Vector and Tensor+Note

56
   i   c   s Advanced Fluid   e   c    h   a Mechanics    F    l   u    i    d Presented by: Prof. Rashtchian   a   n   c   e    d Designed by: F . Bayati    A    d T. Hamzeloueian A. Noorjahan E. Vafa (Summer 2007) 

Transcript of Vector and Tensor+Note

Page 1: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 1/56

   i  c  s Advanced Fluid   e  c   h

  a

Mechanics

   F   l  u   i   d

Presented by:

Prof. Rashtchian

  a  n  c  e   d

Designed by:

F. Bayati

   A   d T. Hamzeloueian 

A. Noorjahan E. Vafa

(Summer 2007) 

Page 2: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 2/56

بردار چيست؟

   i  c  s

يزي ي: ف  ياه تيم 

جرم ،حجم ،درجه حرارت ،فشار ،حرارت مخصوص-

  e  c   h  a

 ع د م ص مي و  ه   بوسي ه ي 

-سرعت  ،نيرو ،مومنتوم،  گراديان درجه حرارت

) vectorبوسيله هم مقدار و هم جهت مشخص ميشوند(•

   F   l  u   i   d

δ1V1 δ2V2 δ3V3 

 تنسور چيست؟

  a  n  c  e   d

 جزء از  قبيل:  9بوسيلهτيك تنسور درجه دوم

   A   d

  بصورت زير  نشان داده ميشود.bookkeepingمشخص ميشود  ،كه فقط  به خاطر 

11 12 13 21 22 2331 32 33  

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 3: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 3/56

   i  c  s

 م ه ي

11 و

22 و

33  بي   ر

 م ه ي دي  و  ي دي و

 م ه    ر

12 و

13 و

21ر ...  و

المانهاي غير ديگاونال  گويند.

  e  c   h  a

 س    ير  ر    ر

 ي    س   

τ12اينصورت تنسور را  آنتي سيمتريك  گويند. ( τ21و τ13 τ31و τ23 τ32.(

   F   l  u   i   d scalarو vector.دنتسه روسنت زا يصاخ تلاح 

 د ه د. 3دا ا nنس  اهد  خ ناملا 

  a  n  c  e   d

 

Scalar ~ tensor of  order 0  (

30 1) 

   A   d

 

Vector ~ tensor of  order 1  (31 3) 

Tensor of  order 2  (32 9) 

3  

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 4: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 4/56

Properties

   i  c  s  

‐nd nd

  e  c   h  a

  . 

2‐  If  m = scalar, Aij = 2nd order tensor then mAij is a 2

nd order tensor. 

3‐  Symmetric tensor: 

A = ‐ A

   F   l  u   i   d 4‐  Antisymmetric tensor: 

Aij = ‐ Aij 

5‐  Aij + A ji 2nd order symmetric tensor 

  a  n  c  e   d 6‐  Unit tensor   (2

nd order) 

1 0 00 1 0

  or KRONECKER DELTA 

   A   d

 هستند. δ3و δ2وδ1در واقع ستون ها و رديف هاي يك تنسور درجه دو واحد اجزاء سه  بردار واحد يعني 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 5: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 5/56

Vector operations from an analytical viewpointاحد    د ه د  تتنس  ان  ا استفاده ا ت م ا  ت م ا  ا ل م ف    ا خ ل 

)Kronecher deltaه د  تنس  (

   i  c  s

،دحاو هس)The alternative unit tensor or Levi Civita tensorفيرعت ريز تروص هب  هك (

ميشوند  ،بشكل خالصه  نوشت:

  e  c   h  a

0

 

1 123,231,312

   F   l  u   i   d

1 321,213,132

0 any two indices are alike  a  n  c  e   d  ميتوان  بصورت زير  نوشت: زير را  با استفاده از به عنوان مثال دترمينان

11 12 1321 22 2331 32 33 123 123

3

k

33

   A   d   بردارهاي واحد را ميتوان  بصورت زير  نوشت: crossوscalarحاصلضرب

.    3

  k1 or Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 6: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 6/56

   i  c  s

 در يك جمله يا ترم تكرار شود  ،آن جمله يا ترم  بايد  به اندازه تكرار ممكن  آن)i,j,kمثلsuffixوقتي يك (

  e  c   h  a

su x.دوش را ر ت  

..     3 ; j 1,2,3 

   F   l  u   i   d  كه ميتوانم چنين  بنويسيم:

    ; Repeated suffix  Free suffix  

  a  n  c  e   d

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 7: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 7/56

Definition of  a vector and its ma nitude the unit vector

   i  c  s

 

δ V δ V δ V δ V3    e  c   h  a

i1  δVi  

   F   l  u   i   d

ن  هستند.  , ,x,y,zبرد ره ي و حد در جهت محوره ي 3و 2و 1ه در 

2 2 2 3  a  n  c  e   d i1  

 بردار 

ودو 

:

گار 

 گويند 

مساوي 

را 

   A   d 1 1 , 2 2 , 3 3 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 8: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 8/56

در ارتباط  با  بردارهاي واحد ميتوان  نوشت:

   i  c  s δ1. δ1 δ2. δ2 δ3. δ3 1

 

δ1. δ2 δ2. δ3 δ3. δ1 0 

  e  c   h  a

 

δ1 δ2 δ3 و δ2 δ3 δ1   و δ3 δ1 δ2  

   F   l  u   i   d

2 1 3 3 2 1  1 3 2 

  a  n  c  e   d ommen 

1‐  A repeated suffix is known as a DUMMY suffix it may be replaced by any 

other suitable symbol 

   A   d e. g.      

