Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ......

46
Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 3 Variational Formulation & the Galerkin Method

Transcript of Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ......

Page 1: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 1

Method of Finite Elements I

Chapter 3

Variational Formulation & the Galerkin Method

Page 2: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 2

Method of Finite Elements I

Today’s  Lecture  Contents:

•  Introduction • Differential  formulation • Principle  of  Virtual  Work • Variational  formulations • Approximative  methods • The  Galerkin  Approach

Page 3: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 3

Method of Finite Elements I

The  differential  form  of  physical  processes Physical  processes  are  governed  by  laws  (equations)  most  probably  expressed  in  a  differential  form:

•  The  Laplace  equation  in  two  dimensions:

(e.g.  the  heat  conduction  problem)

•  The  isotropic  slab  equation:

•  The  axially  loaded  bar  equation:

Page 4: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 4

Method of Finite Elements I

The  differential  form  of  physical  processes Focus:  The  axially  loaded  bar  example. Consider  a  bar  loaded  with  constant  end  load  R.

Given:  Length  L,  Section  Area  A,  Young'ʹs  modulus  E Find:  stresses  and  deformations. Assumptions: The  cross-­‐‑section  of  the  bar  does  not  change  after  loading. The  material  is  linear  elastic,  isotropic,  and  homogeneous. The  load  is  centric. End-­‐‑effects  are  not  of  interest  to  us.

Strength  of  Materials  Approach

Equilibrium equation

( )( ) Rf x R xA

σ= ⇒ =x  

R  

R  

L-­‐x  

f(x)  

Constitutive equation (Hooke’s Law)

( )( )x RxE AE

σε = =

Kinematics equation

ε x( ) = δ (x)

x

δ x( ) = Rx

AE

Page 5: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 5

Method of Finite Elements I

The  differential  form  of  physical  processes Focus:  The  axially  loaded  bar  example. Consider  and  infinitesimal  element  of  the  bar:

Given:  Length  L,  Section  Area  A,  Young'ʹs  modulus  E Find:  stresses  and  deformations. Assumptions: The  cross-­‐‑section  of  the  bar  does  not  change  after  loading. The  material  is  linear  elastic,  isotropic,  and  homogeneous. The  load  is  centric. End-­‐‑effects  are  not  of  interest  to  us.

The  Differential  Approach Equilibrium equation

Constitutive equation (Hooke’s Law) Eσ ε=

Kinematics equation dudx

ε =

Aσ = A(σ + Δσ )⇒ A lim

Δx→0!

ΔσΔx

= 0⇒ Adσdx

= 0

AEd 2udx2 = 0 Strong Form

Boundary Conditions (BC)u(0) = 0 Essential BC

σ L( ) = 0⇒

AEdudx x=L

= R Natural BC

Page 6: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 6

Method of Finite Elements I

The  differential  form  of  physical  processes

Definition

The  strong  form  of  a  physical  process  is  the  well  posed  set  of  the  underlying  differential  equation  with  the  accompanying    boundary  conditions

Focus:  The  axially  loaded  bar  example.

The  Differential  Approach

AEd 2udx2 = 0 Strong Form

u(0) = 0 Essential BC

AEdudx x=L

= R Natural BCx  

R  

Page 7: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 7

Method of Finite Elements I

The  differential  form  of  physical  processes

Analytical  Solution:  

u(x) = uh = C1x +C2 & ε(x) = du(x)

dx= C1 = const!

v This  is  a  homogeneous  2nd  order  ODE  with  known  solution:

Focus:  The  axially  loaded  bar  example.

The  Differential  Approach

AEd 2udx2 = 0 Strong Form

u(0) = 0 Essential BC

AEdudx x=L

= R Natural BCx  

R  

Page 8: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 8

Method of Finite Elements I

The  differential  form  of  physical  processes Focus:  The  axially  loaded  bar  example.

