VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.....

76
' :.. 3 1176 00167 3079 NASAContractorReport165741 VERIFICATIONOF REFLECTANCE MODELS IN TURBID WATERS FRED J. TANIS and DAVID R. LYZENGA ENVIRONMENTALRESEARCH INSTITUTEOF MICHIGAN Ann Arbor, Michigan48107 CONTRACT NASI-15512 APRIL1981 NASA-CR-165741 19810024036 SEI', J National Aeronautic and Space Administration Langley Research Center Hampton, Virginia 23665 brought to you by CORE View metadata, citation and similar papers at core.ac.uk provided by NASA Technical Reports Server

Transcript of VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.....

Page 1: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

' :..

3 1176 00167 3079

NASAContractorReport165741

VERIFICATIONOF REFLECTANCEMODELSIN TURBIDWATERS

FRED J. TANIS and DAVID R. LYZENGA

ENVIRONMENTALRESEARCHINSTITUTEOF MICHIGANAnn Arbor, Michigan48107

CONTRACT NASI-15512APRIL1981 NASA-CR-165741

19810024036

SEI', J

National Aeronautic andSpace Administration

Langley Research CenterHampton, Virginia 23665

https://ntrs.nasa.gov/search.jsp?R=19810024036 2020-03-21T11:23:33+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

Page 2: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga
Page 3: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

TABLEOF CONTENTS _

PREFACE ii

LISTOF FIGURES....................................................iii

LISTOF TABLES.....................................................v

PARTIALLISTOF SYMBOLS vieooomoooooooooooeooeoomomoomomoooomooooooooo

1.0 INTRODUCTION..................................................l1 1 BACKGROUND " l• ooooomoooomooooemoooo•oomoooooooom•oommoo•oo

1.2 OPTICALMEASUREMENTS..................................21.3 SUMMARYOF CONCLUSIONS................................5

2 0 DESCRIPTIONOF WATERRADIANCEMODELS 7• . .O•DOOO•S•Q•OlO•OOOO••O••OO

2 1 MODELCALCULATIONS 8• o•ooooooooooomooooooo•ooooo•oooooo••

2.2 SIMULATIONTECHNIQUES.................................12

3 0 RESULTSAND INTERPRETATION 27• oooomomoom••o•vooo•ooom•o•ooooo•oooo

3.1 COMPARISONOF.MODELCALCULATIONS......................313.2 USE OF WATEROPTICALDATATO EXTRACTCONSTITUENT

CONCENTRATIONS.......................................38

434 0 CONCLUSIONSAND RECOMMENDATIONS• • ooooomoomoooooooo•ooooooo•mo•oo

APPENDIXA: WATEROPTICALMEASUREMENTS............................A-I

APPENDIXB: SUPPLEMENTALMONTECARLORESULTS......................B-l

.,:......

._ .: • _ ,. • •...

i

AJ%1

Page 4: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

PREFACE

This final reportas issuedby the ApplicationsDivisionof the

EnvironmentalResearchInstituteof Michigan(ERIM)underNationalAero-

nauticsand Space Administration(NASA)contractNAS1-15512for the

LangleyResearchCenter(LaRC)coversthe contractperiodfromSeptember

1, 1978throughApril 15, 1981. The technicalrepresentativefor the

contractofficerwas LamontR. Poole,Marine EnvironmentsBranchof

LaRCwithDr. CharlesWhitlockas alternate.The principalinvestigator

was Fabian C. Polcyn,with importantcontributionsto the technical

programmade by FredJ. Tanisand DavidR. Lyzenga. This researchwas

conductedby theApplicationsDivisionunderthe directionof Mr. DonaldS. Lowe.

This contractinvolvesdevelopingtechniquesto recognizevarious

waterpollutantsfrom remotelysenseddata. The•approachrequiredcol-

lectionof aircraftmultispectralscannerdatatogetherwith dataon the

opticalpropertiesof selectedpollutants.

Two jointLaRC/ERIMfieldexperimentswere conductedon the James

River near Hopewell,Virginia. The first experimentwas conducted

betweenNovember9-13,1978whilethe secondtest took placeduringthe

periodfromMay 5, 1979to June6, 1979. Reportingof experimentaldata

from these activitiesare includedin LaRC technicalreportsunder

TechnicalDirectives1-129-29and 1-129-32,as well as ERIM Technical

MonthlyReports137000-11-Lthrough18-L.

Five additionalexperimentswere conductedby LaRC. The optical

datafromthreeof theseexperimentsare reportedin a LaRC publication

[1]' It is the analysisof thesefivedata setswhichare the primary

subjectof thisfinalreport.

ii

Page 5: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

LIST OF FIGURES

Figure Title

l Comparisonof hemisphericalreflectanceas predictedby Monte Carlo (+) with exact solutions(*) as a

functionof mo for linear and isotropicscattering 18

2 Comparisonradiancereflectanceas predictedby MonteCarlo (+) with exact solutions(*) as a functionof

mo for linear and isotropicscattering 19

3 Comparisonradiancereflectanceas predictedfromMonte Carlo results (+) with exact soluations(*) as

a functionof view angle for isotropicscattering(p[O)=_o 20

4 Comparisonof radiancereflectanceas predicted fromMonte Carlo simulation(+) with exact solutions(*) as afunctionof view angle for linear scattering

(PTe) :(l-Fcose)mo 21

5 Crude Monte Carlo predicted isotropic hemispherical(upper curve) and bidirectional (lower curve)reflectancesas a functionof number of photons. 22

6 Crude Monte Carlo predictedhemispherical(uppercurve)andbidirectional (lowercurve) reflectancesas afunctionof number of photons. 23

7 Comparisonof observedand model predictedupwellingradiancefor Sample B 28

8 Comparisonof observedand model predictedupwellingradiancefor samplesAl and A2 29

9 Comparisonof observedand model predictedupwellingradiancefor samplesGl and G2 30

lO Measuredversus Monte Carlo predictedreflectance 32

II Measuredversus GPSModel predictedreflectance 33

12 GPS versus Monte Carlo model predictedreflectance 34

13 Comparisonof Gordon's Power Series approximation(GPS)with Monte Carlo (MC)calculatedradianceversussolar zenith angle for sampleB 37

iii

Page 6: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

LISTOF FIGURES(Continued)

Title Page .

14 GPS Model (+) and Monte Carlo (*) predictedbelowsurface:hemisphericalreflectancesversus theparameterBb(a+Bb)-l.-. 39

A.l Volume scatteringfunctionB(e) versus scatteringanglee for sampleAl. A-6

A-2 Volume scatteringfunctionB(e) versus scatteringanglee for sampleA2. A-7

A-3 Volume scatteringfunctionB(e) angle e for sample B. A-8

A-4 Volume scatteringfunctionB(B) versus scatteringanglefor sample Gl. A-9

A-5 Volume scatteringfunctionB(B) versus scatteringangle8 for sample G2. A-lO

B-l Comparisonof.Gordon'sPower seriesApproximation(GPS)with Monte Carlo (MC) Resultsversus solar zenith anglefor sampleAl. B-2

B-2 Comparisonof Gordon's Power Series Approximation(GPS)with Monte Carlo results (MC) versus solar zenith anglefor sampleGl. ._ ...... B-3

B-3 Comparisonof Gordon'sPower SeriesApproximation(GPS)with Monte Carlo Results (MC) versus solar zenithangle .:for sample G2. B-4

B-4 GPS Model (+) and Monte Carlo (*) predictedabove surfacehemisphericalreflectanceversus Bb(a+Bb)-l. B-5

B-5 GPS Model (+) and Monte Carlo (*) predictedabove surfacehemisphericalreflectanceversus Bb(a+Bb)-l. B-6

B-6 GPS Model (+) and Monte Carlo (*) predictedbelow surfacehemisphericalreflectanceversus Bb(a+Bb)-l. B-7

iv

Page 7: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

LISTOF TABLES

• Table Title Page

l Testsiteconditions 4

2 Expressionsforupwellingradiancecomponents II

3 Comparisonof hemispherical(RH) and bidirectionalR(35°) reflectanceswithand wlthouthigherorderestimationfor variousmaximumnumberof interactions 25

A-l Measuredopticalproperties A-2

A.2 Fieldradiancemeasurements A-3

A-3 Volumescatteringfunctionvalues A-4

Page 8: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

PARTIALLISTOF SYMBOLS

Symbol Definition

a absorption coefficientb

b scattering coefficient

B backscatter fraction

c extinction coefficient

n index of refraction of water

B(O) volume scatteringfunction

O scattering angle, view angle

0o solar zenithangleazimuthangle

mo single-scattering albedocosine of view angle

_o cosine of solar zenithangle

_c cosine of criticalangle

R(O,_,O',_') bi-directional reflectance function

R(_, _o) azimuthally averaged bi-directional reflectancefunction

RH hemispherical reflectance

Lw total upwelling radiance below surface

L_ total upwelling radiance above surface

LD upwelling radiance due to scattering of direct sunlight

Ls upwelling radiance due to scattering of skylight

LI upwelling radiance due to scattering of internallyreflected light

L downwelling radiance below surface

ED direct solar irradiance below surface

ES diffuse (sky) irradiancebelow surface .p(_) scatteringphase function

H(u) Chandrasekhar'sH-function

vi

Page 9: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

1.0• . , ..

INTRODUCTION

1.1 BACKGROUND

The primarysourceof sedimentto the aquaticenvironmentis fresh-

water runofffrom non-pointsourcessuch as agriculturalland,urban

areas,and otherlanduses. Pointdischargesfrommunicipaland indus-

trial sources can also providesignificantinputsof particulates.

Interactionsbetweensedimentand chemicalpollutantsare complexbut

provide in generala significanttransportmechanismfor nutrients,

tracemetalsand•organiccontaminants.Becauseparticulatesin water

can stronglyaffectthe quality•of the aquaticenvironmentthe ability

to monitorand predictsource,transport,and fatehas upmostimportance

to impact•assessmentand water qualitymanagement. Many estuarine

processesand plumedynamicscan be studiedby tracingthe distribution

of suspendedmatter. Suchstudiesrequire•spatialand temporalresolu-

tionsnot•obtainablewith standardoceanographicsamplingmethods.