 

2‐  Don’t use any suffix more than twise 

. . is meanin less3‐  11 22 33 12 22 32 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 9: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 9/56

   i  c  s

Applications   e  c   h  a

 1‐

 Equations of  motion of  a viscous fluid 

   F   l  u   i   d

1 1 11 2 12 3 13 1 112 122 132 1  2 2 2 2 1 22 22 22

  a  n  c  e   d 1 1 2 2 3 3 2 12 22 32 2

 

3 1 3 2 3 3 3 1 2

3 2 2

3 2 2

3 2 3 

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 10: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 10/56

   i  c  s

1‐  1 1 2 2 3 3   

  e  c   h  a  

2‐  1 1 2 2 3 3  

   F   l  u   i   d

    3‐  12 22 32 2 

  a  n  c  e   d   .   1,2, … .

4‐   .  1 . 1  2 . 2  3 . 3

 

   A   d  

5‐    . 1 . 1 2 . 2 3 . 3  

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 11: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 11/56

   i  c  s

e vec or  eren a  opera on

 

  e  c   h  a  known as “nobla” or “del”

1 1 2 2 3 3 

   F   l  u   i   d

 

 

 

  a  n  c  e   d  

S 11 2

2 3

3    A

   d 

S  

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 12: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 12/56

   i  c  s

The divergence of  a vector field

  e  c   h  a

. .     

   F   l  u   i   d  

  . .      a  n  c  e   d

  

 

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 13: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 13/56

   i  c  s ro uct

 nvo v ng

 

  e  c   h  a

 

 

   F   l  u   i   d

111 212 313 1 

121 222 323 2    a  n  c  e   d  

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 14: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 14/56

   i  c  s

 

  e  c   h  a

  The gradient of  a vector field is a tensor 

1 2 3   F   l  u   i   d

1 1 112 22 32

 

  a  n  c  e   d 13 23 33   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 15: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 15/56

   i  c  s

e  ap ac an o  a sca ar  e

 

  e  c   h  a

.S .     

   F   l

  u   i   d

  2  

  a  n  c  e   d 2

2

   

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 16: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 16/56

   i  c  s

 

line is given the symbol 2, 

hence in the rectangular coordinate: 

  e  c   h  a

2 212 222 232 

   F   l

  u   i   d

 

2 1 12 22 22 

  a  n  c  e   d In the spherical coordinate: 

2 1 2 1 sin 1 2

 

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 17: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 17/56

Curvilinear Coordinates

   i  c  s

  e  c   h  a

   F   l

  u   i   d

  a  n  c  e   d

   A   d

Page 18: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 18/56

   i  c  s

escr p on o  a  u   mo on

 

  e  c   h  a The development of  an analytical description of  fluid flow is based upon the 

expression of  the physical laws related to fluid flow in a suitable mathematical 

form. 

   F   l

  u   i   d

To discuss the motion of  a fluid we need to look at its prosperities. If  S represents 

some scalar property of  the fluid (concentration, temperature, etc.) then it will be 

a function of  its co‐ordinates x1, x2, x3 written as xi (i=1, 2, 3) and time t. 

  a  n  c  e   d 1 , 2 , 3 , ,  

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 19: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 19/56

Time derivatives 

   i  c  s

  ,  , 

1 1 2 2 3 3  

  e  c   h  a

 being the time rate of  change of  S. 

The derivatives 

  i  =1   2   3   have no meanin   without definition since both x and t are inde endent 

   F   l

  u   i   d

variable. 

If  taken to represent the velocity of  the fluid, 

  and the time rate of  change of  S relative to the 

moving fluid is 

  a  n  c  e   d written as  

Where the operator 

  is described as differentiation following the fluid motion or 

   A   d “substantial derivative”‐ imagine an observer riding on the fluid particle and continuously measuring S. 

however if  S is temperature it is not practical to measure the temperature of  the fluid with some device, 

which moves with the fluid. 

  ,  i  . 

 

the local change measured  . 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 20: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 20/56

Three kinds of  time derivatives

   i  c  s

1‐ 

The partial time derivatives;  2‐  Total time derivatives; 

 

  e  c   h  a

‐  u s an a  me  er va ve;  

   F   l

  u   i   d

.  

 

 

  a  n  c  e   d .    