The  Differential  Approach

Analytical  Solution:  

u(x) = uh = C1x +C2u(0)=0

dudx x=L

= REA

⎯ →⎯⎯⎯C2 = 0

C1 =R

EA

AEd 2udx2 = 0 Strong Form

u(0) = 0 Essential BC

AEdudx x=L

= R Natural BC

⇒ u x( ) = Rx

AEv  Same  as  in  the  mechanical  approach!

x  

R  

To  fully  define  the  solution  (i.e.,  to  evaluate  the  values  of  parameters                            )  we  have  to  use  the  given  boundary  conditions  (BC): C1,C2

Page 9: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 9

Method of Finite Elements I

The  Strong  form  –  2D  case A  generic  expression  of  the  two-­‐‑dimensional  strong  form  is:

and  a  generic  expression  of  the  accompanying  set  of  boundary  conditions:

:  Essential  or  Dirichlet  BCs

:  Natural  or  von  Neumann  BCs

Disadvantages

The  analytical  solution  in  such  equations  is   i.  In  many  cases  difficult  to  be  evaluated ii.  In  most  cases  CANNOT  be  evaluated  at  all.  Why?

•  Complex  geometries •  Complex  loading  and  boundary  conditions

Page 10: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 10

Method of Finite Elements I

su : supported area with prescribed displacements Usu

s f : surface with prescribed forces f s f

f B : body forces (per unit volume)U : displacement vectorε : strain tensor (vector)σ : stress tensor (vector)

Deriving  the  Strong  form  –  3D  case

Page 11: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 11

Method of Finite Elements I

Kinematic  Relations

U =UVW

⎢⎢⎢

⎥⎥⎥, L =

∂∂x

0 0

0 ∂∂y

0

0 0 ∂∂z

∂∂y

∂∂x

0

0 ∂∂z

∂∂y

∂∂z

0 ∂∂x

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

, ε T = ε xx ε yy ε zz 2ε xy 2ε yz 2ε xz⎡⎣⎢

⎤⎦⎥

ε = LU

Deriving  the  Strong  form  –  3D  case

Page 12: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 12

Method of Finite Elements I

2 2 2

2 2

2 2 2

2 2

2 2 2

2 2

1 2 2 2 2

2

2 2 2 2

2

2 2 2 2

2

0 2 0 0

0 0 2 0

0 0 0 2

0 0

0 0

0 0

y x x y

z y y z

z x x z

y z x z x x y

x z z y x y y

x y z x z y z

⎡ ⎤∂ ∂ ∂−⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥∂ ∂ ∂−⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥∂ ∂ ∂⎢ ⎥−∂ ∂ ∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂ ∂ ∂− −⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥− −

∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥− −⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

L L1ε = 0⇒

Strain  Compatibility  –  Saint  Venant  principle

Deriving  the  Strong  form  –  3D  case

Page 13: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 13

Method of Finite Elements I

2

2, =

B

T Txx yy zz xy yz zxτ τ τ τ τ τ⎡ ⎤= ⎣ ⎦

L τ + f = 0

τ L L

0 0 0on we have where 0 0 0

0 0 0

fsf

l m ns m l n

n m l

⎡ ⎤⎢ ⎥− = ⎢ ⎥⎢ ⎥⎣ ⎦

Ντ f = 0 N

l,  m  and  n  are  cosines  of  the  angles  between  the  normal  on  the  surface  and  X,  Y  and  Z

Equilibrium  Equations

Deriving  the  Strong  form  –  3D  case

Body  loads:

Surface  loads:

Page 14: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 14

Method of Finite Elements I

=τ Cε

C  is  elasticity  matrix  and  depends  on  material  properties  E  and  ν  (modulus  of  elasticity  and  Poisson’s  ratio)

1−=ε C τ

Constitutive  Law

Deriving  the  Strong  form  –  3D  case

Page 15: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 15

Method of Finite Elements I

Differential  Formulation

•  Boundary  problem  of  the  linear  theory  of  elasticity:  differential  equations  and  boundary  conditions

•  15  unknowns:  6  stress  components,  6  strain  components  and  3  displacement  components

•  3  equilibrium  equations,  6  relationships  between  displacements  and  strains,  material  law  (6  equations)

•  Together  with  boundary  conditions,  the  state  of  stress  and  deformation  is  completely  defined

Summary  -­‐‑  General  Form  3D  case:

