W3 L1 Slides

download W3 L1 Slides

of 13

Transcript of W3 L1 Slides

  • 7/28/2019 W3 L1 Slides

    1/13

    AC Signals

    Week 3 - Lecture 1 Mark Bocko

    Topics:Brief mathematical review

    Afewsimplederiva/ves SimpleharmonicoscillatorNaturalbasee

    Complexnumbers Eulersformula

    Phasors1

  • 7/28/2019 W3 L1 Slides

    2/13

    Limits and Derivatives

    2

    x

    f(x)

    x0+x

    f(x0+x)

    x0

    f(x0)

    Slope = f(x0+x) - f(x0)x0+x x0

    f(x0+x) - f(x0)x

    =

    Make x 0

    limx0

    f(x0+ x) f(x

    0)

    x

    d

    dxf(x)

    x0

    f'(x0)

    tangent

  • 7/28/2019 W3 L1 Slides

    3/13

    tangent x0 x

    f(x)

    x0+x

    f(x0+x)

    f(x0)

    x0+x

    f(x0+x)

    f(x0)

  • 7/28/2019 W3 L1 Slides

    4/13

    A few simple derivatives we will need

    4

    d

    dx x= 1

    d

    dx

    ax = a

    d

    dxx

    n= nx

    n1

    d

    dxf(x) g(x)

    = f(x) g'(x) + f '(x) g(x)

    d

    dxf(g(x))

    = f '(g(x)) g'(x)

    d

    dxsin(x) = cos(x)

    d

    dxcos(x) = sin(x)

    Product rule:

    d

    dx e

    x=

    e

    x

    Chain rule:

    d

    dxx sin(x)

    = x cos(x) + 1 sin(x)

    d

    dxsin(x2 )

    = cos(x

    2 ) 2xd

    dxe

    ax= ae

    ax

    d

    dxConst = 0

  • 7/28/2019 W3 L1 Slides

    5/13

    Whats so special about e?

    5

    d

    dxe

    x= e

    x The only exponential function (ax) where the slope ofthe function equals the value of the function at everypoint.

    Exploding rabbit population: Lets say that there is a colony ofrabbits and that each pair of rabbits has 2 offspring per year.

    How does the population grow over time? (Assume that we start withjust two rabbits and that rabbits are immortal and never perish theyjust keep making more rabbits.)

    Let y(t) = number of rabbits at time t, and y(t=0) = 2, (initial condition)

    d

    dt

    y = 1 ythen (1 because it takes 2 rabbits to produce 2 more rabbits)

    y(t) = Aetsolution is

    e=2.71828182845904523536028747135266249775724709369995

    and since y(t=0) = 2 A = 2

    y(t) = 2et 010,000

    20,000

    30,000

    40,000

    50,000

    0 5 10

    years

    rabbits

  • 7/28/2019 W3 L1 Slides

    6/13

    sin(t)

    d

    dtsin(t) = cos(t)

    cos(t)

    d

    dtcos(t) =

    sin(t)

    - sin(t)

    d

    dt sin(t)( ) = cos(t)

    - cos(t)d

    dt cos(t)( ) = sin(t)

    Derivatives of sin, cos

  • 7/28/2019 W3 L1 Slides

    7/13

    vmax

    -vmax

    t

    xmax

    -xmax

    t

    Simple Harmonic Oscillator

    7

    F

    mk

    A

    x = xmax v = 0

    B

    C

    x = -xmax v = 0D

    E

    x(t) = xmaxsin(t)B

    D

    v(t) = vmaxcos(t)A

    B

    C

    D

    E

    CA E

    x = 0 v = vmax

    x = 0 v = - vmax

    x = 0 v = vmax

  • 7/28/2019 W3 L1 Slides

    8/13

    8

    mk

    Simple Harmonic Oscillator

    d

    dtx = v

    d

    dtv = a

    d

    dt

    dx

    dt

    d2x

    dt2= a

    , velocity

    , accelerationF = ma

    Newtons 2nd Law

    F = -kx

    Hookes Law

    m

    d2x

    dt2=

    kx

    x

    d2x

    dt2=

    k

    mx

    d2x

    dt2=

    2x

    2

    k

    mlet , so

    Can we find a function that satisfies this differential equation?

    x = x0sin t( )

    d

    dtx = x

    0 cos t( )

    d2

    dt2x = x

    0

    2sin t( )

    x(t) = x0sin t( )

    k

    mwhereso

    It works!