In order to fully exploitthe remotesensingcapabilitiesfor

obtainingmeasurementsof water parametersin estuarine and coastal

waterswe must understandthe quantitativerelationships.betweenthe

observedoptical propertiesand the inherentpropertieswhich are

determinedby concentrationsof the variousconstituents.

The directmeasurementeitherby in situor in vitrotechniquesof

the inherentopticalpropertiesis recognizedasa difficulttask re-

quiringverysophisticatedinstrumentation[2,3]. The primaryincentive•

in collectingthesedata is to utilizethem in existingwateroptical

modelsin orderto predictthe behaviorof light in a watermediumof

suspendedparticles. Understandingthe radiativetransferprocessin

turbidwater will allow remotesensingsystemsto monitorimportant

featuresin the coatal and inlandwaters. A number of reflectance

modelshave been reportedin the ocean opticsliterature,most notably

' l

.. :... ,• . ....+, . ,.

Page 10: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

those of Gordon[4,5],Jain and Miller[6], and Plass,Humphreysand

Kattawar[7]. Each of thesemodelsis basedupon a simplificationto

the radiativetransferequationor its solution. To date thesemodels

have been almostexclusivelyappliedto data from clearocean waters.

Moreover,most of these studieshave lackeda completedata set with

whichto verifymodelpredictions.The presentstudymay be uniquein

two respects;(1) the measurementdata are from highlyturbidwaters,

and (2) measurementshave been systematicallymade to describethe

inherentoptical propertiestogetherwith upwellingand downwelling

radiation. The initialpurposeof this work is to verifyexisting

modelsunderturbidconditionsand developnew modelsspecificallyfor

turbidwaterenvironments.The extendedobjectiveis to developtech-

niqueswhichcan extractpollutionrelatedinformationfromthe observed

colorof the coastaland estuarinewaters.

Inherentopticalpropertiesof a watermediumwhichare neededto

describethe radiativetransferprocessincludeabsorptionas measured

by the absorptioncoefficient,a, the volumescatteringfunctionB(O)

and the beam attenuation,c. These parametersare interrelated

accordingto:

i c = a + b where b = 21T (0) slnO dO ' (I)

Thus,a and b are the fractionalpartitionsof the totallossesfrom

beamof parallelmonochromaticlightdueto absorptionand scattering.

An in vitrocapabilityto measurec, a, andB (0) in turbidwaters

has been developedat the NASA/LangleyResearchCenter. These instru-

mentspermitthe collectionof a completeset of the inherentoptical

propertiesfor highlyturbidwaters.

1.2 OPTICALMEASUREMENTS :.

During1979a seriesof fiveindividualmeasurementsetswere gath-

ered by LaRC. Test sitesincludedtwo locationsin theAppomatoxRiver

2• : ...

Page 11: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

(A1 and A2) near Hopewell,Virginia,the Back River waters (B) at

• Hampton,Virginia,the Satillaand OgeecheeRivers(G1 and G2) in the

Georgiacoastalarea. At eachof thesetest sitesthe measurementswere

made of underwateropticalparameters,sea surfacespectralradiance,

andwaterchemicaland-particulatecomposition.The Virginiatestswere

all frommoderatelyturbidwaterswithsuspendedsolidconcentrationsof

14.4mg/_,18.6mg/_,and 22.8 mg/_ respectivelyfor sitesA1, A2, and

B. The watersof the Satillaand Ogeecheeare,on the otherhand,less

turbidat 10.0 and 7.0 mg/_,totalsuspendedsolidsbut with a large

dissolvedorganiccarboncomponentgivingthesewatersa reddishcolor.

Specifictest site conditionsfor all sitesare containedin Table1.

Underwateropticalpropertiesas measuredin vitroare shownin TableA1

and A2 of AppendixA and in Reference[1]. Thesedata includethe beam

attenuationcoefficient,the absorptioncoefficient,and the volume

scatteringfunctionB (0) at 50 nm intervalsover the wavelengthrange

450-800nm. Threeseparateinstrumentswere usedto measurethesepara-

meters,(1) a combinationbeam attenuationand smallangle scattering

meter (SASM,g = 0.374,0.751,1.49°) developedby LaRC and patterned

afterthe ScrippsInstituteof OceanographyALSCAT instrument;(2) a

BricePhoenix(BP)scatteringmetermodifiedto accommodatelargeangle

measurements(25° _ g _ 155°);and (3) the Langleyspectralabsorption

coefficientinstrument(SPACI)[8]. All three instrumentsemployed

opticalinterferencefilterswith identicalspectralrange(400-800nm)

and resolution(10 nm). Standarderrors for these instrumentsare

reportedto be as follows: (1) for the SASM less than 5% a and less

than 12% _9); (2) for the modifiedBP lessthan 20% 8(9);and (3) for

the SPACIlessthan10% a.

Surfacemeasurementsof upwelling,downwelling,and verticalsky

radiancespectrawere made by LaRCconcurrentwith watersamplingusing

a TektronixJ20/7J20rapidscan spectrometer(o < 5% L). The total• -_'i"i _.

downwellingin radiancewas obtainedbylviewinga horizontalLambertian

99% reflectorcoatedwith Eastman6080whitereflectancepaint. The ap-

parent upwellingradiance measuredover water includesthe inherent

• 3

Page 12: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

TABLE1

TESTSITECONDITIONS

Sample A1 A2 B G1 G2 "

Date 5/23/79 6/5/79 8/29/79 11/4/79 11/4/79

SolarZenithAngle 18° 53° 35° 33° 41°

Sky Conditions Broken Clear Clear Clear Clear

Chlorophyll_ (_g/_) 15 10 13 2.1 3.9

VolatileSuspendedSolids(mg/_) 4.3 3,9 8.9 1.4 1.0

InorganicSuspendedSolids(mg/_) 10.1 14.7 13.9

TotalSuspendedSolids(mg/_) 14.4 18.6 22.8 10 7

DissolvedOrganicCarbon•(mg/_) <10 <10 <10 12.5 19.3

ParticleSizeRange(_) 0.45-26 0.45-42 0.45-52

SecchiDiskDepth 0.8 0.5 1.4 1.0 0.6

"1

4

Page 13: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

• radiancereflectedfrom below the surfaceplus the surfacespecular

reflectionof diffuseskylight.The specularcomponentwas estimatedby

multiplyingthe verticalsky radianceby the Fresnelreflectioncoeffi-

cient(approximately0.02). The inherentcomponentwas computedby sub-

tracting the specularcomponentfrom the total verticalupwelling

radiancemeasurement. Estimatedvaluesof directirradiance,diffuse

irradianceand the inherentupwellingradianceLw are givenfor eachofthe five measurementsitesin Table A2. These calculationsare dis-

cussedand comparedwithmodelresultsin section3.0.

1.3 SUMMARYOF CONCLUSIONS

The presentworkwas designedas an initialstepto applywaterre-

flectancemodelingtheoryto a turbidwaterenvironment.Verification

of waterradiancemodelsis a criticalstepandmustbe completedbefore

one can developquantitativealgorithmsto studycoastalprocesses.To

datevery few verificationstudieshave been initiated.The fact that

the presentstudyfoundpartialagreementbetweenmodelresultsand mea-

surementdata warrantsfurtherinvestigationof model limitationsand

definitionof systematicerrors. Measurementtechnologyfor waterin-

herentopticalpropertiesand generalizedmodelingtheoryfor radiative

transferprocessis available. Researchprogramsmust be supportedto

utilizethis technologyto developa body of knowledgeon the optical

propertiesof variouscoastalwater types. Coincidentstudiesare

neededto developspecificconstituentalgorithmsfor turbidwatersso

thatbenefitsfromremotesensingapplicationscan be confirmed.

•.. ..

Page 14: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

o

THISpAGE INTENSIONALLYLEFTBLANK

Page 15: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

.0 . - .

DESCRIPTIONOF WATERRADIANCEMODELS

Selectedmodelswhichsimplifythe radiativetransferequationwere

used to evaluateeach of theopticaldata sets. Thesemodelsincluded

Gordon'squasi-singlescattering(QSS)model, his power series (GPS)

approximationto MonteCarlosolutions,an adaptedform of Chandrasek-

har's(AC)exactsolutionfor isotropicscattering[g],and the Jaintwo

stream(TS)model [6] whichis equivalentto that of Plass,et al [7].

Eachof thesemodelsused the backscatterfractionB estimatedfrom the

measured 6(g) and the singlescatteringalbedo,_o,_as determinedbyformingthe ratiob/(a + b). A MonteCarlo(MC)code was developedto

approximatean exact solutionof the radiativetransferequationfor

turbidwaters. Simulationis consideredto providea more precise

solutionsince it utilizesall of the scatteringmeasurementdata and

describesa morecomplexset of possiblephotoninteractions.

Our simulationmodelwas baseduponone developedbyGhovanlou[10]

butwithseveralmodificationsmade to improvethe efficiencyas discus-

sed in the next section. The probabilitydistributionfunctionsused

fortheMonteCarlosimulationswere obtainedbysmoothingand integrat-

ing the fourteenraw measuredvalues for each scatteringfunction.

Cubicsplinefunctionswere fittedand normalizedpriorto integrationsuchthat

- _ = 2_ [_(e) sine de ., . (2)

The differencebetweenthe measuredvalueof _ and the measuredvalueof

is an estimateof the total scatteringcoefficient,which is made

equalto the aboveintegrationso as to obtain.aself-consistentdata

_. set. It is recognizedthat in this procedurewe have ignoredpossible

errors in c and a. However, our analysishas shown the above

7

Page 16: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

integrationto be highlysensitiveto the valuesof B(g),especiallyfor

small O. A decription of our analysis procedure and resulting

modificationsto B(g) are containedin AppendixA.

