    complimentortotallyreplacetheantifoulantchemicalscurrentlyused intheheat

    transfersystemsandcouldpotentiallyeliminatetheneedtooverdesignthesystem

    inthefirstplace. Thissurfacefinishisnotonlyapplicabletoheatexchangersasit

    mightwellbeusedinavarietyofindustriesinanassortmentoflocationstocombat

    fouling.

  • 8/6/2019 Wallace David

    16/105

    LITERATUREREVIEW

    Chapter 1: Literature Review

    Several itemswillbeoutlined inthischapterallofwhichwillgivethebackground

    informationrequiredtodevelopanantifoulingsurfacefinish. It isenvisionedthat

    thissurface finishcanthenbeappliedtostainlesssteelforuse inheatexchanger

    applications to resist the accumulationof fouling. This information isbrokenup

    intothefollowingheadings:

    foulinganditseffects, heatexchangers, surfacetopographyandantifoulingproperties, surfacefinishingtechniques, surfaceanalysismethods, surfacetestingandevaluation.

    The research carried out under the above headings will give background

    information to further the advancement of the Designing of a Potentially Anti

    foulingEngineeringSurfacebyMimickingtheAntiFoulingFunctionofShellFish.

    1.1 Fouling and its Effects

    1.1.1. Types of fouling

    Foulingonasubmergedsurfacecomesinmanyformsandisprimarilytheresultof

    the surface being exposed to unfavourable environmental conditions. In most

    cases,foulingisanundesiredbuildupmaterialonasurfacethathinderstheflowof

    fluid past the surface as well as decreasing the amount of heat that can pass

    throughthesurface. Epstein(1981)classifiedfoulingintofivemainformsthatare

    identifiedasbeingaproblemforindustry. Healsodefinedthefivestagesinwhich

    theprocessoffoulingprogressed. Hisclassificationsoffoulinganditsmechanisms

    wasrevisedagainby Sheikholeslami(2000)andislistedbelow:

    4

  • 8/6/2019 Wallace David

    17/105

    LITERATUREREVIEW

    Crystallisation(precipitation):Crystallisationfouling or scaleformation is temperature dependant; a degree ofsupersaturationisalsoneededbeforetheprecipitationwilloccur(Bott1997).

    Particulate:Particulatefouling is similar toCrystallisation ina sense that thereneeds tobeasupersaturationof thefluid toallow theformationof theparticles thatwill internattachtothesurface.

    Biological:BiologicalfoulingorBiofoulingoccurswhen theorganisms thatarepresent in thefluidadheretotheheattransfersurface. ThisformsaBiofilmthatactsinthesamewaythattheotherformsoffouling.

    Corrosion:Thisoccurswhenthebasemetalstartstocorrodeandthisinhibitstheflowandheattransfercharacteristicsof thematerial. As thecorrosion inducesa roughsurface,othermaterialisusuallycaughtupinthisfoulingaswell.

    Chemicalreaction:Chemical reaction corrosion is when reactants mix eitherpre or during theflowthrough the heat exchanger and produce the fouling that then adheres to thesurfaceoftheheatexchanger(WatkinsonandWilson1997).There are many independent parameters which affect the type and quantity of

    fouling that a surface receives (Malayeri and MllerSteinhagen 2007). Some of

    theseparametersaregivenbelow:

    5

  • 8/6/2019 Wallace David

    18/105

    LITERATUREREVIEW

    surfacetemperature, bulktemperature, bulkcompositionandchemistry, fluidvelocityandturbulence, physicalpropertiesoftheworkingfluid(viscosity,density), surfacespecifications(material,surfacefinish,roughness), physical properties of the deposit (density, thermal conductivity,

    stickability),

    solubilityequilibrium,and chemicalkinetics(chemicalreaction).

    1.1.2. Applications Affected By Fouling

    Foulingaspreviouslydescribed istheundesiredbuildupofmaterialonasurface.

    Thisisaworldwideprobleminindustryandimpingesonalmosteverywaterbased

    process. Theextentoffoulingin industrywasexplainedbyVladkova(2007)when

    shedescribedseveralindustriesthataresusceptibletofoulingincluding:

    pulpandpaperManufacturing, foodindustry, biomaterials, membranetechnologies, underwaterconstructions,

    theshippingandmarineindustry,

    fishfarmsandwellasfishingnets, desalinationplants,and heatexchangers.

    Astheworldfacesafreshwatershortage,manycountrieshaveturnedtooperating

    desalinationplantstoproducefreshwater. Despitethetechnologicaladvancesthat

    have been made with the processes that are carried out in these plants a large

    proportionoftheplantsarestillthermallydriven. Thismeansthattheefficiencyof

    6

  • 8/6/2019 Wallace David

    19/105

    LITERATUREREVIEW

    theseplantsdiminishesataremarkableratewiththeformingoffoulingontheheat

    transfer surfaces. It is commonpractice toavoid fouling ratherby implementing

    strategies rather than facing theproblem witha solution. Operating the system

    belowtheoptimumtemperaturetominimisetheeffectsofsupersaturationofthe

    salt water, building the heat exchanger bigger than it needs to be in order to

    compensateforthefoulingeffectordosingthesystemwithexcessiveamountsof

    antifoulantareall strategies thatareemployed tocombat fouling indesalination

    plants. Alloftheseareregardedasnotbestpracticeandasaresultcomeunder

    heavy scrutiny from environmental agencies due to their high operational and

    ecologicalcost(MalayeriandMllerSteinhagen2007).

    Thedairyindustryisalsohighlysusceptibletofoulinginplateheatexchangersused

    topasteuriseandsterilisemilksincethe1930s. Theplateheatexchangersneedto

    be cleaned a minimum of once per day to remove the layer of biofilm that

    accumulatesonthesurfaceoftheplates. Thisisamajorproblem,asthecleaning

    ofthisequipmentrequiresthattheprocessbeshutdowntemporarilysothatthe

    bio filmcanbecleanedaway. Asa result, therearemajorcosts involved fornot

    onlythematerialsandlabourtocleantheequipmentbutalsothemassivecostof

    theequipmentdowntimeandaneffluentproblembroughtonbythe intermittent

    cleaning. The fouling on the plates in this case caused by heatsensitive whey

    proteinsandtheheat inducedprecipitationofcalciumphosphatesaltsoutof the

    milk(VisserandJeurnink1997).

    1.1.3. Methods used to control fouling

    Manydifferentstrategiesareusedtocombatfoulinginindustry. Oneofthemost

    predominant methods for controlling fouling in industry applications are

    technologies such as toxic antifouling coatings and the addition of antifouling

    chemicals. These methods are easily implemented and are the conventional

    methodsofcombatingfouling. Thesemethodsandsimilarareheavilyscrutinisedas

    they pose significant environmental hazards if the process is not monitored

    properly. Itiscommonpracticetoavoidfoulingratherbyimplementingstrategies

    7

  • 8/6/2019 Wallace David

    20/105

    LITERATUREREVIEW

    rather than facing the problem with a solution (Malayeri and MllerSteinhagen

    2007).

    Theuseoftoxicantifoulantsonshiphullshasbeenahistoricmethodofcontrolling

    fouling but biocides such as lead, arsenic, mercury and their organic derivatives

    have been banned due to the environmental risks that they posed to the

    surroundingmarinelife(Chambers,Stokesetal.2006). TributyltinorTBTisoneof

    thetoxicantifoulantsusedtobothdeterandkillanymarineorganismswhichare

    exposedtoit;theuseofwhichhasbeenbannedduetoenvironmentaldamagethat

    it causes. The use of organotins was eventually banned due to severe shellfish

    deformitiesandthebioaccumulationoftininsomeducks,sealsandfish(Chambers,

    Stokesetal.2006). Thereareantifoulingcoatings thatdonotuseheavymetals;

    these are called foul releasing coatings and simply do not allow the fouling to

    adheretothecoatedsurface(MllerSteinhagen2000).