 

 

 

   A   d    

   

 

terms;  equat ons,  : repeate   su x,  :  ree su x 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 21: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 21/56

   i  c  s يك ميدان جريان  بوسيله معادله زير ارائه شده است:مثال -

  e  c   h  a

, , 22

  بدست  آوريد؟1,2,3سرعت و شتاب يك ذره را در مختصات

   F   l

  u   i   d  1,2,3 2 24 

, ,    a  n  c  e   d 4 224 4 4 4 

1,2,3 8 252   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 22: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 22/56

The differential momentum balance

   i  c  s

Newton’s second law applied to an element of  fluid 

1 ; , , components of force vector   e  c   h  a   نوشت:rate of  change of  momentumرابطه فوق را ميتوان  بصورت

1    F   l

  u   i   d

;  

  a  n  c  e   d 1

 

   A   d  نرا  به دو  نيرو  به  xنشان دهنده منتج تمام  نيروهاي موثر در جهتا ر  ه    باشد ،مناسب خواهد  بود  ان سيا م ا  رب  

صورت زير تقسيم  كنيم:

‐ 2‐  Mechanical stresses 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 23: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 23/56

   i  c  s

 

  e  c   h  a   بر  كل اعمال ميشود و  آنرا ميتوان  بصورت زير  نشان داد: (body force)نيروي  بدني

     F   l

  u   i   d

.  و جهت اثر  نيروي ثقل است   xزاويه  بين جهت βكه

  a  n  c  e   d

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 24: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 24/56

Stress

   i  c  s

Linear momentum principle 

The time rate of  change of  momentum of  a body = force acting on the body 

  e  c   h  a   = body forces + surface forces

The forces acting on a body are either internal or external. To discuss the internal forces 

consider a small element of  area . Define the outward pointing normal to be positive. 

   F   l

  u   i   d

 

Assume that the outside material touching the

surface exerts a forces on the inside material across

an element of area, where is a vector which is a

  a  n  c  e   d

function of position, time and orientation of the

element. is called the stress force/unit area or

simply the stress. is a vector so called stresses act

   A   d on an area that may in general have components in

each direction. has components normal to (normal

stresses) and parallel to (shear stresses).

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 25: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 25/56

STSTIC STRESS IN A FLUID IS ISOTROPIC

   i  c  s

Consider a small tetrahedron with three of  it’s faces through P and normal to the co‐

ordinate axes, and the fourth face normal to a given direction n i  

  e  c   h  a

 

STSTIC STRESS ON A TETRAHEDRON 

   F   l  u   i   d

 

  a  n  c  e   d

 

   A   d

 

Momentum Balance 

Rate of  change of  momentum=Body Forces + Surface Forces 

0 =  333322221111nnn δAτeδAτeδAτenδδτρgδV −−−+  

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 26: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 26/56

Areas of  co‐ordinate  lanes are  ro ection of  the obli ue  lane onto co‐ordinate  lanes  

   i  c  s

so 

111. A An δ δ  = 

and 

ini A An δ δ  =. 

Also,  0 ⎯→ ⎯ n A

V δ 

δ   as   ⎯→ ⎯ n Aδ  0 

  e  c   h  a

  =333322221111

eeennn

−−− 

But  n=−−−

++ 332211 enenen  

   F   l  u   i   d

Hence 0= ...)( 1111 +−−

τ τ nnne

  332211τ τ τ τ  ===

nn  

  a  n  c  e   d i.e. the normal stress acting on a surface is independent of  the orientation of  the plane 

for fluid at rest. 

We associate this stress with the static pressure. As the stress acting the element in the 

direction of  the outward normal  i.e. tension   we write 

   A   d  

 P −===332211

τ τ τ   

i.e. ijij P δ τ  −=   for fluids at rest. 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 27: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 27/56

FLUID STATIC’S 

   i  c  s

e n on 

A fluid deforms continuously under the action of  a shear stress. 

Thus no shear stress can act normally to any surface within the fluid at rest. 

  e  c   h  a All stresses act normally to any surface within the fluid. 

Thus 

)(0 jiij ≠=τ  (shear 

stress 

zero) 

It can be shown (see handout) that, ”the normal stress acting on a surface at a point is 

   F   l  u   i   d

  .

 

i.e.   P −=== 332211 τ τ τ   

δ τ  −=   01 ii ≠=== δ δ 

  a  n  c  e   d

 

Definition 

   A   d The pressure at the point in a fluid at rest 

is stress that acts on a surface in a direction 

opposite to the normal vector. 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 28: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 28/56

   i  c  s Newton s

 

aw 

(applied to a parallelepiped of  sides  321 ,, x x x δ δ δ    ). 

  e  c   h  a {rate of  change of  momentum}={body forces} 

In 1 direction 

   F   l  u   i   d

 

321132110 x x x x x g  δ δ τ δ δ δ  ρ  += |11 x x δ + 3211 x x δ δ τ − |

1 x  

  a  n  c  e   d Hence in the limit  01 → xδ   

11

111

 x x g 

∂=

∂= ρ   

 j

 p g 

∂= ρ   

   A   d  

 j

This is a vector equation. It summaries 3 equations, 1 for each coordinate drin. 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 29: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 29/56

Fluid Dynamics 

   i  c  s This is concerned with fluids in motion, in particular the application of  Newton’s 

Second Law to an element of  fluid. Any element will deform, in general, and 

  e  c   h  a

c ange s ape.  e ra e o   c ange o   momen um mus   e  or a spec c e emen , 

no matter how it deforms subsequently. The appropriate derivative must follow 

the fluid motion‐substantial time derivative. 

