Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January...

13
MWI meeting ESO Santiago 2004 January 28 Calibration of interferometric data VINCI overview Vincent Coudé du Foresto LESIA – Observatoire de Paris Calibration of interferometric data VINCI overview Vincent Coudé du Foresto LESIA – Observatoire de Paris

Transcript of Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January...

Page 1: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

Calibration of interferometric dataVINCI overview

Vincent Coudé du ForestoLESIA – Observatoire de Paris

Calibration of interferometric dataVINCI overview

Vincent Coudé du ForestoLESIA – Observatoire de Paris

Page 2: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

Coherence andobject visibilityCoherence andobject visibility

µ2 = V2 . T2

Interferometer

T Transfer function

v

u

Coherence function

V Object visibility

V(u,v) = TF [S(η,ζ)]

Atmosphere

OPD

Intensity

Fringes µ Coherence factor

S Source

η

ζ

Remarks• µ, V, T complex valued ingeneral• µ expresses the correlationbetween the two fields• T point source response

Page 3: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

From coherence factorsto object visibilities

From coherence factorsto object visibilities

• Calibrator 1: µ2cal1 => T2

1 = µ2cal1 / V2

cal1

Total error on V2* thus includes:

- System errors on V2cal

- Transfer function errors on T2

- Statistical errors on µ2 (detector noise, shot noise, seeing noise)

Total error on V2* thus includes:

- System errors on V2cal

- Transfer function errors on T2

- Statistical errors on µ2 (detector noise, shot noise, seeing noise)

• Science target: µ2* => V2

* = µ2* / T2

• Calibrator 2: µ2cal2 => T2

2 = µ2cal2 / V2

cal2

=> σ(V2*)/V2

* = σ (µ2*)/µ2

* + σ(T2)/T2=> σ(V2*)/V2

* = σ (µ2*)/µ2

* + σ(T2)/T2

Page 4: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

A good calibrator is...A good calibrator is...

• Well modelled– Point source (O free parameter)– Uniform disk (1 free parameter)– Limb darkened disk (2 or more free parameters)

• Well known• Stable in time• Observable with the same setup (∆m, λeff …)• At a reasonable angular distance from the science target• With a sufficient correlated flux (V2. Nphot)

A source for which V2 can be predicted(at the baseline considered)

with good accuracy and little bias

Page 5: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

Example: uniform disk calibratorExample: uniform disk calibrator

• Pick up a single star, non variable• Derive diameter from surface brightness (via Teff and Fbol)• Convert LD diameter to UD diameter• Compute visibility from UD diameter (Airy function)

Expected accuracy on φUD (not V!) :• 5% in common cases• 1% for photometric standards(cf. Cohen & al., A&A 117)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3|V

12|

φDU

LB / λ

Page 6: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

Calibrators choice strategiesCalibrators choice strategies

• Selection of stars from a fixed set of rules onan « open » catalog (interferometricobservations preparation tools)

– PTI / GetCal(http://msc.caltech.edu/software/getCal/index.html)

– JMMC / ASPRO(http://mariotti.ujf-grenoble.fr/~aspro/)

• Catalog of interferometric calibrators– Photometry-derived diameter on chosen

sources (Bordé et al. 2003, A&A 393)– Catalog of interferometric measurements

(Richichi & Percheron 2002, A&A 386)

Good calibrators may be hard to find!

Page 7: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

Estimating the transfer functionEstimating the transfer function

The model used for describing the transferfunction depends on:

– Sampling intervals– Characteristic time evolution– Amplitude of fluctuations

T2

Time/date UT

Linear interpolation(FLUOR/IOTA, 2000-02-27)

Kervella et al., A&A submitted

Constant T2

(VLTI/VINCI, E0-G0, 2002-05-29)

Page 8: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

Transfer function and turbulenceTransfer function and turbulence

• Atmospheric term caused by wavefront corrugationat each pupil

• Solutions:• Clean up the wavefront with adaptive optics

• MACAO for UTs• Trade turbulent image for steady beam with

intensity fluctuations in single-modewaveguides

• Spatial filtering unit implemented in VINCI,AMBER, MIDI+

T2 = T2instrument . T2

atmosphere

Page 9: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

VINCI: conceptVINCI: concept

• Two inputs:– Beam A and Beam B

• Single-mode fibers for:– « cleaning » of turbulent beams– Polarization control– beam combination (X-coupler)

• Coaxial beam combination• Temporal OPD modulation

OPD = vscan . tWith 200 < vscan < 2000µm/s

• Four outputs:– I1, I2, PA and PB

• Piston not filtered

.

Turbulence

Telescope1

P2

P1

I1 I2Interferometric outputs

Photometric output(calibration)

Photometric output(calibration)

X3

X2X1Filtered beams

Pisto

n

Pisto

n

Telescope2

Corrugated wavefront

Page 10: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

VINCI: implementationVINCI: implementation

Page 11: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

Data sample (scan)Data sample (scan) Corrected data

Re{µAB} =(I - PA - PB) / 2(PAPB)0.5

I1

I2

I1 -I2

Kervella et al., A&A submittedI = PA + PB + 2(PAPB)0.5 Re{µAB}

µAB complex degree of coherencebetween the two beams

Raw data

Kervella et al., A&A submitted

Page 12: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

Data sample(joint space/wavenumber domain)

Data sample(joint space/wavenumber domain)

• Energy redistributed in space/wavenumberdomain by wavelet transform

• Coherence factor (µ2) proportional to volumeunder fringe peak

• µ2 measurement affected by– Detection noise– Piston noise (non-regular fringe motion)

Morlet wavelet

Weak piston Strong piston

Page 13: Vincent Coudé du Foresto LESIA– Observatoire de Paris · MWI meeting ESO Santiago 2004 January 28 Data sample (joint space/wavenumber domain) • Energy redistributed in space/wavenumber

MWI meeting ESO Santiago 2004 January 28

Performance on µ2 measurementsPerformance on µ2 measurements

• Statistical error depends oncorrelated flux

• Detector noise dominatingfor faint sources

• Atmospheric piston limitingfor strong sources

=> Good fringe tracking iscritical (FINITO, PRIMAFSU)

e(µ2)/µ2 normalized for 100 scans(survey of 296 observations)

VINCI with 35cm siderostats