    1.2 Heat Exchangers

    1.2.1. Types of Heat Exchangers

    Aheatexchanger isadevicebuilt forefficientheat transfer fromonemedium to

    another. They are widely used in space heating, refrigeration, air conditioning,

    power plants, chemical plants, petrochemical plants, petroleum refineries, and

    natural gas processing. There are numerous types of heat exchangers used in

    industrytoday. ThetwomaintypesofHeatExchangersarethePlatetype(Visser

    and Jeurnink1997;MalayeriandMllerSteinhagen2007)andtheTubeandShell

    type. ThesearenotexclusivelytheonlytypesofHeatExchangersusedasthereare

    multipleapplicationsandthesetwotypescouldnotpossiblebeversatileenoughto

    coveralltypes. TheTubeandShelltypeHeatExchangerpresentedinFigure1has

    manydifferentconfigurationsrangingfromsinglepasstomultiplepassdepending

    ontheapplications. ForthepurposeoftheprojectthistypeofHeatExchangerwill

    not be considered, as the process of conceiving a method of applying a surface

    finishtotheinsideofapipewouldbeverylengthy.

    8

  • 8/6/2019 Wallace David

    21/105

    LITERATUREREVIEW

    The Plate Heat Exchanger on the other hand is the perfect candidate for the

    applicationofasurfacefinishonthesurfaceoftheplates. AspresentedinFigure2

    thePlateHeatExchanger ismadeupof severalplates that separate theprocess

    fluidonthehotsideandthecoolingfluidonthecoldside. Thenumberofplates

    used in the Plate Heat Exchanger is entirely dependent on the outcome that is

    desired. Agreaternumberofplateswill increasethesurfaceareaandthusthere

    willbeagreaterheattransferacrossthesurface(Zettler,Weietal.2005).Withan

    increase in thenumberofplates to increase theheat transfer, therewillalsobe

    moresurfaceareaavailabletobefouled.

    PlateHeatExchangersareusedwhere they canbe as theyareeasy tomaintain

    have an excellent heat transfer capability and by nature are compact (Shah,

    Subbaraoetal.1988). Primarilystainlesssteelisusedinsideheatexchangersasit

    hasahighresistancetocorrosionandgoodthermalconductivity. Heatexchangers

    haveawidevarietyofofapplicationsinindustry.Somereleventindustriesinclude

    wineandbrewing,dairy,chemicalprocessing,refrigeration,powergrenerationand

    thewastewater industry. Inalloftheseapplicatoins it is importantthattheheat

    transfer through the surface is maximised while the flow over the surface

    experiecestheleastamountofresistance.

    Figure1:TubeandShellHeatExchanger.

    (http://content.answers.com/main/content/wp/en commons/c/cd/Straight

    tube_heat_exchanger_1pass.PNG)

    9

  • 8/6/2019 Wallace David

    22/105

    LITERATUREREVIEW

    Figure

    2:

    PlateHeatExchanger.

    (http://www.separationequipment.com/images/alfa laval_plate_heat_exchanger.gif)

    1.2.2. Methods used to combat fouling in heat exchangers

    HeatExchangersarehighlysusceptibletofoulinginmanycombinationsofitsform.

    Duetothemanyapplicationsofthispieceofequipmentisusedinthereisabroad

    rangeoffoulingthattheycanbeexposedto. Thecoldsideaswellasthehotsideof

    theheattransfersurfacecanbeaffectedbyfouling. AspresentedinFigure3heat

    exchangerscanbecomeextremelycongestedovertimeasthefoulingincreasesand

    theopeningslowlyrestrictstheflowofthewater.

    Thetriedandtestedsolutiontotheproblemoffoulinginheatexchangersistoover

    designthesystemandbuild intothedesigntheaccumulationofabiofilmornon

    organic fouling. This is an inefficient and costly procedure for designing heat

    transfer system. The cost for the construction and installation of a bigger heat

    exchangerwillnodoubtbegreaterforabiggersystem. Notonlywillthecostofthe

    construction rise but the cost of all the associated machines and running will

    increase,asthesystemhastoallowforthebiggerheatexchanger.

    10

  • 8/6/2019 Wallace David

    23/105

    LITERATUREREVIEW

    Figure3:FouledShellandTubeheatexchanger.

    (http://en.wikipedia.org/wiki/Fouling)

    Anothermethodusedtodeterfoulingontheheattransfersurfaceistheplacement

    ofcorrugations intheheattransfersurface inaherringbonedesign. Theseplates

    are called chevron plates and they increase the turbulence in the plate heat

    exchanger,whichhelpstopreventfoulingsettlingontheheattransfersurfaces.

    There isanabundanceofresearchdone intotheareaoffoulingandthemethods

    usedtocombat itsmany forms. Inrecentyears,the focushasturnedaway from

    the toxic coatingsandadditives thatareapplied topreventor kill fouling that is

    prevalent inmanywaterbased environments. The newmethod that is used to

    combatfouling iscalledsurfaceengineering. Surfaceengineering involvesaltering

    thechemicalcompositionandmorphology,surfacetopographyandroughness,the

    hydrophilic/hydrophobicbalanceandthesurfaceenergyandpolarityofthesurface

    togiveitthebestantifoulingparameters(Vladkova2007).

    Byoutliningthecurrentmethodsusedtopreventoratmostminimisetheeffectsof

    fouling, it can be seen that there is a need to enhance our knowledge about

    methodsthatarebothenvironmentallyfriendlyandeconomicallyefficient. Surface

    engineering has the potential satisfy both of these requirements with more

    research.

    11

  • 8/6/2019 Wallace David

    24/105

    LITERATUREREVIEW

    1.3 Surface Topography and Antifouling Properties

    As mentioned above surface engineering aims to alter the chemical composition

    and/or morphology, surface topography and roughness, the hydrophilic/

    hydrophobicbalanceand thesurfaceenergyandpolarityof thesurface tobetter

    resist fouling. Although there are many different properties that can be altered

    surfacetopography istheonlypropertythatwillbediscussed inthispaperasthe

    other properties relate to the material and the chemical composition of the

    material, which cannot be changed in this case. Hudleston (2004) showed the

    settling of fouling organisms on a surface is strongly affected by its surface

    microtopography.

    Biofoulingrapidlycoversthesurfaceofmanysubmergeditemsthatareplacedina

    marine environment. The surfaces of many shell fish however, seem to remain

    relatively unfouled when exposed to the same conditions. It is from this

    observationthatthestudyofthetopographicalormicrotopographicalfeaturesof

    thesecreatureshasbecomeasignificantresearchtopic.

    The study of many surfaces have already been conducted with Bers (2006)

    conductinganantisettlingstudyontwodifferentspeciestheMytilusedulis (bluemussel)andPernaperna(brownmussel). Thesewerecomparedwithadesignatedrough surface and a designated smooth surface that were a lot rougher and

    smoother respectively. Thenaturalmussel shellsonnearlyalloccasions repelled

    more fouling than both the rough, which always suffered the most fouling, and

    smoothsurfaces.

    Scardino (2003) reported on the antifouling properties of the MytilusgalloprovincialisandthePinctadaimbricata. ThestudyshowsthatthemeanheightoftheMytilusgalloprovincialis(1238.1 m),issignificantlylowerwhencomparedtothatofthePinctadaimbricata(1.870.07 m). Themicrotopographicsurfaceofthe Mytilus galloprovincialis proved to be more resistant to fouling while thePinctada imbricata surface suffered more fouling but still less than 15% of thesurfacewerefouledafterafourteenweekexposureperiod.

    12

  • 8/6/2019 Wallace David

    25/105

    LITERATUREREVIEW

    Scardino (2004)also tested the foulingdeterrenceof theMytilusgalloprovincialisandtheAmusiumballotiaswellashighresolutionmouldsofeachoftheshellandagain smooth and rough comparison moulds. This test resulted in theMytilusgalloprovincialis shell and mould having significantly less fouling than the othermoulds. The major effects were in the test surfaces with and without

    microtopography. Be it the structured microtopography of the Mytilusgalloprovincialisanditsmouldorinthecaseoftherandomsandedmouldtheyallexhibited less foulingcoverwithinasixweekperiod. Aftersixweeks,the fouling

    deterrentsurfaceeffectsofthemouldsdiminishedandthesurfacesbegantofoul.