   F   l  u   i   d

  Local + Convective = body force + pressure force + viscous force

 

Mathematically 

  a  n  c  e   d

i

i

dt t 

udx

 x

udU 

t  x x xU U 

∂+

∂=

=

111

32111 ),,,(

 

   A   d

  i

i x

uu

u

dt 

du

∂∂

+∂∂

= 111

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 30: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 30/56

Consider a parallelepiped  δx,δx,δx are stress forces acting in 1 direction of  

   i  c  s

this fluid element in a fluid motion are shown in figure Apply Newton’s Second law to the element in the 1 direction 

+= δ xδ xδ x.uδ xδ xδ x D

 Surface force

  e  c   h  a    Dt 

The mass considered in the element =  .δ xδ x ρδ x321

  is constant. 

   F   l  u   i   d

  a  n  c  e   d

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 31: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 31/56

   i  c  s

 volumeunit

forcesurfaceXDt

Duρ 11 +=

 

  e  c   h  a  

volumeunit

forcesurface

=

   F   l  u   i   d  

321

21x31δxx3131x21δxx2132x11δxx11

δxδxδx

333222111−−− +++  

( ) j1312111 ττττ ∂=∂+∂+∂=

  a  n  c  e   d  

Du ∂   A   d

  ji

 ji τ

xx

Dtρ

∂+=  

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 32: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 32/56

   i  c  s Body force 

Usually due to gravity  ii g  X  ρ = 

  e  c   h  a

 

Stress 

force 

Stress forces include a contribution from a static pressure force and the rate of   strain 

‘ ’

   F   l  u   i   d

  . 

the following equation. 

 ji ji jiP  σ δ τ  +−=   where 

 ji

 P δ  = the pressure contribution to the stress tensor(normal)

=

  a  n  c  e   d  ji

  , 

dynamic contribution is given by Newton’s Law of  viscosity (the derivation of  which is 

beyond the scope of  this course). 

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 33: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 33/56

   i  c  s

⎪⎭

⎪⎬⎫⎪⎩

⎪⎨⎧∂∂+

∂∂=

 j

i

i

 j

 ji x

u

 x

uμ σ 

 for constant  ρ  

  e  c   h  a

 

It 

is 

interesting 

to 

calculate 

the 

trace 

of  

the 

tensor 

 jiτ  

by 

the 

contraction 

 j=I. 

iiiii

u P 

∂+−= μ δ τ  2   and 

iu∂ = 0  for constant  ρ  from continuity

   F   l  u   i   d

i x i x

Eq.   P ii −=3

τ  

The trace of  a tensor is a scalar, in this case of  magnitude ‐3p. 

  a  n  c  e   d Hence substitution in above equation,

 

⎫⎪

⎡ ∂+

∂+−

∂+= i j

 jii

i uu P  g 

 Duμ δ  ρ  ρ   

   A   d  

 ji j

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 34: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 34/56

   i  c  s

Now 

i

 ji

 j x P 

 x ∂−=−

∂δ    [ 1= jiδ    only if   j=i]

 

2

  e  c   h  a Assume constant density ;  0=⎟

 ⎠

⎝ ∂∂

=∂∂ j

i

i ji x x x x [see cons. Of  mass]

 

2

   F   l  u   i   d Hence 

 j j

i

i

i

 j

i j

ii

 x x x g 

 xu

t  Dt  ∂∂+

∂−=

∂+

∂=

 ρ  

  a  n  c  e   d (Local +convective) acceleration = 

massunit 

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 35: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 35/56

   i  c  s

 

  e  c   h  a

.  n nown  n nown 

1  Pressure: P 

3  Velocity:  iu  

9  Stresses:  iτ   

   F   l  u   i   d

 9−   Newtonian equation and viscosity 

+ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

  a  n  c  e   d

 

Thus we need four equations for determining P and iu , continuity equation and  three 

motion equations. 

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 36: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 36/56

Simple Solution of  the N‐S Equations

   i  c  s

 

Consider laminar flow down a vertical wall, 

  e  c   h  a

 

(i)  Steady flow  0=∂

ui 

(ii)  Two dimensional  0,0 3 ==∂

uui

   F   l  u   i   d

3 x

(iii)  Suppose the flow is fully developed 

00 1 =∂=∂ uui

  a  n  c  e   d   11 ∂∂

 

(iv)  By continuity  0

1

1

2

2 =∂

∂−=

 x

u

 x

   A   d   Integrating  u2 = u2(x1) 

At x2 = 0  u2 = 0 

u2 = 0  everywhere 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 37: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 37/56

   i  c  s

v   omen um equa on  n  rec on  s zero. 