Photonswere selectedfrom the resultantprobabilitydistribution

by interpolationon twenty-fiveintervalsof equalprobabilitybetween0

and 180". In the simulation,photonsemergingwithinthe criticalangle

wererecordedby scatteringorderand zenithangle.

2.1 MODELCALCULATIONS

Each of these models was used as a means to calculatethree

distinctcomponentsof the upwellingradianceLw(g, go) just belowthewatersurface.

Lw(O, 0o) = LD(O,Oo) + LS(O) + LI(O) (3)

where LD(g,Oo) is due to scattering of direct sunlight

LS(O) is due to scattering of skylightLI(O) is due to scattering of internally reflected light

g and 0o are the view angle and solar zenith angle, respectively.

The contribution of internal reflection to turbid water reflectance canbe significant.

In the following,the variablesg and go are replacedby their

cosines,u and Uo, for convenience. Further,the dependenceon the

azimuthal-angle 6 is neglectedfor simplicity. Each of the three -

componentscan be calculatedin terms of the reflectancefunction

R(u,Uo). The componentLD(U,Uo)is obtainedSimplyas ED . R(u,Uo) =

whereED is the directsolarirradiancejust belowthe surfaceat go"The skylightcontributionon the otherhandrequiresthe integration:

2_ l "

ts( )= II (4)0 _c

8

Page 17: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

whereL(_')is the downwellingradiancedistributionbelow_thesurface,

and_c is the cosineof the criticalangle,i.e..Uc = _ l"n-zand n isthe indexof refractionof water.

If it is assumedthat the downwardsky radianceis uniformwithin

the conedefinedby the criticalanglethen (4)becomes

l

LS(,)= 2n2 ES J R(,,,')_'d_' (5)_C

whereEs is the sky irradiancejust belowthe surface. The finalcom-

ponentconsidered,whichis due to internalreflectionof lightbeneath

the surface,can be calculatedafterassumingthe Fresnelreflectanceat

the water surfaceto be I for _ _ _c and 0 for _ > uc using thefollowingimplicitintegralequation.

IJcLi(lJ_..= 21T (6)o [Ls(U')+LD(U'_'_°_R(lJ'lJ')IJ'dlJ'

+ 2_ LI(_')R(_,_'l_'dt!'0

The secondintegralin (6)can be reasonablyapproximatedby

tic21tLI(IJc) R(ti,t!')_'dIJ', (7)o

If one then evaluates(6)at P=Pcand solvesfor Li(uc)using(7)Li(u)becomes

" " tlcf icLI(IJ)= 2_t [LD(P',t!o)+Ls(t!')]R(IJ,IJ')t!'dt!'+ 2Tr R(lJ,lJ')p'dt!'0 0

i . ...

_ . C " " "" ' "

x 2tr [Ls(t!')+LD(P,,po}JR(tic,p,)p,dti,o (8)

x 1-2_" [o r(tic't!')u'dt1'

g

Page 18: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

Applyingequations(4) and (8)to eachof the reflectancemodelslisted

above, individualexpressionshave been developedfor componentsof

Lw(0,0o) as shownin Table2_ Modelcalculatedvaluesof Lw(g,0o) at

g=0° were convertedto abovesurfaceradiancesL_(g,go) as

L+(0,0o) = 4n'l(n* 1)-2Lw(g,0o) _ ; (9)

where n is the index of refractionof water. In the case of quasi

singlescatteringit was assumedthe phasefunctionis uniformin the

backwarddirection,i.e.,p(u)= 2_oB forp<0 where

B - 2_° P(u')dp' (10)-l

is the backscatteringfrractionforthe actualphasefunctionp(_).

Chandrasekhar[9] has formulatedan exact solutionfor isotropic

scattering.This solutioncan be adaptedfor highlyforwardscattering

by consideringthe phasefunctionp(p,6,u',6')as the sum of deltaand

isotropicfunctions

= +2%B

whereF' = 4_(1-2B).Substitutionof this phasefunctionintothe radi-

ativetransferequationgivesthe same equationas in the case of iso-

tropicscatteHng,exceptwith_o replacedby _ ...._

!

_o=2_oB/(I- _oF') (11) A

The solutionof thisformof the radiativetransferequationis

_o'e

R(_,po) = _'(_+_o)H(_)H(_o) (12)

10

Page 19: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

TARLi', 2 ,, EXPRESSIONS FOR UPWEI,LING RADIANCE CO_ONEN"rS l

R(t,, tto) ;.s(P) L[(i,)Hodel

t_ Bn-1 (ES . ED)n-I IJc2 R(IJ.lso)

Two Flow o ES ,-I R(t_.llo)

].._0oF + [(1._o)2 . 20_oB(l_mo)] 1/2 1-P_ R(II,P o)

-j'"o .c . ,,.,',n ES. %S[1-Vc-t,L.(,+]_--_--c)1 2 Es F_(_lasi-Singte B. -I 2 -1 lJ+l

Scattering (V + lJo)(l - rooF) 1 - _) F. 21_ o •0

N __ ES _-IR2(IJ,IJ o) + ED R(|I,|I o)aI xn O° >'20_ ES_ .lJo)

Power Scrle.q Rl(ll'll°) "n[O n R2(11 "Approximation • [ lit.2 R2(IJ,|lo) ]-1 1

N

R2(lltlf°)_n}_=Oa2n xn Oo < 30"

[Rl(ll,llo) + R2(H,IIo)]/2 20" < 0 < 30 °

-t

Adapted n t_oBll(lOII(IJ o) _ l+I_-2ni*Chandrasekhar 2(ll+llo)[1-_do(1-2B)J 2n2ES R(lJ,ll')ll'dli' (I.o(tl) + LS(II) I*(l_--_" _ ,)c

. (by uuraerlcal integr_tlon) I* TM 2n fileR(If, tl')ll'd|l'o

(by numerical Integration)

lli=Co.sO., I,_ - slngle-Rcatterlng albedo, B - backscatter probability, F = I-B,o

o ES aky lrradtanre, ED direct trradlance, a I and a 2 from reference [4]x " l-_=t F ' = = n no

Page 20: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

where H is given by an integralequationwhich can be numerically

solved,and has been tabulatedby Chandrasekhar[9]. We can now choose

B suchthatfor the measuredphasefunctionp(u).

o p(p)dp-l

B = il _- (13)J p(p)dp

-1

2.2 SIMULATIONTECHNIQUES

Monte Carlomethodshavebeenusedby many investigatorsas a means

to solvethe radiativetransferproblemfor naturalwaters. Gordonhas

used Monte Carlomethodsto derivethe necessarycoefficientsfor his

power seriesmodel[4]. The powerof themethodliesin the factthata

solutioncan be obtainedfor a complexsource,medium,and detectorgeo-

metry which is beyond the limit of the existingsimplifiedradiance

models. In this sensethe Monte Carlo approachrepresentsour best

opportunityto modelthe radiativetransferprocessof the measurement

medium. MoreoverMonteCarloresultscan serveas a standardwithwhich

one can evaluatethe significanceof proposedor existingmodelsimpli-

ficationsand assumptions.It is for thesereasonsthat applicationof

MonteCarlotechniqueswere feltessentialto the presentstudy.

In Monte Carlosimulationone samplesa sequenceof eventsfrom

knownprobabilitydistributionsfrom whichthe outcomeor processdis-

tributioncan be estimated. For the watermediumthe processbecomes

one of tracingthe photon•througha seriesof interactionswherethe

photonis eitherscatteredor absorbedat each interactionsite. The

scatteringprocessis describeduniquelybythe singlescatteringalbedo

(mo)and the scatteringphasefunctionB (g). If we tracea sufficient

numberof photonsthroughthe medium,goodstatisticscan be obtainedon

thosewhichemergefromthe surface. However,the straightsimulation,

which is often referredto as "crude"Monte Carlo, is inefficient

becausemost of the informationis lost with those photonswhich are

12

Page 21: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

absorbedor containedby the medium. Thus substantialprogrameffici-• • +.. • .

" encycan be achievedwhen informationis retainedby each photoninter-

actionregardlessas to the outcomeof a photontrace. In our Monte

Carloprocedurea numberof techniqueswere employedto improvethe ef-

ficiencywith whichacceptablestatisticsare realized. Thesetechni-

quesfall intotwocategories:(1)retentionof informationfromphoton

histories,and (2)estimationof desiredradiometriccomponentsfromthe

accumulatedphotonstatistics.In the firstcategoryit is usefulto

visualizea photonas a bundleof photonunits. Usingthisconceptwe

can+determinethe fractionof photonsescapingfromeach interactionof

the history. The techniquewhichprovidestheseestimationsis called

biasing. In this approachone distortsthe true probabilitydensity

functionfor a particulareventin orderto forcethe desiredresults.

In orderto preventdistortionof the samplingresultsa biascorrection

weight is appliedto the photonbundle. The correctionfactor is

calculatedby comparingthe probabilitydistributionfunctionof the

distortedor biasedeventswith the true probabilitydistributionthe

correctionfactoror weightcan be expressedas

dPT(x)/dx

W = dPF(X)/dx _++;....... (14).++. .. ,...+ . _ .-++

wherePT(X)and PF(X)are the true and false(biased)•cumulativeproba-

bilitydistributionfunctions[11].

Thereweretwo biasingtechniquesemployedin our MonteCarlocode.

The first calledstatisticalestimationappliesa seriesof weightad-

justmentsto the photonto offsetthe fractionestimatedto reachthe

• surface. The distancebetweencollisionsis normallysampledfrom the

distributione-T'whereT is the opticaldepth. Withthe statisticales+

timationprocedurethe photonremainsin the mediumto providehigher

orderresults. Collisionscan be forcedby samplingfrom the density•

function

13

Page 22: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

p(T)dT- e dY 0 < T < T (15)l-e-_m -- - m :

In this case the samplingbias can be removedby multiplyingthe

presentweight(initiallyset to 1) by l-e-_mwhichyieldsthe fraction

of photonsremainingin the medium.