    Scardino (2003)were the first to systematically study the surfaceof the shellfish

    andcomprehensively reporton thenumericalparametersof the surface. In the

    past,many researchershaveonlyquantified theparameter ina twodimensional

    senseandhaveattributedalmostalloftheanti foulingpropertiesofasurface to

    thesurfaceroughness. Thismeansthattheyhavenottakenintoconsiderationany

    of theotherparameters that the shellmaypossess. Scardino (2003) studied the

    surfaces in three dimensions as opposed to two dimensions in the past to

    quantitativelyanalysenotonlytheroughnessofthesurfacebutthetextureaswell.

    Thistextureisbrokendownintothefollowingparameters:Averageroughness(Ra),

    Averagewaviness(Wa),Skewnessofthesurfaceroughnessprofile(Rsk),Skewness

    of the surface waviness profile (Wsk), Texture aspect ratio (Str), and Fractal

    dimension(D).

    Figure4:Parametersforsurfacecharacterisation.

    (http://www.asp.org/database/images/mtsp/Sect2214.GIF)

    13

  • 8/6/2019 Wallace David

    26/105

    LITERATUREREVIEW

    Hudleston (2004) analysed 31 species of shell fish using the parameters stated

    above. Threedimensional images of the shell fish surfaces were taken and the

    roughness, waviness and form surface profiles were generated for each of the

    imagesusing aprogram developed byPeng (1998). By using the 31 specimens,

    Hudlestonwasabletocompileacomprehensivedatabaseofshellfishspeciesand

    theirrespectivemicrotopography. Thismicrotopographydatabasealongwiththe

    visual inspection of the shellfish in their natural habitat allowed for the fouling

    abilityofeachoftheshellstobematchedwiththetopographicalparametersofthe

    particular specimen. InTables1,2 and3 areallof the surfaceparameters that

    Huddleston initiallyused todescribe the shellfish surfaces. Acorrelationanalysis

    wasusedtominimisethenumberofparametersthatwereusedandthisallowed

    thecomputationaltimetobeminimised.

    IncontrastthenaturallyoccurringsurfacetopographiesSchumacher(2007)studied

    theeffectofthefeaturesize,geometryandroughnessonthesettlementoffouling

    ontoa surface. They tested thedesignspresented inFigure5aswellas control

    smoothcastofthesamematerial. Theresults fromthisexperimentshowedthat

    thedesigninboxAwasthebestfollowedbyB,C,Dandthenthesmoothsample.

    Figure5:ScanningElectronMicroscopeimagesoftheengineeredmicrotopographies.

    (Schumacher,Carmanetal.2007)

    14

  • 8/6/2019 Wallace David

    27/105

    LITERATUREREVIEW

    Table1:2DSurfaceParameters(Huddleston2004)Parameter Name Definition Equation

    Ra

    Average

    roughness

    The arithmetic mean of the departure

    of the surface profile from the meanline.

    over 2 20 consecutive samplinglengths, where L is the number ofsampling points and z is theresidual surface

    Rq

    Root mean

    squareroughness

    The root mean square of Ra.

    Rz

    10 point height The average height between the fivehighest peaks and the five lowestvalleys within the sampling length, this

    parameter is also known as the 10pointheight parameter. where Ypi represents the highest

    peaks and Yvi represents thelowest valleys

    Rp

    Depth ofsurface

    The maximum height of the surfaceprofile above the mean line within thesampling length.

    Rt

    Peak to valleyheight

    The maximum peak to valley height ofthe surface profile in the samplinglength.

    Rv

    Maximumprofile depth

    The maximum depth of the profilebelow the mean line within thesampling length.

    Rti

    Maximumpeak to valleyheight

    The maximum peak to valley of theprofile in one sampling.

    Rtm

    Mean depth ofroughness

    The mean of all the Rti values recordedfor the assessment length.

    Rpm

    Mean depth ofsurface

    The mean value for Rp recorded foreach assessment length.

    Rsk

    Skewness The symmetry of the amplitudedistribution curve about the mean line.

    Rku

    Kurtosis The measure of shape (sharpness) of

    the amplitude distribution curve

    15

  • 8/6/2019 Wallace David

    28/105

    LITERATUREREVIEW

    Table2:SurfaceParameters(Huddleston2004)

    Parameter Name Definition Equation

    q

    Root mean

    square ofprofile height

    The root mean square of the

    profile height over theassessment length

    where y is the differential of theprofile y

    q

    Root mean

    square ofspatialwavelength

    The root mean square of the

    spatial wavelength content of thesurface

    Ar

    Roughness

    width

    The roughness width within one

    sampling length

    where n is the number of sampleswithin one sampling length

    AR

    Mean

    roughnessstep

    The mean of Arover the entire

    assessment length

    where n is the number of sampleswithin entire assessment length

    Aw

    Waviness

    width

    The waviness width within the

    sample length

    Aw

    Averagewaviness step

    The average waviness widthwithin the assessment length

    where n is the number of sampleswithin entire assessment length

    R3z

    Average

    roughnessdepth

    The mean separation of the third

    highest peak and third lowestvalley in each of five consecutivesampling lengths

    W

    Wavinessheight

    Separation of the highest peakand lowest valley waviness overthe sampling length

    a

    Average

    wavelength

    The average wavelength within

    the assessment length

    16

  • 8/6/2019 Wallace David

    29/105

    LITERATUREREVIEW

    Table3:3DSurfaceParameters(Huddleston2004)

    Parameter Name Definition Equation

    Sq

    Root mean square

    deviation

    The values of the surface

    departure within thesampling area

    Sz

    Ten point height

    of the surface

    The average height

    between the five highestpeaks and the fivelowest valleys within thesampling area

    where pi and vi are the five highestpeaks and the five lowest valleys

    respectively

    Ssk

    Skewness ofsurfacetopographydistribution

    The measure of theasymmetry of surfacedeviations about the

    mean plane

    where p() is the probability densityfunction of the residual surface (x,y)

    Sku

    Kurtosis oftopography heightdistribution

    The measure of thepeakiness or sharpnessof the surface heightdistribution

    There issignificantcontradiction inthe literatureas towhattheeffectof surface

    roughnesshasontheantifoulingpropertiesofagivensurface. Examplesofthese

    contradictions can be found throughout the literature. For example, Richards

    (Richards 1996) documented that there is no correlation between the material

    roughnessand theamountofcelladhesion toasurface. WhilstGjaltema (1997)

    reportedthatincreasedsurfaceroughnesspromotedahigherbiofilmaccumulation.

    AfterresearchingthistopicKerr(2003)statedthattheconfusionthatispresentin

    theliteraturecouldbeattributedtothelackofcontrol ofthemanyvariablesthat

    affecttheexperiments inthisfield. Withnumerousexperimentsbeingconducted

    inthisarea,thereisaneedformoredetailaboutthesurfaceroughnessvaluesthat

    17

  • 8/6/2019 Wallace David

    30/105

    LITERATUREREVIEW

    havebeenused. Instinctivelyasmothersurfacefinishpossessesbetterantifouling

    propertieswhencomparedtoaroughsurface.

    1.4 Surface finishing techniques

    Inordertotestthedifferenttypesofsurfaces,amethodofapplyingthefinishesto

    thestainlesssteelneedstobeconceived. Afterresearchingalternativemethodsfor

    creatingthedesiredmicrotopographyonasurfacethefollowingprocesswereseen

    tohavepotential.

    1.4.1. Electropolishing

    Electropolishingisanelectrochemicalprocessbywhichsurfacematerialisremoved

    byelectrolysis. Sometimesreferredtoas"reverseplating",electropolishingactually

    removes surfacematerial,beginningwith the highpointswithin themicroscopic

    surfacetexture. Thecathodeofthesystemwillbemadetomirrorthefeaturesof

    theworkpieceandtheanodeistheworkpieceitself. Theelectricalchargethatis

    thenappliedacrosstheelectrolytecausesthehighspotsontheworkpiecetobe

    dissolvedatagreater rate than thatof the lower spots thushavinga smoothing

    affect on the surface. After the electropolishing treatment, the workpiece is

    passed through a series of steps to neutralize, rinse, clean and dry the surfaces

    (Electropolishing2008).