(vi)  Momentum equation in 2 direction 

⎪⎫⎪⎧ ∂∂∂−=

∂∂∂ 22

22

222 1 uu puuu

  e  c   h  a

 

⎪⎭⎪⎩ ∂∂∂∂∂∂ 21

22221 x x x x xt  ρ 

  Steady  developed  u2=0  u

2 = 0  developed 

 p==

   F   l  u   i   d

 

2 x∂

(vii)  At liquid surface (still air)  10 x g  p p air  ρ +=  

(viii)  Momentum equation in 1 direction. 

  a  n  c  e   d

   g  x

u

 x

u

 x

 p

 x

uu

 x

uu

u+

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

∂+

∂+

∂∂

−=∂∂

+∂∂

+∂∂

221

2

21

12

12

12

1

11

1 1υ 

 ρ  

Steady  developed  u2=0  developed 

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 38: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 38/56

 With   g  ρ x

 pair 

1

=∂∂

   i  c  s

 

⎭⎬⎫

⎩⎨⎧ −−=+−=  ρ

 ρ1 g  g  ρ

 ρ g dxud υ air air 22

1

2

 

But   ρ ρ ρ liquid air  =⟨⟨ 

  e  c   h  a  

 g dxud 21

2

−=ν   

   F   l  u   i   d

 

Boundary conditions;  at  x2 = 0  u1 = 0 

at  01 == du x δ    No interfacial shear 

  a  n  c  e   d 2 x

Integrating   g δcc gxdx

duυ 2

2

1 =+−=  

2

   A   d  

⎪⎭⎬

⎪⎩⎨ ⎥⎦⎢⎣

−⎥⎦⎢⎣=

⎪⎭⎬

⎪⎩⎨ −−= 2222

21δ

 x

 x g δ

2

 xδ x g uυ  

δ 3 g δ

Volumetric 

flow 

rate 

==

021 3ν

 xu 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 39: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 39/56

Flow Between

   i  c  s

ara e  ates 

  e  c   h  a At x2 = ± h  u1 = 0 

Pressure gradient: 

⎤⎡ ∂p

   F   l  u   i   d

 

⎦⎣∂ 1x  1 .

Steady flow:  0=

ui ; 

  a  n  c  e   d  2 dimensional:  0u0;

x3

3

==∂

Fully developed flow,  before)(as0u0x

u0;

x

u0;

x

u2

2

2

1

1

1

i ==∂∂

=∂∂

=∂∂

 

   A   d

Continuity is satisfied, 

Momentum in 3 direction is satisfied, 

Momentum in 2 direction, 

ii222 xgρpPwherexρgxρ0 −=∂−=+∂−=  P = P(x1) 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 40: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 40/56

   i  c  s

. . 

Momentum in 1 direction 

2

  e  c   h  a   ii2

2

11

1

 x g  ρ p P  x

υ g  x ρ

0 −=∂

++∂

−= where  

12 dP 1ud 

   F   l  u   i   d

 

c}{xdP 1duυ 21 +⎥⎤⎢⎡=  

122

dx ρdx=

  a  n  c  e   d  

12

 

 D}cx

2

 x{ 

dx

dP 

 ρ

1uυ 2

22

1

1 ++⎥⎤

⎢⎡

=  

   A   d

 

 }h{xdx

dP 

u2

1u 22

21

1 −⎥⎦

⎤⎢⎣

⎡=  

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 41: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 41/56

3.  Suppose top plate moves with velocity UT 

Bottom plate with velocity UB 

   i  c  s

  Substituting in (1) 

⎭⎬⎫

⎩⎨⎧

++⎥⎦

⎤⎢⎣

⎡= DCh

h

dx

dpU T 

2

1 2

1 ρ  ρ 

μ  

  e  c   h  a

⎬⎫

⎨⎧

+−⎥

⎤⎢

⎡= DCh

h

dx

dpU  B

2

12

1 ρ  ρ 

μ  

{ } Dhdp

U U   BT  2)(2 +⎥

⎤⎢⎡

=+μ   

   F   l  u   i   d

 x1

{ }Chdx

dpU U   BT  2)(

1

⎥⎦

⎤⎢⎣

⎡=−μ   

⎫⎧ −⎫⎧ −⎤⎡⎫⎧ + xU U h xdpU U   BT  BT  )(1)( 2

22

2

  a  n  c  e   d ⎭⎩⎭⎩⎦⎣

=⎭⎩

−hdx

u222 1

1μ 

 

Check  when  UT = UB=0  simplifies to previous expression 

when  x2 = + h  u1 = UT  satisfies B.C.'s 

   A   d   x2 = ‐ h  u1 = UB

 

when  0=⎥⎦

⎤⎢⎣

⎡dx

dp 

h

 xU U U U u BT  BT 

2

)(

2

21

−+

⎭⎬⎫

⎩⎨⎧ +

=  

i.e.  linear velocity profile 

known as Couette flow 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 42: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 42/56

The following velocity profiles are obtained with various (dp/dx)

 

   i  c  s

 

  e  c   h  a  

   F   l  u   i   d

 

  a  n  c  e   d Consider flow relative to lower plate.

 

If   p  decreases in direction of  flow (normal pressure gradient) 

Velocity is always downstream relative to lower plate 

   A   d

 

If   p  increases in direction of  flow (adverse pressure gradient) 

Velocity may become upstream relative to lower plate 

s  as  mpor ance  n  u r ca on  eory.

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 43: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 43/56

Plate suddenly brought into motion 

   i  c  s

 

  e  c   h  a

 

   F   l  u   i   d

 

Plate 

AB 

initially 

stationary. 