A secondtechniqueemployedin the simulationwas to bias the

scatteringfunctionin the backwardhemisphere.Themethodselectedwas

to simplychoosea backscattercoefficientB' whichis largerthan the

actual coefficient B obtained by integratingthe measured phase

function.The appropriateweighingfactorsarethenWF= F/F' (whereF'

= 1-B') for the forwardhemisphereand WB = B/B' for the backwardhemisphere. Thus the biasedphasefunctionp'(u)used for selecting

scatteringanglescan be writtenas

Ip(u)IWF 0 < u < 1p'(_) T (16)

p(u)/WB -__<, < 0and the cumulativedistributionfunctionas

IP(u)/WF 0 <_u <_1P'(u)= F' + (P(u)-F)/WB - 1 _<u < 0 • (17)where P(u) is the actualcumulativedistributionfunction. For this

casethe photonweightingfactorsare simply

WF 0_< u_< 1W(.)= WB -1_<u < 0 (18)

Thus a separatebiastechniquewas employedfor eachof the two sampling

distributionsutilizedat a photoninteraction.

In the MonteCarlocode scatteringangleswere selectedby solving

the equationP'(u)= r for u, wherer is a randomnumberfromthe [0,1]

interval. Valuesof x = 1 - u were interpolatedfrom tabulatedvalues

of P' usingthe equation

14

Page 23: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

I_ .-r' +- 12 ....-x = Pi-Pi-I

whichis definedfor the intervalPi-1_ r _ Pi and is appropriatefor a

concavedistributionfunction. In equation19, r' = WF . r _hen 0 _ r

F' and r' = WB(r-F')+ F whenF' < r_l.

A thirdtechniquewhichwas startedbut notfullyimplementedunder

the presentcontractis describedas a semi-analyticalmethodwherea

completesetof MonteCarlophotonhistoriesare obtainedfor a typical

phasefunction. Resultscan then be calculatedfor any similarphase

functionsbycomputingthe properweightsfor each history. With this

methodall of the matrixtransformationcalculationsrequiredin the

standardprocedurefor each interactionare eliminatedsavinggreat

quantitiesof computertime.

A second categoryof MonteCarlotechniquesincludesthose which

improvethe accuracyof and flexibilityto selectradiometricparame-

ters. Photonsemergingwithinthe criticalangleare recordedby scat-

teringorderand zenithangle. It is convenientto enterall photons

forthe mediumfromzenith. Sincethe bidirectionalreflectance

R(g,_,O',_')is symmetricalin g and O' by means of reciprocitythe

incidentand reflectedanglecan be reversed[9], Thus the reflectance

of directincidentlightfrom any solarzenithanglecan be detemined

for zenithview angle. The radiancereflectanceR(O, O) is now easily•

calculatedwiththe followingexpression,

, k=IMAX

R(8,O)= 2_ _ N*(B,k) k + RN (20)• k=l N mo

" wokwhereN is the numberof incidentphotons, is the probabilityof kth

orderscattering,N*(9,k) is a cubicsplineinterpolationof theMonte

15

Page 24: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

Carlobiasfunctionn(gi, k), and RN is the contributionfromall orders

higherthan IMAX. In orderto estimateRN we firstassumeN*(O,k)/Nasa functionof k has forma.bk wherea and b are constantsto be deter-

mined. It followsthatRN can be writtenas

IMAX= a _ bk - a _ bk .... '. • (21)

k=O k=O

_ a b2 blMAXl-b a(l + b + + ....+ )

_ abIMAX+ ll -b

,' c = abIMAX: N*(O,IMAX)/Nis knownso RN : _cb , b : RN/(C+RN)

and a = N*(k)/Nbk

ThusRN can be calculatedfor anymo as

a(bmo)IMAX

RN = _ (22)

For radiancecalculationsit is convenientto assumethat higherOrders

are isotropic beneath the surface. The diffuse hemispherical

reflectancefor zenith incidentlightcan be readilycalculatedfrom

(20)as_/2

P

RH(O)= 2 _ R(O,@)cos8sin@dO (23)o

The MonteCarloprogramwas validatedby makingcomparisonsbetween ' '"the simulationresultsand thoseobtainedfrom exactsolutions. For

bothlinearand isotropicscatteringthe radiativetransferequationhas

been solvedby Chandrasekar[9]. MonteCarlosimulationswere run for

both of thesescatteringfunctionsusing20,000photonsincidentfrom

the zenith. Simulatedhemisphericalreflectancescomparewell to exact

16

Page 25: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

values,as shownin FigureI, over a wide rangeof singlescattering

albedos. CalculatedreflectancesR(O,O)= _L(O,0)/Eare comparedin

Figures2 through4 for selectedvaluesof mo and viewangle. Whiletheradiancereflectancesalsocomparequitewell thereis a smallamountof

noiseapparentin theseMonteCarloresultsas a functionof view angle.

These smalldiscrepanciesmay be duein part to convergenceproblems.

Convergenceof the simulationcodewas examinedfor selectedscattering

functions,and bidirectionaland hemisphericalreflectancewere estima-

ted for 100 to 20,000photonsas presentedin Figure5. A similar

analysiswas made for the Back Riverscatteringfunctionat 450 nm as

shown in Figure6. As mightbe expected,bidirectionalreflectances

requirea substantiallygreaternumberof photonsto achieveconvergence

than hemisphericalreflectances.Thereappearto be long periodcompo-

nentsremainingin the bidirectionalreflectancefunctionsafter100,000

• photons. Thus,it is consideredpossibleto minimizethe minordiscre-

panciesshown in Figures5 and 6 by conductingthe simulationsup to100,000photonsbeyondwhichthe valueof furtherreductionis question-

able.

Besidesthe numberof photons,severalotherinputparameterswere

investigatedpriorto beginningthe simulationanalysison LaRC optical

measurements.Thesestudiesincludeddetermininghowlargethe biasing

couldbecomewithoutdistortingthe resultsand determiningthe maximum

numberof interactions.One criterionset up to observethe effectsof

these selectionswas the numberof photonsrequiredto approachthe

finalvalueto withinfive percent. The use of biasingtechniquesdo

not directlysave computertime. For example,'thecostsof runninga

100,000photon simulationare approximatelythe same. Savings are

realizedin thatfewerphotonsare requiredto•meet,say,a fivepercent

convergencecriteria. Severalbiasingratioswere triedwith linear,

GordonTypeB, and back River (B450)phasefunctionswith inconclusive

resultsotherthan a biasingratioof two appearsto producesatisfac-

tory simulationresults for a •variety•of functionstested and thus

reducethe photonrequirementsby one-halfto 50,000.

17

Page 26: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

100

.11.4,

t

t 41,I.

.g. .g.

t

t

i0-I Isotropic

i

t

Lineart

tu

m:t

u

(:_ t

u

-2r-

E_ t

-'r

10-3_ _

0.0 0.5 1.0

Single ScatteringAlbedo mo

Figure l Comparison of HemisphericalReflectanceas PredictedbyMonte Carlo (+) with Exact Solutions(*) as a Functionof

" . _o for Linear and IsotropicScattering. I

18

Page 27: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

10-3

0.0 0.5 1.0

. SingleScatteringAlbedo_o

Figure2. ComparisonRadianceReflectanceas Predictedby MonteCarlo(+)withExactSolutions(*)as a Functionof mo for Linearand IsotropicScattering.

Page 28: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

l0°

. + _ . _ . _. _F • _+ _ _+ _ _ "=0.9

O . "

I0"I . + * + _ + ,. _ _ _+ * *+

_o = 0.5

i0-4

0° 30U 60° 90°" View Angle B "

Figure 3. ComparisonRadianceReflectanceas Predictedfrom Monte CarloResults (+) with Exact Solutions(*) as a Functionof ViewAngle for IsotropicScattering(P(B) = _o)

20

Page 29: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

100

i0 -I , * +,+e

.

++

+ * m° O.5m_

om -._.

m 0- 2 _I-

u,_ !_

•_ .. .

"_" : 0.1u a}0

gr,,_

.

10-3

" .10-4

. 0o 30° 60° 90°

.-_,..ViewAngle O . ;_

Figure 4. Comparisonof RadianceReflectanceas Predicted from Monte !Carlo Simulation(+) with Exact Solutions(*) as a Functionof

View Angle for Linear Scattering(P(O) =(l*cosO),mo)_21

Page 30: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

102 "105 " 2 x 10;5

Figure 5. CrudeMonteCarloPredictedIsotropicHemispherical(uppercurve)and Bidirectional(lowercurve)Reflectancesas aFunctionof Numberof Photons. BidirectionalReflectanceis from39.2to45.0 degrees.

22

Page 31: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

._ ..

02 5 x 105 106• . ..- .:..

"k

Figure• 6. CrudeMonte'CarloPredictedHemispherical•(uppercurve)and _Bidirectional(lowercurve)Reflectancesas a FunctionofNumberof Photons. SimulationsUtilizedBackRiverMeasured

" phalse Functionat 450 nm. Bidirect.ionalReflectanceis from0,0 to 18.4 degrees.

• • ,'L, • " • " " .L

23 _•

Page 32: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

The effectof variablenumberof photoninteractionsis shown in

Table3, both with and withoutthe estimatedcontributionfrom higher

orders. There is a steadyincreasein reflectancewith the numberof

interactionspermitted.Convergenceto the finalvalueis obtainedwith

fewer interactionswhen the higherorder estimateis included. Our

studiesindicatedthat twenty interactionswere sufficientto obtain

reliableresults.

24

Page 33: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

TABLE3

COMPARISONOF HEMISPHERICAL(RH)AND BIDIRECTIONALR(0,35°)REFLECTANCESWITHAND WITHOUTHIGHERORDER

ESTIMATIONFOR VARIOUSMAXIMUMNUMBEROF INTERACTIONS

MaximumNumberof ReflectanceWithoutHigher ReflectanceWithHigherInteractions OrderEstimates OrderEstimates

RH R(0,35°) R H R(O,_5°)

10 2.637 0.891 5.763 1.94020 4.271 1.392 6.066 1.99430 5.139 1.695 6.133 2.02940 5.577 1.843 6.006 1.987

• . • .