    Figure6:Electropolishing method.(http://www.harrisonep.com/services/electropolishing/default.html#bennefits )

    18

    http://www.harrisonep.com/services/electropolishing/default.html#bennefitshttp://www.harrisonep.com/services/electropolishing/default.html#bennefits
  • 8/6/2019 Wallace David

    31/105

    LITERATUREREVIEW

    1.4.2. Sanding

    Medilanski (2002)useddifferent 3different gradesof sandpaper (P80,P500and

    P100), diamond polishing paste and an electropolishing process to produce 5

    different samples of roughness. The stainless steel samples were first

    electropolishedtogivethemallauniformsurface. Theywerethenscratchedusing

    the different grades of sandpaper giving them the following roughness

    characteristics: P80(0.89m),P500(0.25m),P1000(0.16 m),diamondpolishing

    (0.05 m) and electropolishing (0.03 m). The samples were then exposed to

    foulingandtheresultsweretaken. Thisexperimentshowedthattherewasnotably

    lessfoulingonthesurfacewitharoughnessof0.16 m,whichwascreatedbythe

    P1000gritsandpaper.

    1.4.3. Surface Grinding

    Surfacegrinderscanbeusedeithertoprovideaprecisionsizeortoapplyaspecific

    surface finish. Typically, a surface grinder, depending on the condition of the

    machineandtheoperator,canapplyaprecisionfinishof0.002mm(+/ 0.0001").

    A surface grinding machine consists of a table that moves both left to right and

    fronttobackacrossundertherotatinggrindingdisc. Thefeedthatmovesthetable

    inthehorizontalplanecanbedrivebyeitherhydraulicorelectricmotorsorhand

    driven. The grinding wheel rotates in the spindle head and depending on the

    machine can the height can be adjusted by any of the methods previously

    described. Ifthemachine issetupwithhydraulicorelectricmotorstomovethe

    tableandthegrindingheadthenthere isachancethat itwillbesemiautomated

    andwillrequireminimalhandsononcetheprocesshasstarted.

    Aswithanygrindingoperation, the typeof thewheel that isusedwilldetermine

    the finish that is applied to the surface. The addition of coolant to the system

    allowsforafinerfinishanditremovesthemetaldust(metalandgrindingparticles)

    thatisproduced. Dependingontheworkpiecematerial,theworkisgenerallyheld

    bytheuseofamagneticchuck. Thismaybeeitheranelectromagneticchuckora

    manuallyoperated;bothtypesareshown inthefirst image(Degarmo,Blacketal.

    2003).

    19

  • 8/6/2019 Wallace David

    32/105

    LITERATUREREVIEW

    Figure7:Surfacegrindingmachine.

    (http://en.wikipedia.org/wiki/Surface_grinder)

    1.5 Surface Analysis method

    The analysis of a surface can bebroken down into twomain sections being the

    qualitativeandquantitative. Thequalitativeanalysismethodscanonlygivepicture

    ofthesurfacewithnonumericaldata. Thequantitativeanalysisontheotherhand

    results in thecollectionofnumericaldata thatcanbeanalysed togivenumerical

    parameters.

    1.5.1. Qualitative Analysis

    This describes the analysis of a surface using visual inspectionmethods. Some

    methods of qualitative analysis are optical microscopy and scanning electron

    microscopyandtheseareoutlinedbelow.

    20

    http://en.wikipedia.org/wiki/Surface_grinderhttp://en.wikipedia.org/wiki/Surface_grinder
  • 8/6/2019 Wallace David

    33/105

    LITERATUREREVIEW

    OpticalMicroscope

    Opticalmicroscope likeoperateasshown inFigure8andbymovingtheobjective

    lenstheimagebecomesfocused. Opticalmicroscopes,throughtheiruseofvisible

    wavelengthsof light,arethesimplestandhencemostwidelyusedtypeofbiology

    and geology. Optical microscopes use refractive lenses, typically of glass and

    occasionallyofplastic,tofocuslightintotheeyeoranotherlightdetector. Typical

    magnificationofa lightmicroscope isupto1500xwithatheoreticalresolutionof

    around0.2 mor200 m. Opticalmicroscopesareeasytooperateandhaveno

    complexpartsbutthereisacostandthatisthelowresolutionandthefactthatthe

    surfacecanonlybemeasuredintwodimensions. Thiswillnotprovideuswiththe

    necessary information toparameterise the surfaceof the shellfish. Thismethod

    howevercanprovideuswithamethodofanalysing the surfaceonce ithasbeen

    fouled.

    Figure8:OpticalMicroscope.

    (PengandTomovich2008)

    21

    http://en.wikipedia.org/wiki/Optical_microscopehttp://en.wikipedia.org/wiki/Optical_microscopehttp://en.wikipedia.org/wiki/Optical_microscopehttp://en.wikipedia.org/wiki/Biologyhttp://en.wikipedia.org/wiki/Geologyhttp://en.wikipedia.org/wiki/Refractionhttp://en.wikipedia.org/wiki/Glasshttp://en.wikipedia.org/wiki/Plastichttp://en.wikipedia.org/wiki/Optical_resolutionhttp://en.wikipedia.org/wiki/Optical_resolutionhttp://en.wikipedia.org/wiki/Plastichttp://en.wikipedia.org/wiki/Glasshttp://en.wikipedia.org/wiki/Refractionhttp://en.wikipedia.org/wiki/Geologyhttp://en.wikipedia.org/wiki/Biologyhttp://en.wikipedia.org/wiki/Optical_microscope
  • 8/6/2019 Wallace David

    34/105

    LITERATUREREVIEW

    ScanningElectronMicroscope

    ElectronMicroscopesweredevelopeddue tothe limitationsof lightmicroscopes.

    In the early 1930's the theoretical limithadbeen reached, this required 10,000x

    plusmagnification,whichwasjustnotpossibleusingalightmicroscope.

    The first Scanning Electron Microscope (SEM) debuted in 1942 with the first

    commercial instruments available in 1965. Its late developmentwasdue to the

    electronics involved in "scanning" thebeamofelectronsacross the sample. The

    SEMworksbyfiringelectronsataspeciallypreparedsurfaceandthenanalysingthe

    electronsandxraysthatarereflectedfromthesurface. Thegeneralsetupofthe

    SEMcanbeseeninFigure9. Thesurfaceofthesamplethatistobescannedneeds

    tobereflectiveasisusuallyputthroughaprocesscalledgoldsputteringtogivethe

    surfaceareflectivenature. Becauseofthissurfacepreparation,thisprocessisvery

    expensive. SEMcangiveveryhighresolutiontwodimensionalimages. However,a

    standardSEMcannotgiveanyheightinformation.

    Figure9:ScanningElectronMicroscope.

    (http://www.steve.gb.com/images/science/scanning_electron_microscope.png)

    22

  • 8/6/2019 Wallace David

    35/105

    LITERATUREREVIEW

    1.5.2. Quantitative Analysis

    Asthere isaneedtodeterminethenumericalparametersofasurface,there isa

    needtoanalysethedepthofthesurfaceortheprofileintheZdirection. Fromthe

    methodsthatcouldbeusedthreeofthemorepracticalmethodshavebeenchosen

    andaresurfacemeasurementbyStylusProfiler,AtomicForceMicroscopyandLaser

    ScanningConfocalMicroscopy. Thesemethodswillbeoutlinedbelow.

    StylusProfiler

    The stylusprofilerhasavery simpledesignandworksby letting the stylusmove

    overthesurface. ThestylusisthenconnectedtoarodthatisinsideaLinerVariable

    Differential Transformer (LVDT). When the stylusmoves up and down over the

    surfacetherodmovesinsidetheLVDTandthiscausesasignaltobegeneratedthat

    canthenbecapturedandanalysedtogivethesurfaceprofileofthesample. The

    StylusProfilermeasures the twodimensionalamplitudevariations froma chosen

    datumpoint. Thismethodcanbeusedtocalculatevariousroughnessterms. The

    StylusProfilerislimitedtomeasuringlargetwodimensionalsurfacesasthereisno

    waytostitchtogethertheslicesoftheprofilesthatarecreatedbyonepass. This

    intrusivemethodcandamagethesurfaceofthesampleifitisnotdoneproperly.