  • 7/28/2019 W3 L1 Slides

    9/13

    Complex Numbers

    9

    The need for imaginary numbers

    x2 4 = 0 x2 = 4 , so x = +2 and x = -2 are solutions

    How about: x2 + 4 = 0

    x2 = -4 = (-1) (4) so x = -1 4 x = 2 -1

    j = -1

    j1 = j j2 = -1 j3 = -j j4 = 1 j5 = j

    Complex Number: z = x + j y

    realpart

    imaginarypart

    Re(z) = x

    Im(z) = y

    x = 2j

  • 7/28/2019 W3 L1 Slides

    10/13

    10

    Complex Number Arithmetic

    Addition: (a + jb) + (c + jd) = (a+c) + j(b+d)

    Multiplication: (a + jb) x (c + jd) = (ac-bd) + j(bc+ad)

    Complex Conjugate: (a + jb) (a jb)

    cc z = a + jb z* = a jb

    |z|2 = z x z* = a2 + b2

    Graphing Complex Numbers:

    r

    a

    b

    real

    imagz = (a + jb)

    b

    a

    r2= a

    2+ b

    2, r = a

    2+ b

    2

    tan =b

    a

    , = tan1 b

    a

    sin =b

    r, b = r sin

    cos=

    a

    r, a

    =

    rcos

    r = |z|

  • 7/28/2019 W3 L1 Slides

    11/13

    11

    Complex Exponential Function

    sinx = x

    x

    3

    3!+ x

    5

    5!

    x

    7

    7!+ ...

    cosx = 1 x

    2

    2 !+

    x4

    4!

    x6

    6!+ ...

    ex

    = 1 +x

    1 !

    +x

    2

    2 !

    +x

    3

    3!

    +x

    4

    4!

    +x

    5

    5!

    + ...

    ej

    = 1 +j

    1 !+

    (j)2

    2 !+

    (j)3

    3!+

    (j)4

    4!+

    (j)5

    5!+ ...

    ej

    = 1 2

    2 !+

    4

    4! ...

    + j

    1 !

    3

    3!+

    5

    5! ...

    ej

    = cos + jsin Eulers Formula

    n! = n(n-1)(n-2)1

    Taylor Series ExpansionshMps:en.wikipedia.orgwikiTaylor_series

    ej

    Consider

  • 7/28/2019 W3 L1 Slides

    12/13

    A remarkable equation!

    ej = cos + jsin

    rej

    = rcos + jr sin

    ej

    + 1 = 0or equivalently

    real

    imag

    b

    a

    r

    rcos

    rsin

    ej0

    = cos 0 + jsin 0 = 1

    ej

    2= cos

    2+ jsin

    2= j

    ej3

    2= cos

    3

    2+ jsin

    3

    2= j

    ej

    = cos + jsin =1

    ej2

    = cos2 + jsin2 = 1

    real

    imag

    ej0

    ej/2

    ej

    ej3/2ej21

    j

    -1 0

  • 7/28/2019 W3 L1 Slides

    13/13

    Complex Arithmetic revisited

    13

    Simplifications using complex exponential notation:

    r1e

    j1 r

    2e

    j2= r

    1r2e

    j 1+

    2( )Multiplication:

    r1e

    j1

    r2e

    j2

    =

    r1

    r2

    ej

    1

    2( )Division:

    rej

    2

    = r2

    Magnitude:

    ej

    + ej

    2= cos

    ej

    ej

    2= jsin

    rej

    = r

    UsefulIdentities

    ejt

    = cost + jsint

    Complex phasors and sinusoidal oscillations

    Circular motion in the complex plane