Vanden Schr i Eck 06

download Vanden Schr i Eck 06

of 24

Transcript of Vanden Schr i Eck 06

  • 8/11/2019 Vanden Schr i Eck 06

    1/24

    Approximating the Performance of Call

    Centers with Queues using Loss Models

    Ph. Chevalier, J-Chr. Van den Schrieck

    Universit catholique de Louvain

  • 8/11/2019 Vanden Schr i Eck 06

    2/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 2

    Observation

    High correlation between performance of

    configurations in loss system and in systems with

    queues

  • 8/11/2019 Vanden Schr i Eck 06

    3/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 3

    Loss models are easier than

    queueing models

    Smaller state space.

    Easier approximation methods for loss

    systems than for queueing systems.

    (e.g. Hayward, Equivalent Random Method)

  • 8/11/2019 Vanden Schr i Eck 06

    4/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 4

    Main assumptions

    Multi skill service centers (multiple

    independant demands)

    Poisson arrivals

    Exponential service times

    One infinite queue / type of demand Processing times identical for all type

  • 8/11/2019 Vanden Schr i Eck 06

    5/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 5

    Building a loss approximation

    Queue with

    infinite length

    Incoming

    inputs with

    infinite

    patience

    Rejected inputs

    No queues

    Rejected ifnothing

    available

  • 8/11/2019 Vanden Schr i Eck 06

    6/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 6

    Building a loss approximation

    Server configuration

    Use identical configuration in loss system

    Routing of arriving calls Can be applied to loss systems

    Scheduling of waiting calls

    No equivalence in loss systems Difficult to approximate systems with other

    rules than FCFS

  • 8/11/2019 Vanden Schr i Eck 06

    7/24May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 7

    multiple skill example

    Lost calls

    Type Z-Calls

    Z

    Type X-Calls Type Y-Calls

    X Y

    X-Y

    X-Y-Z

    Building a loss approximation

  • 8/11/2019 Vanden Schr i Eck 06

    8/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 8

    performance measures of Queueing

    Systems:

    Probability of Waiting:

    Erlang C formula (M/M/s system):

    With

    a = / , the incoming load (in Erlangs).

    s the number of servers.

    Building a loss approximation

  • 8/11/2019 Vanden Schr i Eck 06

    9/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 9

    performance measures of Queueing

    Systems:

    Average Waiting Time (Wq) :

    Building a loss approximation

    Finding C(s,a) is the key element

  • 8/11/2019 Vanden Schr i Eck 06

    10/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 10

    Erlang formulas

    Link between Erlang B and Erlang C:

    Where B(s,a) is the Erlang B formula with parameters s and a :

  • 8/11/2019 Vanden Schr i Eck 06

    11/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 11

    Approximations

    We try to extend the Erlang formulas to

    multi-skill settings

    Incoming load a : easily determined

    B(s,a) : Hayward approximation

    Number of operators s : allocation

    based on loss system

  • 8/11/2019 Vanden Schr i Eck 06

    12/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 12

    Approximations

    Hayward Loss:

    Where:

    is the overflow rate

    z is the peakedness of the incoming flow,

  • 8/11/2019 Vanden Schr i Eck 06

    13/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 13

    Approximations

    Idea: virtually allocate operators to the different

    flows i.o. to make separated systems.

    Sx Sy

    Sxy

    Sx Sy

    SxySxy Sxy

    + +

    Sx Sy

    Operators: allocated according to

    their utilization by the different

    flows.

  • 8/11/2019 Vanden Schr i Eck 06

    14/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 14

    Simulation experiments

    Description

    Comparison of systems with loss and of

    systems with queues. Both types receiveidentical incoming data.

    Comparison with analytically obtained

    information. analysis of results

  • 8/11/2019 Vanden Schr i Eck 06

    15/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 15

    Simulation experiments

    5 Erlangs 5 Erlangs

    X = 3 Y = n

    X-Y = 7

    nfrom 1 to 10

    Experiments with 2 types of

    demands

  • 8/11/2019 Vanden Schr i Eck 06

    16/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 16

    Simulation experiments

    Proportion of Operators for each Type of Demand

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    2 4 6 8 10 12

    Queueing System (simulated)

    Lo

    ssSystem(

    simulated)

    Operators to X-flow

    Operators to Y-flow

  • 8/11/2019 Vanden Schr i Eck 06

    17/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 17

    Simulation experiments

    Waiting Probabilities (W.P.) using simulation data

    0

    0,10,2

    0,3

    0,4

    0,5

    0,6

    0,70,8

    0,9

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

    Simulated W.P.

    ComputedW.P.

    W.P. X

    W.P. Y

  • 8/11/2019 Vanden Schr i Eck 06

    18/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 18

    Simulation experiments

    Waiting Probabilities (W.P.) using computed data

    0

    0,10,2

    0,3

    0,4

    0,5

    0,6

    0,70,8

    0,9

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

    Simulated W.P.

    ComputedW.P.

    W.P. X

    W.P. Y.

  • 8/11/2019 Vanden Schr i Eck 06

    19/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 19

    Simulation experiments

    Accuracy of the Approximation compared with the

    Simulations

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    Wait

    ingProbabilit

    Waiting Probability X

    Waiting Probability Y

    General Waiting

    Probability

    N = Sim

    B = Sim

    N = Sim

    B = Comp

    N = Comp

    B = Comp

  • 8/11/2019 Vanden Schr i Eck 06

    20/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 20

    Average Waiting Time

    The interaction between the different types of demand is a little harder to

    analyze for the average waiting time.

    Once in queue the FCFS rule will tend to equalize waiting times

    Each type can have very different capacity dedicated=> One virtual queue, identical waiting times for all types

    => Independent queues for each type, different waiting times

  • 8/11/2019 Vanden Schr i Eck 06

    21/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 21

    Average Waiting Time

    We derivate two bounds on the waiting time:

    1. A lower bound: consider one queue ; all operators are available for all calls from

    queue.

    2. An upper bound: consider two queues ; operators answer only one type of call

    from queue.

  • 8/11/2019 Vanden Schr i Eck 06

    22/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 22

    Simulation experiments

    Bounds for Average Waiting Time

    0

    0,5

    1

    1,5

    2

    2,5

    0 0,5 1 1,5 2 2,5

    Simulated Waiting Time

    ComputedWaitingTime

    Inf Bound for X

    Inf Bound for Y

    Sup Bound for X

    Sub Bound for Y

  • 8/11/2019 Vanden Schr i Eck 06

    23/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 23

    Simulation experiments

    0

    0,05

    0,1

    0,15

    0,2

    0 0,0

    1

    0,0

    2

    0,0

    3

    0,0

    4

    0,0

    5

    0,0

    6

    0,0

    7

    0,0

    8

    0,0

    9

    0,1 0,1

    1

    0,1

    2

    0,1

    3

    0,1

    4

    0,1

    5

    0,1

    6

    0,1

    7

    0,1

    8

    0,1

    9

    0,2

    Simul Values

    CompVa

    lues

    Inf X

    Inf Y

    Sup X

    Sup Y

  • 8/11/2019 Vanden Schr i Eck 06

    24/24

    May 11, 2006 Ph. Chevalier, J-C Van den Schrieck, UCL 24

    Limits and further research

    Service time distribution : extend

    simulations to systems with service time

    distributions different from exponential

    Approximate other performance

    measures

    Extention to systems with impatientcustomers / limited size queue