    Figure10:StylusProfiler.

    (PengandTomovich2008)

    23

  • 8/6/2019 Wallace David

    36/105

    LITERATUREREVIEW

    AtomicForceMicroscopy

    Atomic Force Microscope (AFM) works by scanning a fine tip made of either a

    ceramic or semiconductor material over a surface much the same way as a

    phonographneedlescansarecord. Thetipislocatedattheendofacantileverthat

    is fixedat theotherend. As the tipmovesover the surface it is repelledbyor

    attractedtothesurfaceandthiscausesthecantileverbeamtodeflect. Ontop,the

    cantileverbeamthereisareflectiveplateonwhichlaserisdirected. Asthebeam

    deflects,themagnitudeofthedeflectioniscapturedbythelaserthatreflectsatan

    obliqueangleofftheendofthecantileverontoaphotosensitivecollectiondevice.

    ThisprocessisshowninFigure11. Aplotofthelaserdeviationversustipposition

    onthesamplesurfaceprovidesathreedimensionalmapofthehillsandvalleysof

    the surface fromwhich the surface topographyparameters canbe extrapolated.

    AFMhas theability toproduce ahighresolution threedimensional image in the

    rangeofapproximately0.1nm. TheAFMalsodoesnotrequirethesurfaceofthe

    sample tobe reflectiveand thus there isnoneed for a surface treatment tobe

    appliedpriortoscanningusinganAFM. However,duetothesmallscanningregion

    thattheAFMhasitcanbedifficulttolocatetheregionsofinterestonthesurfaceof

    thesample.

    Figure11:AtomicForceMicroscope.

    (http://upload.wikimedia.org/wikipedia/commons/1/1a/Atomic_force_microscope_block_diagram.

    png)

    24

  • 8/6/2019 Wallace David

    37/105

    LITERATUREREVIEW

    LaserScanningConfocalMicroscopy

    TheLaserScanningConfocalMicroscopeoperates inmuchthesamewaythatthe

    conventionalmicroscopeworkswitha fewchanges (Huddleston2004). Itcanbe

    seeninFigure12thatinsteadofnaturallighttheLSCMusedalaserandinsteadof

    having a wide field of view the LSCM focuses on a single point. The three

    dimensional imagethat theLSCMproduces isbuiltupofseveraltwodimensional

    imageswithout overlap. From this stack of images, it is possibly to extract the

    surfacetopographyparameters. TheLSCMrequirescarefuloperation,toproduce

    clearandmeaningful imagemany factorsneedattention. Forexampleonce the

    stack of images are collected from the LSCM they are put into a program that

    encodesthemwithagreyscalerangingfromzerototwohundredandfiftyfive. A

    pureblackpixelisrepresentedbyzeroandapurewhitepixelisrepresentedbytwo

    hundredandfiftyfive. Towardsthetwoextremitiesofthescaleinformationabout

    thetopographyofthesurfacecanbelostifthetwoextremesarenotbalanced. A

    height encoded image canbe likened to a contourmapand from thismap the

    topographicalparameterscanbedetermined(Hudleston2004).

    Figure12:LaserConfocalScanningMicroscope.

    (http://www.unimainz.de/FB/Chemie/AKJanshoff/Illustrationen/scheme_confocal_microscopy.jpg)

    25

  • 8/6/2019 Wallace David

    38/105

    LITERATUREREVIEW

    ThereareseveralbenefitsthatLSCMhasovertheothertypesof imagecapturing

    devices. TheLSCMcanprovideadetailedsurfacecharacterisationwithouttheneed

    forasurfacepreparationas inthecaseofSEM. TheLSCMprocesscanbecarried

    outinnormalatmosphericconditionswhereasSEMrequiresahighvacuum. LSCM

    isanondestructivemethodthatallowsthesurfacetobeanalysedrepeatedlyand

    canproducetheseimagesinamuchshorterperiodthentheothermethods. LSCM

    isexcellentforgeneratingimageswithlargeverticalresolutionwhereasAFMonly

    hasa vertical resolution in theorderof four mwhichminimises thenumberof

    surfacestheAFMcanbeusedon.

    1.6 Testing and Evaluation Techniques

    Inordertoconfirmordenytheantifoulingpropertiesofasurface itfirstneedsto

    betestedandevaluatedtodeterminewhetherthesurfacefinish isapplicable ina

    practicalsolution.

    Scardino(2004)testedtheantifoulingpropertiesaseashellbysimplysubmersingit

    intoacreekwith samplesofothershells; inparticularshells thatwereknown to

    have excellent anti fouling properties and those which have poor antifouling

    properties. Again,acomparisoncouldthenbemadeaboutthedifferentshellsand

    thedifferentfoulingpropertiesofeachshell.

    Kukulka (2007) tested the different types of plates that had different surface

    finishesonthembyplacingthemall inatankandthepassing lakewaterthrough

    thetank. Thelakewaterwasonlyusedonceandwasnotrecirculatedsothatthe

    supplyoflakewaterwouldkeepthefoulingparticlescomingatarelativelyconstant

    rate. Medilanski(2002)testedtheadhesionoffoulingontostainlesssteelplatesby

    placingthemintovialsofafluidandthenintroducingthefoulingmediumtothevial

    andtestingtheamountoffoulingthatattachestothesurfaces.

    Zettler(2005)usedaheatexchangerthatwassetupusingatwofluidmethodthat

    runsahotsideandacoldside. Thefoulingisdesignedtoformonthehotsideof

    this systemand the cold side is there tokeep theheatexchangerat thedesired

    26

  • 8/6/2019 Wallace David

    39/105

    LITERATUREREVIEW

    operating temperature. The Apparatus proposed by Zettler (2005) can be seen

    belowinFigure13.

    Figure13:AntifoulingtestingapparatusproposedbyZettler(2005).

    1.7 Summary

    Asheatexchangersarewidelyused in industry,there isaneedforthemtobeas

    economicallyandphysicallyefficientaswellasenvironmentallyfriendlyaspossible.

    Thishasbroughtontheneedtodevelopanontoxicfoulingmechanismforusein

    heatexchangersandhasledtoresearchintothephysicalmechanismsthatshellfish

    possess. Inamarineenvironment,therearemanydifferenttypesoffoulingandas

    aresult,severalspeciesofshellfishhavedevelopeddefencemechanismsthatcan

    reduce or eliminate fouling. These defence mechanisms come in the forms of

    mechanical,physicalandchemicalandtheshellfishusesoneoracombinationof

    thesetominimisethefouling(Wahl1989). Itisanticipatedthatthesurfaceofthe

    shellfish,whichhas themostefficientantifouling function,canbemimickedand

    then applied to surfaces tominimise or totally prevent the formation of fouling

    material.

    27

  • 8/6/2019 Wallace David

    40/105

    METHODOLOGY

    Chapter 2: Methodology

    Theobjectiveofthisprojectwastodeterminethepropertiesofasurfacefinishthat

    can be applied to a surface so that it has excellent antifouling characteristics by

    mimickingthesurfacefinishofashellfish. Inordertoachievethisoutcomethere

    areseveralstepsthatweretaken. Thefirstofthesestepswasthecharacterisation

    of the shellfish surfaces,whichwasessential indetermining theparameters that

    affectantifouling. Oncetheappropriateantifoulingparameterswerefound,itwas

    thennecessarytouseasurface finishingtechniquetoapplya finishtoastainless

    steel surface so that it may possess the same antifouling properties. Once the

    stainlesssteelsurfacewasprepared itwasthencomparedtothatoftheshellfish

    surfacetodeterminethelikenessofthetwosurfaces.

    2.1 Characterisation of Shell Fish Surfaces

    Inamarineenvironment there ismassive foulingpressureapplied toanysurface

    that issubmerged. Ithasbeenrecognisedthattherearespeciesofshellfish that

    havetheabilitytorepulsethisfoulingpressureandthushaverelativelyclean,foul

    freesurfaces. Itisforthisreasonthatthesurfacesofshellfisharethefocusofthis

    research and further more recently the use of three dimensional imaging

    techniques has improved the understanding of what the important surface

    parametersoftheshellfishsurfaceissignificant.