25

_; :i.....i_••

Page 34: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

THIS PAGEINTENSIONALLYLEFTBLANK

26

Page 35: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

•.!,i.•.

3.0

RESULTSAND INTERPRETATION

Eachof the waterradiancemodelswas appliedto the measuredopti-

cal data set and the predictedupwellingradiancespectrawere compared

with measuredvalues. Given the valueof absorptionand backscatter

thesemodelspredictthe reflectancebelowthe surface. The predicted

above-surfaceradiancewas •calculatedusing the methodsdescribedin

section2 and themeasuredirradiance.

The Monte Carlosimulationmodel requiredthe use of the entire

scatteringphasefunction. In orderto •producecomparableresultsit

was importantthat the measuredopticalparametersshould be self

consistentin the senseof equation(1). While it is recognizedthat

thereare errorsassociatedwitheach of measuredopticalpropertiesthe

greatestabsoluteuncertaintywas connectedto the measurementof b as

an integrationof B(O)sincea significantportionof B(O) liesbetween

small angle and large angle portionsas•measuredby two different

• instruments(1.5° to 25°).

•For this studythe integralof 6(g) was calculatedby Gaussian

quadratureafter cubic splinefunctionswere fittedto the measured, ,. - .,.

valuesof 6(g). It was foundthat the resultingintegralwas highly

sensitiveto the valuesselectedatboth endsof the unmeasuredsegment

of B(O). With smalladjustmentsto 6(0) of less than five percentthe

integralcouldbe broughtinto exactagreementwith c and a producing

the desiredconsistentdata set. The backscattercoefficientremains

constantunderthis type of adjustmentto B(9) which GordOn[4] has

reportedwillhavelittleeffecton volumereflectance.

Values,ofthe backscatterprobabilityand the singlescattering

albedomo togetherwith the measuredirradiancesshownin TableA2 wereusedto calculateeachof the radiancespectrapresentedin Figures7-9.

•The MonteCarlo simulationswere made at each 50 nm interval using

27•

. .. • .

Page 36: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

30.0

Sample B A°AQSSa GPS

25.0- . " MEAS,IF ,IF

0v

u 20.0-(- . ••r-,---, D • :..;. ."_" • ......

gO

U X

_._- 15.0- _ A4- $,,. A A

u_ • 0 0 0

o I0.0- ""Q." •

€'- U • • 0

._.IEe-

5.0-

0.0 i i i i e i i i450 550 650 750

Wavelength (nm)

Figure 7. Comparison of Observed and model predictedupwellingradiancefor Samp!eB

28

Page 37: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

• L * m

Figure 8. Comparisonof observedand model predictedupwellingradianceforsamplesAl andA2

Page 38: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

6.0

Sample GI 6.0 -

:_ss1Sample G2 o QSS 1

•_ S .5.0 * TF Im MC I

_ , • . , " MEAS

_: 4.0-

_-× 3.o- !o

.o, ._ _o/,R'-. _ ____<" 2.0- . o = =_.- _ . ,, | .!L_

l.O

0.0

I I ,I I -]450 550 650 750 u 0

Wavelength (nm) 4bO 550 650 750Wavelength (nm)

• Figure 9. Comparisonof Observedand Model PredictedUpwellingRadiance forSamplesG1 and G2

Page 39: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

50,000 photons. A maximum of twenty interactionswas permitted in each

simulation. The contributionfrom higher orders was estimatedwith an

exponentialfit of the first twenty orders.

3.1 COMPARISONOF MODEL CALCULATIONS

Model predicted inherent radiancesabove the surface L_(Q,Oo) arecomparedto measured valuesof upwellingradiancein Figures7 through9

for each of the five test cases.

In cases B, G1, and G2 the model predictedvalues had similar

spectralshapeto the measuredvaluesbut were frequentlyless than

fiftypercentof the MonteCarlopredictions.Watersfor test sitesG1

and G2 had very low inherentreflectances,thus the upwellingsignal

containeda relativelylargerspecularcomponent.As a resultdetermin-ationof the measuredinherentradiancewas in thesecasesmore doubt-

ful. For casesA1 and A2 the measuredradianceshad substantially

differentspectralshapeas comparedtomodelpredictedvalues. These

differencesarealso evidentin Figures10 and 11 which comparethe

MonteCarloandGordonPowerseriespredictionsto measuredvalues.

The model predictionsdisplayedthe followingorder from the

smallestto largestpredictedvalues: QSS, AC, MC, GPS, and TF. The

spreadin thesepredictionsas the figuresindicatewas largeand some

predictionswere severaltimes the measuredradiances. The various

modelsreflected individualsensitivitiesto the optical parameters

althoughin generalthere is a consistentrelationshipbetweenthe

opticalparameteras shownin AppendixA and the predictedradiances.

The MonteCarlopredictionsdid not in all;_casesapproximatethesame

simplifiedmodelresults. For casesG1 andG2the adaptedChandrasekhar

and quasisinglescatteringmodelscloselyapproximatedthe MonteCarlo

calculationswhilein casesB, A1, and A2 the GordonPowerSeriesmore

closelyfits the MonteCarloresults. For all casesthe spectralshape

producedby the powerseriesapproximationand the MonteCarloresults :

is nearlythe sameas ndicatedby the comparisonmade in Figure12.

31

Page 40: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

w

0a Sample B

. G1• G2

u At-- Iu I=' / A " _

0.05.. I !u

= /

: /r_ F:m /m / / /L j /-' / /t_. .f an:l

'} ,.. . .: T :. : "

O. + I I I I

0.05 O.l

Radiance Reflectance MCModel

Figure I0. Measured versus Monte Carlo Predicted Reflectance

32

Page 41: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

0.I

aSample B

O.O 0.05Radiance Reflectance GPSModel O.l

Figure II. Measured versus GPSModel Predicted Reflectance

3 ",

Page 42: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

O.l

Sample BAl

QAa A2•. Gl• G2

m •

o_ •-- O.u5

ilJu _t- •4-_U

_ A

+ &.U

e+eorm

0.1

0.1"Radiance Reflectance MCModel

Figure 12. GPS versus (,Ionte Carlo/Model Predicted •Reflectance

34

Page 43: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

The peaks of the model predictedand measuredradiancespectra

• occurredat 600 nm for casesB, A1, and A21and675 to700 nm for cases

GI and G2. This spectralshiftin the peak is suspectedtobe largely

- due to the presenceof a high dissolvedorganicscomponentin these

Iattersamples.

It is difficultto account for the •discrepanciesbetween the

measured and model predictedradiances. There are at least four

possiblesourcesof errorwhich couldaccountfor the observedlower

valuesof radiance. Theseare (1) instrumentationmeasurementerrors,

(2) changesin particlesize distribution,(3) samplingerrorsdue to

unknown stratifications,and (4) failure of_ the model to properly

accountfor photoninteractionswiththe watersuspendedsolids.

Instrumentationerrorsassociatedwith the measurementof optical

propertiesand the above surface upwellingradiancecannot in our

estimationcompletelyaccountfor the observeddifferences.The nearly

consistentset of opticalpropertiesobtainedat most of the wavelengths

suggestsvery small errorsare presentin these resUlts. The high

samplingrate of the TektronixJ20 spectrometerprovidesexcellentstatisticsfor each measurementtaken. Sincethis instrumentwas also

used to measurethe downwellingirradiancepossibleerrorsin absolute

calibrationare not criticalto the data relationshipsshownin Figures

7-9. Errorsdue to surfaceeffectswouldtend to averageout with the

rapidsamplingrate.

Sincethe opticalpropertieswere determinedfromthe presenceof

chlorophylland suspendedmaterialsit is conceivablethat the sample

underwentchangesbetweenthe time of collectionand timeof the labora-

tory optical•measurements. During this interveningtime periodthe

. samplecouldhaveundergonechangesin biologicalstate,particledisas-

sociation,or aggregation.A decreasein chlorophyll-a•concentration

wouldcause a slightincreasein reflectanceover time as would any

35

Page 44: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

I I

break up of phytoplanktoncellularor organicmateria_. A loss of min-

eral or organic particles by aggregation or attachment to container

walls may be associated with a decrease in reflectance. This latter

contention is based upon Mie scatteringtheory. Mie scattering cross

sectiondepends on the number of size of particleswith a corresponding

greaterweight (scatteringefficiency)given to smaller particles. Thus

with say a decrease in the number of smaller particles there is a

correspondingdecrease in B. Since x = Bb/(a + Bb) is nearly linear

with reflectance,a reductionin sample reflectanceshould be expected.

In a highly unlikely case where all particlesdisassociatedinto equal

subparticlesthe shape of the particle size distributionwould remain

the same and the reflectancewould increaseby approximatelytwenty-five

percent.

Since the Gordon Power Series approximationwas based upon Monte

Carlo results it was of interestto furtherexamine predictionsmade by

these two models. As shown in Table 2, Gordon Power Series approxima-

tion gives two differentreflectancefunctions,R1 for hemisphericalre-

flectanceof direct incidentsunlightfrom zenith and R2 for hemispheri-

cal reflectancefor diffuse incidentskylight. Gordon indicatesthat R2

approximatesthe reflectanceof direct sunlight for solar zenith angles

greater than 30°. The Monte Carlo results describe the upward irradi-

ance distributionfor direct incident light from zenith. The radiance

reflectancefor isotropicdiffuse incidentlight is numericallyequiva-

lent to the hemisphericalreflectancefor direct incident light from

zenith. Thus if the illuminationdistributionwere isotropicthen the

Monte Carlo and GPS resultsshouldbe equivalent.