Page 16: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 16

Method of Finite Elements I

Principle  of  Virtual  Work

•  The  principle  of  virtual  displacements:  the  virtual  work  of  a  system  of  equilibrium  forces  vanishes  on  compatible  virtual  displacements;  the  virtual  displacements  are  taken  in  the  form  of  variations  of  the  real  displacements

•  Equilibrium  is  a  consequence  of  vanishing  of  a  virtual  work

f f

f

S T ST T B iT iC

iV V S

dV dV dS= + +∑∫ ∫ ∫ε τ U f U f U R

Stresses  in  equilibrium  with  applied  loads

Virtual  strains  corresponding  to  virtual  displacements

Internal  Virtual  Work External  Virtual  Work

Page 17: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 17

Method of Finite Elements I

Principle  of  Complementary  Virtual  Work

• The  principle  of  virtual  forces:  virtual  work  of  equilibrium  variations  of  the  stresses  and  the  forces  on  the  strains  and  displacements  vanishes;  the  stress  field  considered  is  a  statically  admissible  field  of  variation

• Equilibrium  is  assumed  to  hold  a  priori  and  the  compatibility  of  deformations  is  a  consequence  of  vanishing  of  a  virtual  work

• Both  principles  do  not  depend  on  a  constitutive  law

Page 18: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 18

Method of Finite Elements I

Variational  Formulation

• Based  on  the  principle  of  stationarity  of  a  functional,  which  is  usually  potential  or  complementary  energy

• Two  classes  of  boundary  conditions:  essential  (geometric)  and  natural  (force)  boundary  conditions

• Scalar  quantities  (energies,  potentials)  are  considered  rather  than  vector  quantities

Page 19: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 19

Method of Finite Elements I

Principle  of  Minimum    Total  Potential  Energy

• Conservation  of  energy:  Work  =  change  in  potential,  kinetic  and  thermal  energy

• For  elastic  problems  (linear  and  non-­‐‑linear)  a  special  case  of  the  Principle  of  Virtual  Work  –  Principle  of  minimum  total  potential  energy  can  be  applied

•  is  the  stress  potential:

/ij ijUτ ε= ∂ ∂

U = 1

2v∫ ε TCεdv

W = f BT

Uv∫ dv + f S f

s∫ Uds

U

Page 20: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 20

Method of Finite Elements I

Principle  of  Minimum    Total  Potential  Energy

• Total  potential  energy  is    a  sum  of  strain  energy  and  potential  of  loads

• This  equation,  which  gives  P  as  a  function  of  deformation  components,  together  with  compatibility  relations  within  the  solid  and  geometric  boundary  conditions,  defines  the  so  called  Lagrange  functional

• Applying  the  variation  we  invoke  the  stationary  condition  of  the  functional

    dP = dU − dW = 0

P =U −W

P

Page 21: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 21

Method of Finite Elements I

Variational  Formulation

• By  utilizing  the  variational  formulation,  it  is  possible  to  obtain  a  formulation  of  the  problem,  which  is  of  lower  complexity  than  the  original  differential  form  (strong  form).  

• This  is  also  known  as  the  weak  form,  which  however  can  also  be  a_ained  by  following  an  alternate  path  (see  Galerkin  formulation).

• For  approximate  solutions,  a  larger  class  of  trial  functions  than  in  the  differential  formulation  can  be  employed;  for  example,  the  trial  functions  need  not  satisfy  the  natural  boundary  conditions  because  these  boundary  conditions  are  implicitly  contained  in  the  functional  –  this  is  extensively  used  in  MFE.

Page 22: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 22

Method of Finite Elements I

Approximative  Methods Instead  of  trying  to  find  the  exact  solution  of  the  continuous  system,  i.e.,  of  the  strong  form,  try  to  derive  an  estimate  of  what  the  solution  should  be  at  specific  points  within  the  system.   The  procedure  of  reducing  the  physical  process  to  its  discrete  counterpart  is  the  discretisation  process.

Page 23: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 23

Method of Finite Elements I

Variational Methods approximation is based on the minimization of a functional, as those defined in the earlier slides.