    2.1.1. Sample selection

    Thechoiceof the right shellfish isan integralpartof this research. If thewrong

    shellfishwerechosen,allofthefindingsobtainedfromthestudywouldbeinvalid.

    Itisforthisreasonthatthreedifferentshellfishwerechosenforthesamples. From

    eachofthespeciestherearebethreedifferentindividualsandfromeachofthese

    twosubsamplescanbetakenatrandomlocationstogetanaverageofthesurface

    parameters.

    28

  • 8/6/2019 Wallace David

    41/105

    METHODOLOGY

    Thethreedifferentshellfishwerechosenbecauseoftheirnaturalantifoulingnature

    in amarine environment (Huddleston 2004). The shellswere chosen based on

    previousstudies,whichoutlinedparticularspecies fortheirantifoulingproperties.

    The three species taken into consideration were the Amusium Balloti, Mytilusgalloprovincialisand Tellinaplicata. TheAmusiumballoti shell surfacepossessesvery little antifouling potential in its natural environment; this shell will be an

    excellentexample thatcanbeused to compare it to theotherantifouling shells.

    MytilusgalloprovincialisandTellinaplicataspeciesareknowntohaveahighfoulingresistanceintheirnaturalenvironment(ScardinoanddeNys2004). Bychoosinga

    rangeofshellfishspeciesthatcoverstheentirespectrumoffoulingresistance,the

    parametersthatmaximiseitcanbedetermined. Thefinalspeciesthatwerechosen

    forthisanalysisareshownbelow inFigures14,15,16and17. TheTellinaplicataspeciesofshellcameintwodifferentpigmentssothisspecieswasfurthersplitinto

    pigmentsasanotherparameterthatcanbeanalysed.

    Figure14:Tellinaplicata(Brownpigment)sample.

    29

  • 8/6/2019 Wallace David

    42/105

    METHODOLOGY

    Figure15:Tellinaplicata(Whitepigment)sample.

    Figure16:Mytilusgalloprovincialis sample.

    Figure17:Amusiumballotisample.

    30

  • 8/6/2019 Wallace David

    43/105

    METHODOLOGY

    2.1.2. Image Acquisition

    The BIORAD Laser Scanning Radiance 2000 laser scanning confocal microscope

    (LSCM)wasused to capture the imagesof the shellfish surfaces. In conjunction

    withtheLSCM,Lasersharp2000softwarewasused forall imageacquisitions. As

    mentionedpreviouslyinsection2.1.1thereweretworandomsamplestakenfrom

    eachof thethreeshells foreachspecies. From theseLSCM, theLasersharp2000

    softwareoutputsaseriesoftwodimensionalimages,whichwerethesavedinaTIF

    format. The imageswerecreatedbysetting twopoints in thezdirection for the

    LSCM to scan between. To aid in the setting of these two points the SETCOL

    function on the Lasersharp software was used. The lowest point is gained by

    focusingtheLSCMonthelowestpossiblefeatureonthesurface;usingtheSETCOL

    function,thismeantthatthescreenwaspredominantlygreenwithonlyafewblack

    pixels. ThentheLSCMwasfocusedonthehighestpossiblefeatureonthesurface

    using the same SETCOL function as before so that the screen in predominantly

    greenwithonlyafewblackpixels. Bysettingthehighestandlowestpointsinthe

    Lasersharp2000softwarethistellsLSCMthelimitsofitsmotioninthezdirection.

    This gives the differing z level twodimensional images that range from deepest

    troughtothehighestridge.

    TheLSCMisaverycomplexpieceofmachineryandhasseveralsettingsthatcanbe

    varied inordertoobtainthebestquality image. Hudleston (2004)describedtwo

    main functions thatwere important forqualitycontrol. Firstly, thequalityof the

    imagecanbeadjusted through thehardware settingsand then these settingcan

    thenbefurtherdefinedthroughtheLasersharpsoftware. Theotherfunctionthat

    canbeadjustedisthereflectivityofthesample. Tominimisethecomplexityofthe

    setupoftheLSCMandtheLasersharpsoftwarenotallofthepossiblefunctionsof

    theLSCMwereused.

    Todeterminethebestpossiblemagnificationdifferentlenseswereusedtoexamine

    thesurface. Itwasdecidedthatthesurfacepropertiesthatwerestudiedwouldbe

    ona mscale,andtocapturethesefeaturesa100x lenswouldbeneeded. Once

    theappropriate lenswas selected then theonlyothervariable thatwas changed

    31

  • 8/6/2019 Wallace David

    44/105

    METHODOLOGY

    wastheintensityofthelaser. Thiswasadjustedsothattherewasnosaturationin

    the image. Tobestadjustthe laser intensitytheSETCOLtoolwasusedagainand

    this allowed a colour representation on the screenwhere greenwas defined as

    partsoftheimageoutoffocus,thegreyscalefilledtheareasthatwereinfocusand

    red defined areas thatwere saturatedwith light (white). The aim of the laser

    intensityadjustmentswere tomake sure that therewas little tonoareason the

    imagethatweresaturated(red).

    Figure18:LaserScanningConfocalMicroscopeatJamesCookUniversity.

    32

  • 8/6/2019 Wallace David

    45/105

    METHODOLOGY

    Figure19:ComputercontainingtheLasersharp2000imagecapturingsoftware.

    2.1.3. Image Processing and Analysis

    OncetheimageswerecollectedfromtheLSCMitthenneededtobeconvertedinto

    imagesthatwillallowthedeterminationofthesurfaceparameters. TheLasersharp

    2000softwareoutputsanumberofTIF imagesthataredescribedasan imageof

    step in the zdirection. Allof the images thatareobtained from the LSCMwere

    convertedintoheightencodedimages(HEI)andmaximumbrightnessimages(MBI)

    foruseinthespeciallydesignedMatlabprogramdevelopedbyPeng(2004).

    TheMBI iscomprisedofpointsofmaximumbrightness foreachpixel location for

    each individual image in the stack of twodimensional images resulting in a

    reflectance image of the sample surface (Hudleston 2004). The MBI was then

    illustratedusingagreyscalethatseparateseachlayeranddenotesaspecificshade

    ofgreytoit. Thescalegoesfromzerototwohundredandfiftyfivewherezeroisa

    33

  • 8/6/2019 Wallace David

    46/105

    METHODOLOGY

    pureblackpixelandtwohundredandfiftyfiveisapurewhitepixel. Towardsthe

    extremesofthesescoloursinformationmaybelostasthecolourssaturates.

    AHEIcanbethoughtofasacontourmaptoacomputerasitcanreadtheheightof

    each pixel in relation to all of the others. It is from the HEI that the important

    surfaceparametersaredetermined.

    Aswellas theMBIandHEI, theMatlab softwarealsooutputsotherusefuldata.

    Two other outputs of the Matlab software are the roughness and waviness HEI

    images. These images are used in a data analysis program called Optimas to

    determinethefractaldimensionandtextureaspectratioofboththeroughnessand

    wavinessprofiles. TheMatlabcodealsooutputsaWorddocumentthathastheRa,

    Rq, skewness and kurtosis measurements of the surface. These measurements

    along with those of the Optimas software are used to determine the numerical

    parametersofanantifoulingsurface.

    Many numerical parameters have been used in the past to describe the

    microtopographyofasurface. Hudlestons(2004)researchwentthroughallofthe

    surfaceparameterspresentedinTable1,Table2andTable3. Acorrelationanalysis

    wasconductedontheseparameterstodeterminewhichoftheseweresimilarand

    whichweredifferent. Thepointofthisissothatunnecessaryparameterswerenot

    usedtodescribethesurface. Anexcessiveamountofunnecessaryparameterswill

    addasignificantamountoftimetotheanalysisphaseoftheprojectandsomeof

    the parameters will be obsolete. It is because of this that the large group of

    parameters was reduced significantly to only a group of seven. The seven

    parameters thatwere chosen todescribe the surfacesof the samplesare shown

    belowinTable4. Theseparameterswerethenusedinthisstudy.