Predictedupward radiance as calculated by Gordon's Power Series

approximationis compared with Monte Carlo radiances in Figure 13 as a

functionof the solar zenith angle. These calculationswere made usingJ

the test site B absorption and scatteringproperties. The hump in the

power series results is due to a combinationof the Fresnel transmit-

tance throughthe air/waterinterfaceand change from R1 to R2 over the

36

Page 45: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

10.0 1u.O

_.= 500 nm a GPS•MC _'= 600 nm a

l l Figure13. Comparisonof Gordon'sPowerSeriesApproximation(GPS)withMonteCarlo(MC)CalculatedRadianceversusSolarZenithAnglefor SampleB

Page 46: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

20° to 30° angle interval. The Monte Carlo simulationstendedto

predictslightlylargerradiancesfor smallvaluesof the solarzenith

anglewhichgenerallydecreasewith somefluctuationsslowlyto 65° and

thenfall off rapidlyas the Fresnelcoefficient.The closestapproxi-mationsoccurredin the angularregionof crossover and for angles

greaterthan 75°. Additionalcomparisonsare containedin AppendixBfortest sitesA1 and GI. The nonuniformitiesof the MonteCarlocurves

are pronouncedin these lattercomparisons. It is not knownwhether

thesevariationsare solelydue to samplingerrorsor to actualvariants

in the upwardirradiancedistribution.

Gordonanalysis[4] did not includelargesinglescatteringalbedos

whichwerecalculatedfor mostof the presentdata as shownin TableAI.

Figure14 comparesthe belowsurfacehemisphericalreflectancefor the

GPS to the MonteCarlosimulationsas a functionof Bb/(a,+Bb) with

valuesof the scatteringalbedorangingfrom 0.1 to 0.98.-Reflectances

showncomparewellto a Bb/(a+Bb)valueof 0.2 (mo z 0.9)wherethe GPSpredictedreflectancesbeginto underestimatethosepredictedby Monte

Carlo. Additionalcomparisonsareshown in AppendixB.

3.2 USE OF WATEROPTICALPROPERTIESTO EXTRACTCONSTITUENT

CONCENTRATIONS

As was brieflydiscussedin the beginningof this reportthe ulti-

mate goalof this researchis the developmentof a methodologywhichcan

be appliedto satelliteor airborneremotesensingdatato gainquanti-

tativeinformationon specificwaterpollutants.Somepaststudiescon-

ductedby this laboratoryand otherhave focusedon empiricalrelation.....

shipswhichare calibratedto an areaof interestwitha requirementfor

extensivesurfacetruthinformation.In the presentapproachinherent

opticalpropertiesof a watertype or constituentare usedto definean

algorithmwhichwill reduceobservedupwellingspectralradianceinto

valueof constituentconcentration,If a sufficientlylargebody of

opticalpropertiesareavailablefor dominantconstituentit is possible

38

Page 47: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

10 ° -m

J "r-> ....

Jm

• .

- •+

_'= 600 nm ,.u ,I-e= 'ir_-I •© /u - .

q- .¢Y .

U°r--L .

e-

10-2,r-'-

-r" " t

-

-

IO-_.

=3 I I I I I III I lJ I I I III I I I I'I IIII0-2 10-I I0°'" X

Figure 14. GPS Model (+) and Monte Carlo (*) PredictedBelowSurfaceHemisphericalReflectancesversus the rparameter,x=Bb{a+Bb)-l.. Sunlight is direct andIncidentfrom Zenith. Sample B OpticalPropertieswere Used for These Calculations.

39

Page 48: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

that an algorithm can be applied to specific remote sensing data with

only very minimalrequirementsfor surfacetruth data.

Ideallyone needsto have knowledgeof the •opticalpropertiesof

eachcomponentin a givenwatermatrixin orderto resolveconcentrationinformationfrom reflectancedata. The radiancereflectancecan be

easilyrelatedto constituentconcentrationusingsay the GordonPower

Seriessincebotha and Bb are additiveoverconstituent_concentrations,

i.e.,

a=aw+ X a_ ci1

_ " (24)

Bb = (Bb)w + Z (B_b)icii

whereaw and (B)ware the absorptionand backscatteringcoefficientsofA

pure waterand a_ and (Bb)i are the specificcoefficientsfor the ith

constituent.Thus,if we knowthe opticalpropertiesand concentrations

it wouldbecomestraightforwardto predictthe reflectance.However,to

obtainconcentrationsfrom opticalcoefficientsis a complexprocedure

and one that is expectedto be highlysensitiveto noisein the radio-

metry. A more practicalsolutionis to examinethe multivariaterela-

tionshipbetweenconcentrationand reflectanceover:appropriatewave-

lengths. Overlimitedrangesof concentrationit is possibleto approx-

imatethe reflectancewith simplemathematicalrelationships.In order

to derivea specificalgorithmfor airborneor satelliteradiometric

data four separatemodelsmust be considered.Theseare (I)instrumen-

tation.calibrationmodel, (2) an atmosphericmodel which removes,all ,,

transmittanceand path radianceeffects,(3) an air/waterinterface

modelwhichremovesspecularreflectanceand transmittanceeffects,and : _

(4) a waterradiancemodelwhichcan accuratelypredictinherentradi-

ance reflectancebasedupon the opticalpropertiesof major constitu-

ents.

40

Page 49: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

The determinationof specificopticalpropertiesfrom a set of

measurementsmade on sampleswith variousmixturesof constituentsmay

be a difficulttask. If quantitiesof unknownmaterialsare present

they couldhave a significantimpacton the measuredopticalcharacter-i

istics. Undersuchcircumstancesapplicationof linearregressiontech-

niqueswill requiremany individualsamplemeasurementsin orderto

obtainsatisfactoryresults.Alternativelyit may be possibleto deter-

mine the opticalpropertiesof a particularconstituentin the presence

of unknownmaterialswith additionof knownquantitiesof the constitu-

ent.

41

Page 50: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

THIS PAGEINTENSIONALLYLEFTBLANK

-. 42̧

Page 51: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

CONCLUSIONSAND RECOMMENDATIONS

4.1 CONCLUSIONS

Fieldmeasurementsof inherentopticalparametersfrom five very

turbidwatertest siteshavebeen usedto make a preliminaryevaluation

of fivewater reflectancemodelsfor use in predictingupwellingradi-

ance. ThesemodelsincludedMonteCarlosimulationswhichare consider-

ed to providethe best opportunityto imitatethe radiativetransfer

process. Measuredradiancespectraand modelpredictionswere foundto

comparewell only in selectedcasesand wavelengths. In generalthe

measuredradianceswerewell belowpredictedvalues. Reflectancemodels

testedwith the opticaldata gave widelyvaryingpredictionsbut with

apparentinterrelationshipsbetweenindividualpredictionsat a given

wavelength;Possiblefactorswhichmay havecausedthe observeddiscre-

pancies.include(1)anisotropiccharacteristicsof the diffusesky radi-

ance distribution,(2) instrumentationerrors,(3) temporalchangesin

the water sampleuse for in vitroopticalmeasurements,(4) relative

size and variabilityof the specularand inherentcomponentsof the

measuredupwellingradiance,and (5) inadequaciesof existingreflec-

tancemodelsas appliedto turbidwaters. However,a completeexplana-

tion for thesediscrepanciesis not apparentfrom the availablesite

data. SamplesA2 (AppomattoxRiver) and G2 (OgeecheeRiver)provided

the bestcomparisonsbetweenmodelgeneratedand measuredradianceswith

differencestypicallylessthantwenty-fivepercent. Noneof the models

producedconsistentlygoodcomparisonsfor all fivetest sites.

" 4.2 RECOMMENDATIONS

• Based upon the experiencegainedin the presentstudy•and the

researchgoalsthereare fourtypesof studieswhichshouldbe included

in futureprograms• •Thesestudieswouldenhanceour understandingof

the radiativetransferprocessin very turbidwatersand improveour

43

Page 52: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

abilityto relatethe inherentopticalpropertiesto the concentrations

of principalconstituents.

1. Measure the angular distributionof incident irradiance.

EmployMonte Carlo simulationtechniquesto investigatethe

influenceof anisotropicirradianceon the upwellingvertical

radiance.

2. Measurethe temporaland spatialchangesin wateropticalcon-

ditionsat a giventestsitewithan in situbeamtransmittance

meter. Examinethe reproducibilityof opticalmeasurements

fromsimilarsamples. _, i

3. Determinethe variabilityof naturalparticlesize distribu-

tions (Np = Ad_I)__in a givenwaterbodyand analyzethe influ-ence of changein variousparticlesize frequencyon measured

scatteringproperties.

4. Conducta systemstudydesignedto predictconstituentconcen-

trationin the presenceof backgroundconditions. Determine

how preciseand extensiveopticalmeasurementsmust be made in

order to ascertainconcentrationsfrom reflectancedata over

the entirewaterbody. '

44

Page 53: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

REFERENCES

1. Whitlock,Charles,et al.,Comparisonof reflectancewithbackscat-ter and absorptionparametersfor turbidwaters. AppliedOptics,

- Vol.20, No. 3, page517,February1, 1981.

2. Jerlov,N.G.,OpticalOceanography,Elsevier,page 70, New York,1968.

3. Petzold,T,J., Volume scatteringfunctionsfor selectedwaters,ScrippsInstitutionof Oceanography,Universityof CaliforniaatSan Diego,1972.

4. Gordon,H.R.,Brown,O.B.,andJacobs,M.M.,Computedrelationshipsbetweeninherentand apparentopticalpropertiesof a flat homo-geneousocean,AppliedOptics,Vol. 14,_p. 417, February1975.

5. Gordon, H.R.,Simplecalculationof the diffusereflectanceof theocean,AppliedOptics,Vol. 12, p. 2803,December1973.

6. Jain,S.C. and Miller,J.R. Algebraicexpressionfor the diffuseirradiancereflectivityof waterfrom the two-flowmodel,AppliedOptics,Vol. 16, p. 202,January1977.

7. P]ass,G.N., Humphreys,T.J., and Kattawar,G.W., Color of theocean,AppliedOptics,Vol.17, p. 1432,May 1978. --

8. Cherdak,A., Friedman,E. An absorptioncoefficientinstrumentforwater: Concept, fabrication,calibration. NASA CR-158955,November1978.