Motion 

with 

velocity 

starts 

at 

time 

t=0 

B.C's  t < 0  u1 = 0  at x2 > 0 

  a  n  c  e   d   t ≥ 0  u1 = U  at x2 = 0 

∞→→ 21 xat0u  

Momentum equation in 2 directions 

⎫⎧∂∂∂∂∂∂

22

uu1uuu

   A   d ⎪⎭⎪⎩ ∂

+∂

+∂−=∂+∂+∂ 22

2122

21

1xx

νxρx

ux

ut

Assuming an infinite plate and 2D motion 

0u0u

0u

221 =∴=

∂∴=

0x

p

2

21

=∂∂∴

 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 44: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 44/56

i.e.  pressure remains hydrostatic

   i  c  s

 

011

=∂∂=

∂∂

 x

 P 

 x

 p 

  e  c   h  a Momentum equation in 1 direction 

⎬⎫

⎨⎧ ∂

+∂

+∂

−=∂

+∂

+∂

2

1

2

2

1

2

12

11

1 1 uu puu

uu

uυ   

   F   l  u   i   d

21121 x x x x x

 

00001

1

12

1

1 =∂∂

=∂∂

==∂∂

 x

u

 x

 P u

 x

2

  a  n  c  e   d

22

11

 x

u

u

∂=

∂υ   

c.f. equation in maths course 

   A   d

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

−=t 

 xerf  

u

υ 21 21

 

er   = .   er ∞ = .

 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 45: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 45/56

Conservation of  Momentum 

   i  c  s

 

Consider parallel piped  321 ,, x x x δδδ   fixed in space. Carry out a momentum balance in the i direction. (Say 1 direction) 

{ }321i δ xδ xδ xu ρ∂

⎫⎧ momentumldirectionaiof onaccumulatiof Rate

  e  c   h  a 321 δ xδ xδ x

=⎭⎩ volumeunit

 

δ x xi321 xi321

δ xδ xδ x

uδ xδ xu ρuδ xδ xu ρ11i +−

=⎬⎫

⎨⎧

volumeunit

convectionbymomentumldirectionaiof inflowof RateNet 

   F   l  u   i   d   + …  + 

 )uu(  ρ

 x

ji

 j∂

∂−=  

  a  n  c  e   d

321 δ xδ xδ x=

⎭⎬

⎩⎨

volumeunit

 

 x321iδ x x321i

δ xδ xδ x

δ xδ xτ δ xδ xτ 11i

−=⎬

⎫⎨⎧ +

volumeunit

stressestoduedirectioniinelementonactingForce 

   A   d   +  …  + 

)(  ji j x

τ∂∂

−=  

∂   ji ji

 j

 p

 x

σ+−

−=  

)(  ji ji x x

 pσ

∂∂

+∂∂

−=  

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 46: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 46/56

∂∂∂∂

   i  c  s

ence.   ji

 ji

i ji

 j

i

 x x

 g uu

 x

u

σ

+

−ρ=ρ

∂)()}({  ji

ii jii

 ji

i

 x x

 p g u

 xu

 pu

 x

uu

∂∂

+∂∂

−ρ=ρ∂∂

+∂∂

+∂

∂ρ+

∂∂

ρ  

  e  c   h  a

)(  ji j

ii

i

 x

 g 

 x

 p

 Dt 

 Duσ

∂+ρ+

∂−=ρ  

   F   l  u   i   d

Multiply by ui 

i ji jiiiiiiii  x

uu xu g  x

u P  P u xuut 

 D

∂∂

σ−σ∂∂

+ρ=∂∂

+∂∂

−=ρ )()()2

1(  

  a  n  c  e   d

 

Equation of  mechanical energy (scalar) 

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 47: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 47/56

Ener   E uations 

   i  c  s

 Momentum Equation 

 p ∂∂∂∂

  e  c   h  a i

 jii ji

 ji

 x x xt  ∂∂−=

∂∂

)()}({  ji ji

i j j

ii j

 ji

i

 x x p g u

 xu

t  pu

 xuu

t u σ

∂∂+

∂∂−ρ=ρ

∂∂+

∂∂+

∂∂ρ+

∂∂ρ  

   F   l  u   i   d

 

Continuity Equation 

u D ∂∂∂

  a  n  c  e   d

 ji

 j x Dt eu

 xt  ∂ρ−==ρ

∂+

∂..

 

)(ii

i  g  p Du

σ∂

+ρ+∂

−=ρ  

   A   d  

 ji x

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 48: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 48/56

Multiply by ui: 

   i  c  s

 

 j

i ji jii

 jii

i

ii

iii

 x

uu x

u g  x

u p pu x

uu Dt 

 D

∂∂σ−σ

∂∂+ρ+

∂∂+

∂∂−=ρ )()()

2

1(  

  e  c   h  a   Physical Interpretation 

(1)  )}({2

1)}

2

1()

2

1({)

2

1(  jiiii jiiii u

 puuuuuuu

t uu

 Dt 

 Dρ

∂∂

+∂∂

+∂∂

+∂∂

ρ=ρ  

   F   l  u   i   d

 

)2

1()

2

1(  jii

 jii uuu

 xuu

t ρ

∂∂

+ρ∂∂

=  

= {Rate of  increase of  kinetic energy/ unit volume} + {Net rate of  kinetic energy/volume} 

  a  n  c  e   d

 