    34

  • 8/6/2019 Wallace David

    47/105

    METHODOLOGY

    Table4:FinalisedSurfaceParameters

    Parameter Definition

    AverageRoughness

    (Ra)

    AverageRoughnessisthearithmeticmeanoftheabsolute

    valuesofthesurfacedeparturesfromthemeanplane.

    RootMeanSquare

    Roughness(Rq)

    RootMeanSquareRoughnessisthesquarerootofthe

    arithmeticmeansquaredoftheabsolutevaluesofthe

    surfacedeparturesfromthemeanplane.

    AverageWaviness

    (Wa)

    AverageWavinessisthearithmeticmeanoftherepeating

    irregularitieswithspacinggreaterthanthatofthe

    roughness.

    Skewnessofthe

    roughnessprofile(Rsk)

    wavinessprofile(Wsk)

    Skewnessisthemeasureoftheamountofmaterialabove

    andbelowthemeanline.

    Textureaspectratio

    (Str)

    TheTextureaspectratiodefinestheAnisotropyor

    Isotropyofthesurface.

    Fractaldimension(D) FractalDimensionmeasuresthecomplexityoftheshape.

    OncetheLSCMimageswereproducedandtheparametersofeachofthesurfaces

    werecalculated,acorrelationanalysiswasundertakentodeterminewhichofthe

    parameter/scouldbeassociatedwiththeantifoulingnatureoftheshellfish. With

    the rangeofshells,ahypothesiscanbemadeasto thechange in theantifouling

    characteristicsof the surface resulting froman increasingordecreasingdifferent

    thevaluesoftheparameters. AsHudlestonsparameterswereusedagain inthis

    study,theresultsfromthisstudywerethencomparedtotheresultsthatHudleston

    (2004)obtainedforconfirmation.

    2.1.4. Verification of the Matlab and Optimas software

    It is important in all experiments that the results that are obtained using one

    methodcanbe replicatedusingadifferentmethod toensure that themethod is

    accurate. Toensure that thedatacollected in thiscase isaccurateamethod for

    dataverificationisneeded. ToverifythedatainthiscaseaStylusProfileristobe

    35

  • 8/6/2019 Wallace David

    48/105

    METHODOLOGY

    usedand thiswillprovideadirectRameasurementof the surface. It isvirtually

    impossibletousethispieceofequipmentonalloftheshellstoobtainroughness

    measurementfornumerousreasons. Thesurfaceofashellisnotflatandinsome

    cases, the roughness profile that is trying to be measured is applied to a wavy

    surface. ThiswouldmeanthattheStyluswouldhavetotraveldowntroughsand/or

    over ridges to take a measurement. This would no doubt interfere with the

    measurementoftheroughnessofthesurface.

    Toremedythisproblemapieceofsheetstainlesssteelofdimensions100x75mm

    wasusedwithdifferentsurfacefinishesoneachsidetodothistest. Ononesideof

    the sheet the surface was be buffed using a cloth buffing wheel and buffing

    compound before being further polished by hand using a piece of cloth and a

    polishing agent. The other side of the sheet was rubbed on a piece of 150grit

    sandpaperinacircularpatternuntilthesurfacehasauniformtexture.

    Thesameprocesswasusedtocapturethesurfacesofthestainlesssteelsheetas

    those used to capture the surface of the shells. Three random positions were

    chosen from each side of the sheet to obtain an average later on. The Stylus

    profiler was then used on four random points on the surface to determine the

    roughness. Once the data from the two tests is compiled then the Matlab and

    Optimascodecanbeconfirmedaccurateornot.

    2.2 Generation of stainless steel surfaces with anti-fouling

    function

    Thefocusofthisprojectistoengineerasurfacefinishthatcanbeusedinindustry

    tohelpmitigateifnoteliminatebiofouling. Stainlesssteelisusedalmostexclusively

    inindustryinareasassociatedwithhightemperaturesandcorrosivefluids. Itisfor

    this reason that this project focuses on applying an antifouling surface finish to

    stainless steel surfaceswherepossible tohelp reduce theeffect that fouling can

    haveonasystem. Onesuchsystemthatcanbeheavilyinfluencedbyfoulingisheat

    exchangersandtheirassociatedplumbing. Byproducingasurfacefinishthatcanbe

    36

  • 8/6/2019 Wallace David

    49/105

    METHODOLOGY

    appliedtotheplatesinaplateheatexchangerforexample,itcanbeforeseenthat

    savingsonrunningandmaintenancewillnodoubtfollow. Astherearenumerous

    waysinwhichthesurfaceparameterscanbeapplieditisimportanttonotethatthe

    facilitiesatJamesCookUniversity(JCU)didnotpermitthis.

    2.2.1. Surface finishing technique

    Several surface finishes can be applied to the surface of the stainless steel, but

    thereareonlyalimitednumberofmachinesinJCUworkshop. Theeasiestwayto

    getavarietyofsurfacefinishesistoapplythesurfacewithdifferentgradesofwet

    anddrysandpaper. Idealisticallythespecimenswouldhaveallbeelectropolished

    initiallytogiveallofthetestspecimensauniformsurfacefinishtostartwith. The

    method that is finally used to apply the surface finish to the stainless steel was

    dependentontheparametersthataredefinedafterthefirstpartoftheanalysisof

    thesurfacewascompleted. Medilanski(2002)usedthismethodofsandingtoapply

    surfacefinishestothestainlesssteelsamplesthatwereused.

    Surface grinding was another method that could have been used to apply the

    surface finish to the samples. The samples would have been passed under the

    surface grinder and a linear pattern will be left on the surface that will

    hypotheticallyreplicatethesurfacefinishoftheshellfishspecieswiththegreatest

    antifoulingproperties. Severalsamplescouldbecreatedwith thesurfacegrinder

    byvaryingthenumberoftimesthewheelispassedoverthesamepointaswellas

    thepressurethatisappliedtothesurfaceofthesampleandthedifferentgradesof

    wheelthatareused. Inbothcases,thestainlesssteelwouldhavetobeleftinopen

    airforaperiodtoallowtheoxidelayeronthestainlesssteeltoregenerate.

    Byhavingmorethanonepreparationmethod,awidevarietyofsurfacescouldbe

    formedand tested togive thebest chanceofcreatinga surfacewith thecorrect

    parameters.

    37

  • 8/6/2019 Wallace David

    50/105

    METHODOLOGY

    2.2.2. Stainless steel surfaces vs. shell fish surfaces using

    numerical parameters

    Afterthegeneratedsurfaceswereleftforawhiletoreaccumulatetheoxidelayer

    onthem,thetestpieceswereplacedundertheLSCMforanalysis. Inthesameway,

    that the surface of the shellfish were analysed the surface of the stainless steel

    samplewerescannedinthreerandomlocationsacrossitssurface. Theresultsfrom

    these scans were scrutinised using the same methods as the shellfish surfaces.

    After the resultsof the shellfishand the stainless steel samplesare compared, it

    wasdeterminedoftheappliedsurfacefinishwouldbethesameorsimilartothatof

    theshellfish.

    Iftheproducedsurfacesdonotmatchupwiththeparametersthatareneededthen

    a second iterationof samplewillbemade. The surface finish thatgave thebest

    outcomefromthefirstsetofstainlesssteelsampleswasdecided. Thisdecisionwas

    madeusing theparametersand the likenessof thestainlesssteelsamplesurface

    andthatoftheshellfishsurface. Themethodthatwasusedtocreatetheclosest

    matchtotheshellsurfacewasthenmodifiedsothatthenextiterationofsamples

    wasaclosermatchtothatofthesurfaceoftheshellfish.

    In thecasewhere there isnosimilaritybetween thesurface finishapplied to the

    stainless steel samples and the shell fish sample then the method used in the

    generationofthesurfacesneedstobefurtherresearched.