9. Chandrasekhar,S., Radiativetransfer,Dover Publications,NewYork,1960.

10. Ghovanlou,A. Radiativetransfermodelfor remotesensingof sus-pendedsedimentsin water. NASAReportCR 145145,February1977.

11. Gordon,H.R., et al. Introductionto ocean optics,SPIE OceanOpticsVI, Vol.208, 1979.

'".'!" ' ... • .

Page 54: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

II

Page 55: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

APPENDIXA

WATEROPTICALMEASUREMENTS

This appendixcontainsmeasuredopticalproperties(Table AI),fieldradiancemeasurements(TableA2), andmeasuredS_atteringfunction

(TableA3) for each of the five samplingtest sites,AppomattoxRiver

(A1 and A2), Back River (B), SatillaRiver•(G1),ahd OgeecheeRiver

(G2). The individualangularscatteringmeasurementsfor AI, A2, _nd B

havebeenreportedin [1]and willnot be repeatedhe_.

In the water radiance model calculations it was considered

essentialthat opticaldata set be self-consistent,that is, as these

parametersare interrelatedaccordingto the followingequation

I a - = .inede (A_I)Io

In a singletest sampleit is unlikelythat these threeindependent

measurementswouldbe equatable.

The primarymeasurementuncertaintyis due to the largeangular

samplinggap betweenthe large angle•measurements(_ 25°) the small,

angle measurements (< 1.5°). The.volume scatteringcoefficient,calculatedby numericalintegrationof B(O),is sensqtiveto the ,._rve

fit betweengap points. Our approachto•theintegrationof B(O)wa_to

fit the measurementpointswith a seriesof cubic4plinefunctions.

Thesefunctionscan then be interpolatedto obtaina sufficientnunber

of pointsfor numericalintegration.The cubic spl_leroutineai!ows

adjustmentof the0° and 180°end points.

An interactivecode PHASEFITwas developed•tom_e a cubicS_ine

fitto the measuredvaluesof B(O),provide_ameansO_makingsmallad-

justmentstothe valuesof B(g)wherenecessary,perfo_the aboveilte-

gration,and plot the adjustedscatteringphase function. Scatte-lng

A-l

Page 56: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

TABLE A1MEASURED OPTICALPROPERTIES

Xnm c(m-I) a(m-I) b(m-I) B _o

450 20.30 3.69 16.61 .0363 .8182500 17.78 2.72 15.06 .0389 .8472550 15.85 2.09 13.76 .0381 .8684

Sample A1 600 14.33 1.83 12.50 .0398 .8726650 13.34 1.53 11.81 .0377 .8850700 12.70 1.64 11.06 .0416 .8707750 13.83 3.38 10.45 .0391 .7558800 12.56 2.93 9.63 .0394 .76678

450 27.54 6.42 21.12 .0686 .7668500 22.52 4.02 18.50 .0713 .8214550 18.86 2.71 16.88 .0707 .8566

Sample A2 600 16.39 2.09 14.30 .0700 .8727650 14.70 1.80 12.90 .0701 .8772700 13.42 1.74 11.68 .0743 .8703750 14.42 3.52 10.90 .0684 .7558800 12.67 2.96 9.71 .0703 .7667

450 11.28 1.52 9.84 .0256 .8648500 10.09 0.89 9.27 .0255 .9118550 9.30 0.64 8.64 .0250 .9314

Sample B 600 8.90 0.60 8.35 .0242 .9325650 8.56 0.52 8.05 .0231 .9395700 8,40 0.74 7.66 .0253 .9119750 10.17 2.96 7.19 .0243 .7089800 8.97 2.51 6.42 .0265 .7197

450 23.80 14.51 9.29 .0376 .3902500 16.81 8.51 8.30 .0349 .4935550 12.51 5.28 7.23 .0326 .5780

Sample G1 600 10.08 3.61 6.47 .0320 .6421650 8.45 2.43 4.71 .0312 .7129700 7.46 1.68 5.78 .0319 .7745750 8.67 2.96 4.24 .0278 .6590800 7.34 2.16 4.09 .0279 .7055

450 16.75 9.18 7.57 .0405 .4517500 12.70 5.16 7.54 .0358 .5934550 10.08 3.63 6.45 .0356 .6401

Sample G2 600 8.70 2.84 5.86 .0393 .6736 •650 7.70 2.14 5.56 .0331 .7227700 7.16 1.86 5.30 .0336 .7397750 8.62 3.45 5.17 .0299 .6000800 7.47 2.88 4.59 .0305 .6143

A-2

Page 57: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

TABLEA2 .... _....FIELD RADIANCEMEASUREMENTS..... :."-

Xnm EDIRECT(mW/nm• cm2) EDIFFUSE(mW/nm• cm2) L_(mW/nm.cm2.sr

450 588 229 6.6500 601 169 8.9550 634 120 13.0

SampleAI** 600• 647 97 15,7650 617 68 12,3700 521 51 8,6750 578 50 2.5800 614 46 2.2

450 478 245 4,7500 477 167 6,8550 515 113 11.4

SampleA2** 600 531 87 14.7650 503 62 14.2700 481 53 11.3750 534 53 3.3800 525 40 3.9

450 858 242 4.8500 845 176 8.0550 924 129 11.7

SampleB 600 920 116 11.4650 895 79 8.07OO 778 55 5.5750 693 46 1.6800 877 97 1,8

• >.• •• ••L• ,•

' 450 587 157 0,24500 537 123 0,55550 577 83 0.86

SampleG1 600 604 62 0,86650 581 47 1.38700 520 33 1.42750 537 41 0.78800 522 57 0.80

- 450 563 207 0.76500 576 162 1,09550 617 130 2.0

SampleG2 600 620 108 2.3650 600 85 2,5700 525 60 1.27750 563 65 1,09800 562 91

•Adjustedfor specularreflectanceof diffuseskylight(seepage5)

DiffuseIrradianceestimatedas discussedon page A-5.A-3 ......

Page 58: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

Table A3. VolumeScatteringFunction Valuesl

e, deg

450 500 550 600 650 700 750 800

O.37400E+00 .2291OE+04 .18513E+04 .15200E+04 .13121E+04 .11602E+04 .10748E+04 .92013E+03 .81765E+030,75100E+O0 .10597E+04 ,87983E+03 _73561E+03 ,63717E+03 ,46983E+03 ,52007E+03 .45532E+03 ,40436E+03O.14gOOE+O1. ,32157E+03 ,29253E+03 ,25272E+03 ,20373E+03 ,19423E+03 .18819E+03 ,14868E+03 ,14594E+03 "

0.25000E+02 .13148E+01 .11652E+01 .lO090E+O1 .81006E+00 .84078E+00 .81972E+00 .74429E+00 .68503E+00

0.30000E+02 .87680E+00 .74672E+00 ,64461E+00 .518S3E+00 .60061E+00 .51951E+00 .4687gE+00 .42658E+000.45000E+02 .34533E+00 .29349E+00 .24646E+00 .22350E+00 .lg8S7E+O0 .19513E+00 .17421E+00 .1S848E+00

0.60000E+02 .17677E+00 .1470gE+O0 .]2054E+00 .93635E-01 .95928E-01 .93077E-01 .83006E-01 ".74641E-01lple G10.75000E+02 .10361E+00 .86348E-01 .70173E-01 .62521E-01 .55166E-01 .53567E-01 .46572E-01 .42818E-01o.gooooE+02 .70098E-01 .58487E-01 .46996E-01 .41881E-01 .36888E-01 .35857E-01 .30776E-01 .28466E-01

0.10500E+03 .56984E-01 .46344E-01 .37289E-01 .33301E-01 .29171E-01 .28433E-01 .24349E-01 .22590E-010.12000E+03 .51971E-01 .42490E-01 .34019E-01 .31140E-01 .26875E-01 .26305E-01 .22682E-01 .02313E-01

0.13500E+03 .50916E-01 .42730E-01 .34300E-01 .31003E-01 .27355E-01 .26464E-01 .23013E-01 .20602E-01

0.15000E+03 .53154E-01 .45645E-01 .37218E-01 .30348E-01 .28154E-01 .29692E-01 ,25590E-01 .23585E-010.15500E+03 .55073E-01 .47155E-01 .39962E-01 .32442E-01 .33171E-01 .33271E-01 .28539E-01 .26132E-01

0.37400E+00 .29165E+04 .23864E+04 .20334E+04 .17858E+04 .15705E+04 .14848E+04 .13118E+04 .11956E+04

0.75100E+O0 .i3436E+04 .11446E+04 .9896gE+03 .89612E+03 .68245E+03 .76258E+03 .68474E+03 .63466E+03

0.14900E+01 .41647E+03 .37717E+03 .33900E+03 .27976E+03 1.24747E+03 .26750E+03 .21328E+03 .21131E+030.25000E+02 .11525E+01 .106SgE+OI .92917E+00 .85287E+00 .79504E+00 .74604E+00 .68896E+00 .61995E+000.30000E+02 .78956E+00 .71529E+00 .60928E+00 .5459gE+00 .50244E+00 .48047E+00 .44084E+00 .39039E+000.45000E+02 .31497E+00 .27459E+00 .23659E+00 .2392gE+00 .18892E+00 .18386E+00 .16374E+00 .14547E+00

0.60000E+02 .15758E+00 ._3648E+00 .11450E+00 .10374E+00 .92547E-01 .88175E-01 .75944E-01 .67938E-01_pleG20.75000E+02 .89777E-01 .79839E-Ol .67359E-01 .68072E-01 .52688E-01 .50625E-01 .44520E-01 .39260E-01

0.90000E+02 .61553E-01 .53477E-01 .44994E-01 .45430E-01 .35464E-01 .33732E-01 .29671E-01 .26465E-010.10500E+03 .48871E-01 .42679E-01 .35434E-01 .36533E-01 .28536E-01 .27178E-01 .23862E-01 .21514E-010.12000E_03 .44722E-01 .39268E-01 .33233E-01 .34561E-01 .26314E-01 .25351E-01 .22075E-01 .20103E-01

O.1350QE+03 .44668E-01 .39687E-O1 .33797E-01 .34548E-01 .27118E-01 .26183E-01 .22521E-01 .19989E-01O.15000E+03 .47680E-01 .42418E-01 .36595E-01 .33616E-01 .29906E-01 .29356E-01 .25076E-01 .22747E-01

0.15500E+03 .50327E-01 .453gOE-01 .40431E-01 .36986E-01 .32836E-01 .32602E-01 .27936E-01 .25823E-01

A-4

Page 59: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

t

•.., .. . >-= . • • ,.,. . . .

functionsgivenin figuresA1 throughA5 showthe finalfittedcurveand

• degreeof pointadjustment.