(2)  =∂∂

− )( pu x

ii  

{Rate of  work done on element by pressure forced per unit volume} 

D

u ˆ

)1

(

   A   d

(3)  ==ρ=⎥⎦⎢⎣ρ−=

∂v

 Dt v Dt  p

 Dt  x p

i ˆspecific volume (i.e. per unit mass)

 

U  D ˆ

ˆ

1= =[ rate of  conversion to internal energy / unit volume] 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 49: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 49/56

(4)  ii u g ρ = [Rate of  work done by gravity forces per unit volume] 

   i  c  s

 

(5)  =σ∂∂ )(  jii j

u x

 

[Rate of  work done by stress forces per unit volume] 

  e  c   h  a   By difference 

(6)  ii ji ji

u

 x

u

 x

u

 x

u

∂∂

∂∂

+∂

∂μ−=

∂∂

σ− ][   (see tutorial 1) 

   F   l  u   i   d   = [Rate of  conversion to internal energy due to viscous dissipation / unit volume] 

This is the equation of  mechanical energy (No.2) It states that

  a  n  c  e   d

 

[Rate of  accumulation of  kinetic energy / unit volume]= [Sum of  rates of  work done by 

pressure, gravity and stresses / unit volume]  – [Rate of  conversion to internal energy / unit 

volume  

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 50: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 50/56

   i  c  s

 

  e  c   h  a

ons er  e para e ep pe   o   s e  321 x x x

The first law of  thermodynamics will be applied

 

[Rate of  accumulation of  internal and kinetic 

   F   l  u   i   d energy] = [Net rate of  internal energy gained by 

convection and conduction] + [Net rate of  work 

done 

on 

the 

system 

by 

surrounds] 

  a  n  c  e   d

[Rate of  accumulation of  internal and kinetic energy / unit volume] = 

   A   d 321

2

321 /}]2

1ˆ{[ x x xV U  x x xt 

δ δ δ δ δ δ  ρ  +∂∂

 

= [net rate of  internal and kinetic energy in by convection / unit volume] 

Chemical & Petroleum Engineering Department

Sharif University of Technology

[Rate of accumulation of internal and kinetic energy / unit volume] = 3212

321 δxδx}]/δV1

U{δxδxδx[ρ ×+∂ ˆ

Page 51: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 51/56

[Rate of  accumulation of  internal and kinetic energy / unit volume] 321321 δxδx}]/δV2

U{δxδxδx[ρt

×+∂

 

⎤⎡ 11 ˆˆ

   i  c  s

=

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

+−+

=⎥⎥⎥⎦⎢

⎢⎢⎣

+→ 321

δxx321

x321

0δx δxδxδx

V2

UxxρuV2

Uxxρu

Lim

volumeunit/convection

 byinenergykinetic

 andinternalof  ratenet

111

i

 

  e  c   h  a +

⎥⎥

⎦⎢⎢

⎣++

−=⎥

⎦⎢⎣

+

→...

δxδxδxLim

volumeunit/conduction

 byinenergyheatof  ratenet

321

32δxx1x1

0δx

111

i

 

+ ⎥⎤

⎢⎡

++=⎥⎦

⎤⎢⎣

→...ρ

δxδxδx

δxδxδxguLim

volumeunit/forces

 gravitybydoneworkof  ratenet

321

32111

0δx i

 

   F   l  u   i   d +

⎢⎢

⎡ −=⎥

⎤⎢⎣

⎡ +

→ 321

x32111δxx32111

0δx δxδxδx

δxδxτuδxδxτuLim

volumeunit/forcesstressby

 doneworklof  ratenet111

i

 

x32122δxx32122 δxδxτuδxδxτu111

−+

  a  n  c  e   d

 321 δxδxδx

 

+321

x231211δx2x231211

δxδxδx

δxδxτuδxδxτu −+  

+ … +

   A   d

+ … + … + ]

)τu{x

guρx

q)}V

2

1U(u{ρ

x}}V

2

1U{ρ

tjii

 jii

i

i2i

i

2

∂∂

++∂∂

−=+∂∂

++∂∂ ˆˆ{  

)σ(up)u{guρq

)}V1

U(D

ρ{)}u(ρρ

){V1

U(  jiiiiii2

i2 ∂

+∂

−+∂

−=++∂

+∂

+ ˆˆ  xxxx  jiii

)σ(ux

p)u{x

guρx

q)}V

2

1U(

Dt

Dρ{  jii

 ji

iii

i

i2

∂∂+

∂∂−+

∂∂−=+ˆ  

Chemical & Petroleum Engineering Department

Sharif University of Technology

Equation of total energy

Page 52: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 52/56

Equation of  total energy

   i  c  s

Subtract equation (2) from equation (3) to get 

Equation of 

 Thermal

 Energy

 

iii uσ]

up[

qUDρ

∂+

∂−

∂−=

ˆ 

  e  c   h  a jii xxxDt ∂∂∂

 

Physical Interpretation

 

[Rate of  change of  internal energy / unit volume] = [Rate of  input of  internal energy by conduction / vol.] [Rate 

   F   l  u   i   d

  .  . 