    2.3 Testing and evaluation of surface finishes

    Itisimportantthatthesurfacesthataregeneratedbetestedsothatthevalidityof

    the project can be confirmed. Many proposed methods are used to put the

    required surfaces under significant fouling pressure on the test samples. The

    methodsareoutlinedinthebelowsectionsandarejustifiedaccordingly.

    38

  • 8/6/2019 Wallace David

    51/105

  • 8/6/2019 Wallace David

    52/105

    METHODOLOGY

    40

    2.3.2. Testing procedures

    Thetestingoftheantifoulingsurfacewasconductedusingtheapparatusthatwas

    builtbyPeterFriedrich. Theplatewasmountedintheheatexchangerandthenthe

    systemwillrunforapproximately72hourstoallowsufficienttimeforthefoulingto

    accumulateonthesurface.

    Thesurfaceparametersthathavebeentakenfromthesurfaceoftheshellfishare

    primarilyknownfortheiroutstandingantibiofoulingabilities. Theperformanceof

    theshellfishsurfaceinaparticulatefoulingcaseisnotknownandtheresultstaken

    during this experiment will help to determine whether the shellfish surface

    parameterscanbeappliedtomorethanoneapplicationoffouling. Thesetestswill

    be conducted in collaboration with the builder of the testing apparatus Peter

    Friedrichinordertooptimisethetestingapparatusforthebestoutcome.

    2.3.3. Performance evaluation

    Toevaluate theperformanceof the surface thereare severalmethods thatwere

    used. Whilethetestingapparatusisbeingused,thefluidthatisbeingrunthrough

    thehotsideofthemachinewaskeptataconstanttemperature. Thefluidinboth

    sidesoftheapparatuswaspumpedataconstantflowrateandthustheheatthatis

    lostacrosstheheattransfershouldgointoequilibriumafteraperiodifthereisno

    formationoffouling.

    The rateatwhich fouling is accumulatingon the surfacewasdeterminedby the

    placementoftwothermocouplesinthetestapparatus. Onethermocouplewillbe

    used tomeasure the temperatureof thehot fluidand theother tomeasure the

    temperatureofthefluidonthecoldsideoftheexchanger. Asthefoulingincreases

    ontheheattransfersurfacethethermalresistanceoftheplatewillalso increase.

    This differential in temperature was plotted using a computer attached to the

    apparatus todetermineatwhat rate fouling isaccumulatingon thesurface. The

    heat transfer surface was also inspected at the end of the testing period to

    determinehowmuchfoulinghasaccumulatedonthesurface. Thefoulingcoverage

    wasanalysedforbothofthedifferenttypesoffoulingtodeterminewhichsurfaces

    suitwhichtypeoffouling.

  • 8/6/2019 Wallace David

    53/105

    RESULTSANDDISCUSSION

    Chapter 3: Results and Discussion

    Theoverallobjectiveof thisanalysiswas todetermine if there isa single surface

    parameteroracomplexcombinationofsurfaceparametersthatcandescribethe

    surfacemorphologyofanantifouling surface. Threedifferent speciesof shellfish

    have been analysed to create a database of information that can be used to

    determine thenumericalparameters foranantifouling surfacemorphology. The

    threespeciesofshellthatwerechosenforthisanalysiswerepickedfortheirfouling

    resistance in their natural environment. Of the three species, selected Tellinaplicata and Mytilus galloprovincialis are known to have a high level of foulingresistance in their natural environment where as the

    Amusium

    balloti species is

    knowntohavealowfoulingresistance.

    Thedata foreachofthesurfaceswasacquiredusingaLCSM. Thedata fromthe

    LCSM was then analysed using Matlab and Optimas software and from this, the

    numericalparametersaregiven. Oncetheparametersforeachofthesurfacesare

    known, a correlation analysis was done to determine the combination of

    parametersthatcanbeusedtoforanantifoulingsurfacemorphology.

    Themanysectionsthatarereportedinthissectionareasfollows. Thefirstbeing

    the data that was retrieved from the shellfish samples using the Matlab and

    Optimassoftware. Thesecondwasthevalidationdatathatwasobtainedusingthe

    stylus profiler and the third was the data collected from the stainless steel

    specimen. Thevalidationdatawas important inthisanalysisasthedatathatwas

    collectedusingtheLCSMandthesoftwarepackagesneededtobevalidatedagainst

    the physical data of the stylus profiler. The stainless steel samples were also

    analysed to determine if they in fact had similar morphology as that of the

    antifoulingshellfish.

    3.1 Image Acquisition and processing

    To determine the antifouling properties of the surfaces, computerised image

    capturingandanalysis softwarewasused. Todo this the imageswere captured

    41

  • 8/6/2019 Wallace David

    54/105

    CONCLUSIONANDFUTUREWORK

    using the Laser Scanning Confocal Microscope along with the Lasersharp 2000

    imagingsoftwareaccordingtotheprocessoutlinedabove.

    3.1.1. LCSM and Lasersharp 2000 settings

    Inorder to captureaccurate imagesusing theLCSM therewere severalvariables

    thatcouldbechanged. Belowarealistofvariablesthatwereusedtosetupforthe

    images that were taken in this analysis, as well as the reasoning and any

    repercussionsofthatchange.

    Optical Lens A 100x lens was used for the Tellinaplicata and Mytilusgalloprovincialisspecieswhilea50x lenswasusedfortheAmusiumballotispeciesasaclearimagecouldnotbecapturedwiththe100xlens. The100x

    lensresultsina122.88 msquareimageandthe50xlensresultsina256.78

    msquareimageatazoom=1.

    Laser Intensity This was adjusted for all images, as some surfacesweremorereflectivethanotherswereandthusrequiredthelaserintensitytobe

    lowered. ThiswasalladjustedusingtheSETCOLfunctionintheLasersharp

    2000software.

    ImageSizeA512x512imagingareawaschosenforalloftheimagesasitgivesanimagewithalotofdetailwithoutusingexcessivememory.

    StepSizeA0.05 mstepsizewasusedfortheTellinaplicataandMytilusgalloprovincialis species while a 0.2 step size was used for theAmusiumballoti as the shell had excessive curvature and a 0.05m resulted in animagethatwouldhavemorethan225images,whichisnotachievablewith

    thishardware.

    ScanningSpeedForallofthe imagesthescanningspeedwassetto166loopsper second (lps)as thisgaveahighresolution image. The scanning

    speed was raised to 500 lps during the setup period to make the setup

    processquicker.

    3.1.2. 3D Image Processing in Matlab

    TheimagescapturedabovewerethenfurtherprocessedusingMatlabsoftwareto

    construct3DimagesthatcouldbeanalysedusingtheOptimasSoftware. Boththe

    42

  • 8/6/2019 Wallace David

    55/105

  • 8/6/2019 Wallace David

    56/105

    CONCLUSIONANDFUTUREWORK

    Tellinaplicata

    (a) (b)

    Figure21:(a)MBIand(b)HEIforTellinaplicata.

    Figure22:AnalysisresultsfromtheTellinaplicatasampleseparatedintoform,wavinessand

    roughnessprofiles.

    44

  • 8/6/2019 Wallace David

    57/105

    CONCLUSIONANDFUTUREWORK

    Figure21showstheMBIandHEIfortheTellinaplicataSpeciesofshellfish. TheMBIistheimagethatisconstructedbyMatlabtoshowwhatthesurfacewouldlooklike.

    It isscaledsothatthedarkestpartsofthe imagedenotethedeepestholeswhile

    the lightestpartsof the imagedenote the ridgesof the surface. TheHEI isa2

    dimensionalprojectionof thedepthof thebrightestpixelswithinavolumealong

    oneof the threemajoraxes. MatlabandOptimasuse theHEI todetermine the

    numericalparametersofthesurface.

    Figure22 isaMatlaboutputand shows that the surfaceof theTellinaplicata isrelativelysmooth. Theformprofileshowstwothings,onebeingthatthesectionof

    shellthatwasscannedhasminimalcurveand theotherbeingthat thesectionof

    theshellthatwasscannedisnotparalleltothelens. Asaresult,arelativelysmooth

    surfacetooka longtimetoscanasthemicroscopeneededtotakemanyslicesto

    captureallofthesurfa