- The totalirradiancewas measuredby viewinga horizontalLamber-

tian 99% reflectorcoatedwith Eastman6080 white reflectancepaint.

Sincethe calculatedreflectanceis somewhatdifferentfor directand

diffuse irradiance,it was deemed necessaryto estimatethesetwo

componentsof the total irradiance. The procedureadoptedfor this

eatimationwas to assumethe sky radianceto be uniform(i.e.,isotro-

pic). Thus,the diffuseirradiancewas obtainedby multiplyingthissky

radianceby _,and the directirradiancewas obtainedby subtractingthe

diffusefromthe totalirradiance.

For Case Al the measuredverticalsky radianceexceededthe total

whitecard radianceand, therefore,the card radianceis an unrepresen-

tativemeasureof thediffusesky radiance. This effectmay have been

causedby the presenceof broken cloudsand/ora small solarzenith

anglewhichprovideda partialview of the solaraureole. The Case A2

sky radiancewas also foundto be high. In both casesthe diffuse

irradiancewas estimatedto be somefractionof the totalas prescribed

by Jerlov[2] fora particularwavelengthand solarelevationangle. In

all othercasesthe diffuseirradiancewas estimatedat _ times the

measuredverticalsky radiance.

A-5

Page 60: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

450 nm

500

550 nm

600 nm

650 nm

I0-2 1.8 x 102

LOGIo0 .. _

FigureAI. Volume scatteringfunctionB(B) versus scatteringangle B for sampleAl.Squaresare centeredon measureddata and crosseson adjustedvalues.

A-6

Page 61: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

450 nm

5OO

550 nm i _i

600 nm

10-2 ... 1.8 x 102

LOG100FigureA2. Volume scattering,functionB.(O)versus scatteringangle 0 for sampleA2.

' Squaresare centeredon measureddata and crosseson adjustedvalues.

• _:. • ...<

A-7

Page 62: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

450 nm

500

55O

600

650 nm

'00nm

750 nm

-21

1.8 x lO:_

LOGIo0

FigureA3. Volume ScatteringfunctionB (e) angle 0 for sample B' Squares arecenteredon measured dataand crosseson adjustedvalues

•" A-8

Page 63: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

450 nm

550 nm

600 nm

lO-2 l.8 x io2

. LOGl0e

FigureA4. Volume scatteringfunction _(0)versus scatteringangle 0 for sampleGl. Squares are centeredon measureddata and crosses on adjustedvalues.

A.-9

Page 64: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

nm

500 nm

55O

6OO

65O

tO0nm

750

800 nm

-2 l._ x lO2

• w

LOG10 e

FigureA5. Volume scatteringfunction B(B) versus scatteringangle e for sample G2.Squaresare centeredon measured data and crosseson adjustedvalues.

A-lO

Page 65: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

APPENDIXB .

SUPPLEMENTALMONTECARLORESULTS

FiguresBl.throughB6.provideadditionalcomparisonsof Gordon's

Power Seriesresultswith MonteCarlo simulationsversussolarzenith

angleand the singlescatteringalbedo, ..

B-l

Page 66: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

I0.0

500 nm D GPS 700 nm• MC 60D nm

u{--

•r-I _°_-

_. X

_°r._ _')

e-'-_

_E2. O.

,C

O,QI i I I i .I • I I

0 I0 30 50 70 9C 10 .30 50 70 9C 10 30 50 70 90

Solar Zenith Angle (Degrees)

FigureBI. Comparisonof Gordon's-PowerSeriesApproximation (GPS) with Monte Carlo (MC) ResultsversusSolar Zenith Angle for Sample Al. .

Page 67: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

2.5

500 nm oGPS 600 nm 700 nmmMC

2,0 .

u,_l"L-- I

• P i-_

"_ 1 5X • • •

e_ _--E_ (./1 _:,

•p • . .PP E

_ " " 1 0N

_ E€-- u . i I I

O.0 _ _ m m m m m,__ m_

0 I0 30 50 70 90 I0 30 50 70 90 I0 30 50 70 90

Solar Zenith Angle (Degrees)

FigureB2. Comparisonof Gordon's Power Series Approximation(GPS) with Monte Carlo Results (MC)•' versus Solar Zenith Angle for Sample G1

Page 68: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

P2.5

500 nm 600 nm 700 nma GPS a a• MC • •

Solar Zenith Angle (Degrees)

Figure B3. Comparisonof Gordon's Power Series ApprQximation(GPS) with Monte Carlo Results (MC)versus Solar Zenith Angle for Sample G2

Ira,, a Im

Page 69: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

I

(

l0° " i

- _=600 nm

i' .

+

1o-l-z.-- +u •

U

_ _

°_

= lO

.- t

- .

- f.

- t

.

I0-_ *• .._.

m

L

I0- ' ' m a m m msmi m )J; i aimm m I i I Iill1O-3 10-2 1O-I 10°

" X m= Bb(a + Bb)-I

, Figure B4. GPS Model (+) and Monte Carlo (*) PredictedAbove SurfaceHemisphericalReflectanceversus B_b(a+ Bb)-!. --Sunlight is direct from Zenith and Sample B OpticalPropertieswere assumed.

B-5

Page 70: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

lO ° --m . .

- k : 450 nm ,"_ _m

j .

- .I _F °

• .

. %._

io-I- &m

- .

U

_ .4._

._ .

" :=_I0-2. . "m ....- . I ......

,m,-

e-

E

" O.

I

10-_" ll llil 2 I 'I ' i l Jll -I' I_ l i I l J.ll0-3 10- I 10o

x = Bb(a + Bb) "I,e

Figure B5. GPS Model (+) and Monte Carlo (*) PredictedAboveSurface HemisphericalReflectancever._us •Bb(a + Bb)-'. Sunlight is Uirectfrom Zenithand Sample A2 Optical Propertieswere assumed. "-

Bo6

Page 71: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

lO ° _

J " X = 600 nm ,m

.- •

.

O F

•.• • . .

10-L__ ;(11 "ut-

, u

Ib

u I0e_

_J=: I

E.(lJ

.

.io-3. ,

i0"_4. ..I I I I I I II I I| I I I I II I I I I I I II

10-3 0-2 0-I i0o• !

x = Bb(a + Bb)-I "_

2 Figure B6. GPSModel (+) and Monte Carlo (*) Predicted Belo_v SurfaceHemispherical Reflectance versus Bb(a + Bb) "l.Sunlight is direct from zenith and sample G1 optical

properties were assumed.

B-7

Page 72: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

jI

11_i_p_ _ i_! fill •.... • I r _I

_I I_I I_I

I • II__?_ I • , i I iI

.... I ILII_ ¸

Ib

Page 73: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga

I. Report No. 2. GovernmentAccessionNo. 3, Recipient'sCatalogNo.

•NASA CR-165741 •

4. Title and Subtitle 5. Report Date

April 1981VERIFICATIONOF REFLECTANCEMODELS IN TURBID WATERS 6.PerformingOrganizationcode

7. Author(s) 8. Performing Organization Report No.

J 137000-39-FFred J. Tanis and David R. Lyzenga

10. Work Unit No.

• 9. PerformingOrganizationName and Address

EnvironmentalResearch Instituteof Michigan '11.Contractor Grant No.Post Office Box 8618 _ NASl-15512Ann Arbor, Michigan 48107

13. Type of Report and PeriodCovered

12. Sponsoring Agency Name and Address ContractorReportNationalAeronauticsand Space Administration ..Washington,DC 20546 14.SponsoringAgencyCode

15. _pplementary Notes

LangleyTechnicalMonitor - Lamont R. PooleAlternate- CharlesWhitlock

Final Report - August 1978_April198116. Abstra_

Field measurementsof inherentopticalparametersof very turbid waters were used toevaluateexisting water reflectancemodels. Measuredupwellingradiance spectraand Monte Carlo simulationsof the radiativetransferequationswere comparedwithresultsfrom models based upon two flow, quasi-singlescattering,augmentedisotropicscattering,and power series approximation. Each model was evaluatedfor threeseparatecomponentsof upwellingradiance (1) direct sunlight,(2) diffuse skylight,and (3) internallyreflectedlight. Limitationsof existingwater reflectancemodelsas appliedto turbid waters are discussedas well as possibleapplicationsto theextractionof water constituentinformation.

8

i

17. Key Words (Suggestedby Auth.(s)) 18. Distribution Statement

Monte Carlo Simulation

Water ReflectanceModels Unclassified' UnlimitedInherentOptical Properties

UpwellingRadianceSpectra SubjectCategory43

19. SecurityOa=if. (of thisreport) _. SecurityClassif.(of this _ge) 21. No. of Pages 22. _ice7O

Unclassified Unclassified A04

N-30S F_salebytheNati0_lTechnicallnf0rmati0nService.Sprin£field,VirRinia22161*

Page 74: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga
Page 75: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga
Page 76: VERIFICATIONOFREFLECTANCE · 2020. 3. 21. · 3 1176 00167 3079 ' :.. nasacontractorreport165741verificationofreflectance modelsin turbidwaters fred j. tanis and david r. lyzenga