N.B. the last two terms represent interconversion of  thermal and mechanical energy 

VDpuiˆ

−=∂

  a  n  c  e   d DtVxi

ˆ∂  . . 

This term is reversible because 

Dt

VD ˆ may be true or  –ve 

uuuu i jii ∂∂∂∂

   A   d xxxx  ji j j ∂∂∂∂  

and may be written as a sum of  squared terms 

This term is irreversible because it is always positive. 

represen s  egra a on o  mec an ca  energy  o  n erna  energy  +ve  n 

In this course we seek solution of  equation (4). 

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 53: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 53/56

Thermodynamic Relationships

   i  c  s  

The simplification of  equation (4) required the following 

  e  c

   h  a

 

(1)  VPdSTdUd ˆˆˆ −= 

;  dpVSTdHd ˆˆˆ −=  

PV

ST

V

U −⎥⎤

⎢⎡∂∂=⎥

⎤⎢⎡∂∂

ˆ

ˆ

ˆ

ˆ  ;  V

P

ST

P

H ˆˆˆ+⎥

⎤⎢⎡∂∂=⎥

⎤⎢⎡∂∂

 

   F   l  u   i   d

 

P]T

PT[

V−

∂∂

= ˆ 

;  V]T

VT[ P

ˆˆ

+∂∂

−=   … (a) 

  a  n  c  e   d  

(2)  dT]T

U[Vd]

V

U[Ud

VT ˆ

ˆˆ

ˆ

ˆˆ

∂∂

+∂∂

;  dT]T

H[dP]

P

H[Hd PT ∂

∂+

∂∂

=ˆˆ

ˆ 

Pˆˆˆ

∂−

Vˆˆ

ˆ∂−

   A   d   T V∂   T p∂  

...

 

PVdSTdHd (3)

ˆˆ

ˆˆˆ +=

STddTCTTTC  ppp

p

ˆˆˆ

=⇒⎟⎟ ⎠⎜

⎜⎝ ∂=⎟

⎟ ⎠⎜

⎜⎝ ∂=

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 54: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 54/56

   i  c  s

Hence at constant pressure

 

dTCVpdUd pˆˆˆ +−=   … (c) 

  e  c

   h  a

 

(4) i

ixu

DtDρ

ρ1

Dt

)

ρ

1D(

ρDtVDρ

∂∂=−==ˆ   … (d) 

   F   l  u   i   d

 

(5)  dpVVpdUdHd ˆˆˆˆ ++=   … (e) 

  a  n  c  e   d

   A   d

Chemical & Petroleum Engineering Department

Sharif University of Technology

Page 55: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 55/56

DpuqHD ∂∂ˆ

   i  c  s

Dtxσ

xDtρ

 j

 ji

i

+∂

+∂

−=  

And

ˆ

  e  c

   h  a ]dp)

TT(V[dTCHd pp ∂

−+= ˆˆˆ  

Or Dp

])V

T(V[DT

CHD ∂

−+=ˆ

ˆˆˆ

 

   F   l  u   i   d

ttt

 

Hence

  a  n  c  e   d

 

]Dt

DP})

T

VT(V{

Dt

DTCρ[ pp ∂

∂−+

ˆˆˆ =

Dt

DP

x

uσ)

x

TK(

x  j

i ji

ii

+∂∂

+∂∂

−∂∂

−  

   A   d

Dt

DP

x

xx

TK

Dt

DP])

T

VρT(

Dt

DPVρ

Dt

DTCρ

 j

i ji

ii

2

pp +∂∂

+∂∂

∂=

∂∂

−+ˆ

ˆˆ  

ˆ

Chemical & Petroleum Engineering Department

Sharif University of Technology

2

Page 56: Vector and Tensor+Note

8/8/2019 Vector and Tensor+Note

http://slidepdf.com/reader/full/vector-and-tensornote 56/56

Dt

DP)

T

V(

V

T

x

xx

TK

Dt

DTCρ p

 j

i ji

ii

2

p ∂∂

+∂∂

+∂∂

∂=

ˆ

ˆˆ  

   i  c  s

 

Or 

ˆ

  e  c

   h  a

 

ˆ

Dt]

ln(T)

n[

x

xxK

DtCρ p

 j

i ji

iip ∂

+∂

+∂∂

=ˆ  

   F   l  u   i   d

در اين ترم ا ر دانسيته ثابت  باشد خر را مورد  بررسي  قرار مي دهيم.  صفر مي شود و ا ر شار ثابتVnحال در رابطه فوق ترم 

 صفر مي شود. DP/Dtباشد

∂)DP)Vlnدر  نتيجه  كل ترم  در فشار يا دانسيته ثابت صفر است.ˆ

  a  n  c  e   d

رابطه فوق را مي توان  بصورت زير  نوشت:

i ji

2

 jp

x

xx

TK]

x

TU

t

T[Cρ

∂+

∂∂

∂=

∂+

∂ˆ 

   A   d

  برابر صفر مي شوند.  jiσوUjگار سيال در حالت سكون  باشد2 TKT ∂

=∂

iipxxCρt ∂∂∂

 

Sharif University of Technology