•  Rayleigh-Ritz Method

Weighted Residual Methods start with an estimate of the the solution and demand that its weighted average error is minimized

•  The Galerkin Method

•  The Least Square Method

•  The Collocation Method

•  The Subdomain Method

•  Pseudo-spectral Methods

Approximative  Methods

Page 24: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 24

Method of Finite Elements I

The  differential  form  of  physical  processes Focus:  The  axially  loaded  bar  with  distributed  load  example.

Analytical  Solution:  

u(x) = uh + up = C1x +C2 −ax3

6EAu(0)=0

dudx x=L

= REA

⎯ →⎯⎯⎯C2 = 0

C1 =aL2

2EA

AEd 2udx2 = −ax Strong Form

u(0) = 0 Essential BC

AEdudx x=L

= 0 Natural BC

⇒ u x( ) = aL2

2EAx − ax3

6EA

x  

To  fully  define  the  solution  (i.e.,  to  evaluate  the  values  of  parameters                            )  we  have  to  use  the  given  boundary  conditions  (BC): C1,C2

ax  

Page 25: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 25

Method of Finite Elements I

The  differential  form  of  physical  processes Focus:  The  axially  loaded  bar  with  distributed  load  example.

x  

ax  

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2Length (m)

00.5

11.5

22.5

3

0 0.5 1 1.5 2Length (m)

u x( ) = aL2

2EAx − ax3

6EA

Page 26: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 26

Method of Finite Elements I

and  its  corresponding  strong  form:

Given  an  arbitrary  weighting  function  w                that  satisfies  the  essential  conditions  and  additionally:  

If then,

x  

R  

Weighted  Residual  Methods

AEd 2udx2 = −ax Strong Form

Boundary Conditions (BC)u(0) = 0 Essential BC

σ L( ) = 0⇒

AEdudx x=L

= 0 Natural BC

Focus:  The  axially  loaded  bar  with  distributed  load  example.

ax  

Page 27: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 27

Method of Finite Elements I

Multiplying  the  strong  form  by  w  and  integrating  over  L:

Integrating  equation  I  by  parts  the  following  relation  is  derived:

x

Weighted  Residual  Methods Focus:  The  axially  loaded  bar  with  distributed  load  example.

ax  

Page 28: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 28

Method of Finite Elements I

Elaborating  a  li_le  bit  more  on  the  relation:

x

R

Weighted  Residual  Methods Focus:  The  axially  loaded  bar  with  distributed  load  example.

ax  

Page 29: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 29

Method of Finite Elements I

Elaborating  a  li_le  bit  more  on  the  relation:

why?

Therefore,  the  weak  form  of  the  problem  is  defined  as Find   such  that:

why?

Observe  that  the  weak  form  involves  derivatives  of  a  lesser  order  than  the   original  strong  form.

x

Weighted  Residual  Methods Focus:  The  axially  loaded  bar  with  distributed  load  example.

ax  

Page 30: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 30

Method of Finite Elements I

Weighted Residual Methods start with an estimate of the solution and demand that its weighted average error is minimized:

•  The Galerkin Method

•  The Least Square Method

•  The Collocation Method

•  The Subdomain Method

•  Pseudo-spectral Methods Boris Grigoryevich Galerkin – (1871-1945) mathematician/ engineer

Weighted  Residual  Methods

Page 31: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 31

Method of Finite Elements I

Theory  –  Consider  the  general  case  of  a  differential  equation:

Example  –  The  axially  loaded  bar:

Try  an  approximate  solution  to  the  equation  of  the  following  form

where   are  test  functions  (input)  and   are  unknown  quantities  that  we  need  to  evaluate.  The  solution  must  satisfy  the  boundary  conditions.

Since   is  an  approximation,  substituting it  in  the  initial  equation  will  result  in  an  error:

Choose  the  following  approximation

Demand  that  the  approximation  satisfies  the  essential  conditions:

The  approximation  error  in  this  case  is:

The  Galerkin  Method

Page 32: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 32

Method of Finite Elements I

Assumption  1:  The  weighted  average  error  of  the  approximation  should  be  zero  

The  Galerkin  Method

Page 33: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 33

Method of Finite Elements I

Assumption  1:  The  weighted  average  error  of  the  approximation  should  be  zero  

Therefore  once  again  integration  by  parts  leads  to

But  that’s  the  Weak  Form!!!!!

The  Galerkin  Method

Page 34: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 34

Method of Finite Elements I

Assumption  1:  The  weighted  average  error  of  the  approximation  should  be  zero  

Therefore  once  again  integration  by  parts  leads  to

But  that’s  the  Weak  Form!!!!!

Assumption  2:  The  weight  function  is  approximated  using  the  same  scheme  as  for  the  solution

Remember  that  the  weight  function  must  also  satisfy  the  BCs

Substituting  the  approximations  for  both   and in  the  weak  form,  

The  Galerkin  Method

Page 35: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 35

Method of Finite Elements I

The  following  relation  is  retrieved:  

where:  

The  Galerkin  Method

Page 36: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 36

Method of Finite Elements I

Performing  the  integration,  the  following  relations  are  established:  

The  Galerkin  Method

Page 37: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 37

Method of Finite Elements I

Or  in  matrix  form:  

that’s  a  linear  system  of  equations:  

and  that’s  of  course  the  exact  solution.  Why?  

The  Galerkin  Method

Page 38: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 38

Method of Finite Elements I

Now  lets  try  the  following  approximation:  

The  weight  function  assumes  the  same  form:  

Which  again  needs  to  satisfy  the  natural  BCs,  therefore:  

Substituting  now  into  the  weak  form:  

Wasn’t  that  much  easier?  But….is  it  correct?

The  Galerkin  Method

w2 EAu2 − x ax( )( )dx

0

L

∫ = 0⇒ u2 =αL2

3EA

Page 39: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 39

Method of Finite Elements I

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2Length (m)

Strong Form Galerkin-Cubic order Galerkin-Linear

The  Galerkin  Method

Page 40: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 40

Method of Finite Elements I

We  saw  in  the  previous  example  that  the  Galerkin  method  is  based  on  the  approximation  of  the    strong  form  solution  using  a  set  of  basis  functions.  These  are  by  definition  absolutely  accurate  at  the  boundaries  of  the  problem.  So,  why  not  increase  the  boundaries?

  Instead  of  seeking  the  solution  of  a  single  bar  we  chose  to  divide  it  into  three  interconnected  and  not  overlapping  elements

1 2 3

The  Galerkin  Method

element:  1 element:  2

Page 41: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 41

Method of Finite Elements I

1 2 3

element:  1

The  Galerkin  Method element:  2

Page 42: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 42

Method of Finite Elements I

1 2 3

The  Galerkin  Method

Page 43: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 43

Method of Finite Elements I

The  weak  form  of  a  continuous  problem  was  derived  in  a  systematic  way:

This  part  involves  only  the  solution  approximation

This  part  only  involves  the  essential  boundary  conditions  a.k.a.  loading

The  Galerkin  Method

Page 44: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 44

Method of Finite Elements I

And  then  an  approximation  was  defined  for  the  displacement  field,  for  example

Vector  of   degrees  of  freedom

Shape  Function  Matrix

The  weak  form  also  involves  the  first  derivative  of  the  approximation

Strain  Displacement  Matrix

Strain  field

Displacement  field

The  Galerkin  Method

Page 45: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 45

Method of Finite Elements I

Therefore  if  we  return  to  the  weak  form  :

The  following  FUNDAMENTAL  FEM  expression  is  derived

and  set:

or  even  be]er Why??

The  Galerkin  Method

Page 46: Chapter 3 - ETH Z€¦ · Chapter 3 Variational Formulation & the Galerkin Method . ... displacement vector ε: strain tensor (vector) σ: stress tensor (vector) DerivingtheStrongform–3Dcase.

Institute of Structural Engineering Page 46

Method of Finite Elements I

EA  has  to  do  only  with  material  and  cross-­‐‑sectional  properties

We  call   The  Finite  Element    stiffness  Matrix

Ιf  E  is  a  function  of  {d}  

Ιf  [B]  is  a  function  of  {d}  

Material  Nonlinearity

Geometrical  Nonlinearity

The  Galerkin  Method