USING MATLAB-SIMULINK FINAL PROJECT Submitted as a … · Tujuan dari penelitian ini adalah untuk...

21
perpustakaan.uns.ac.id digilib.uns.ac.id commit to user PRELIMINARY STUDY FOR RIDE DYNAMICS MODEL OF SEMAR-T USING MATLAB-SIMULINK FINAL PROJECT Submitted as a bachelor requirement in obtaining degree in the mechanical engineering department, faculty of engineering by: IPNU CANDRA (I0408039) MECHANICAL ENGINEERING DEPARTMENT FACULTY OF ENGINEERING UNIVERSITAS SEBELAS MARET SURAKARTA 2013

Transcript of USING MATLAB-SIMULINK FINAL PROJECT Submitted as a … · Tujuan dari penelitian ini adalah untuk...

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

PRELIMINARY STUDY FOR RIDE DYNAMICS MODEL OF SEMAR-T

USING MATLAB-SIMULINK

FINAL PROJECT

Submitted as a bachelor requirement in obtaining degree

in the mechanical engineering department,

faculty of engineering

by:

IPNU CANDRA

(I0408039)

MECHANICAL ENGINEERING DEPARTMENT

FACULTY OF ENGINEERING

UNIVERSITAS SEBELAS MARET

SURAKARTA

2013

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

DEDICATIONS

To those who have been responsible, to them I dedicate this work anyway.

They are:

Allah SWT.

The creator and the master himself

Muhammad SAW.

The miracle and the inspiring

Taruni

A mother who always gave love and support

Mamad

A father who has always worked hard for the welfare of him children

Dedi Suwikyo, Tiyas Sismaya and Ina Susanti

Brother and sisters who has been assisting

Hadana Ulufannuri

A girl with a name and a story

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

MOTTO

“Life is an adventure, so we should work hard to achieve our destinations”

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

Preliminary Study For Ride Dynamics Model of Semar-T Using MATLAB-

Simulink

Ipnu Candra

Mechanical Engineering Department

Faculty of Engineering

Universitas Sebelas Maret

Surakarta, Indonesia

E-mail: [email protected]

Abstrack

The work is aimed to study the vertical, longitudinal and lateral response of

ride performance of Semar-T. The issues related to the design of vehicle model

with passive suspension system are discussed. A complete-vehicle seven-degree-

of-freedom model is used to investigate the dynamics response by applying road

disturbances in sinusoidal road input excitation. Frequency response of the heave,

roll, pitch of the sprung mass and suspension deflection is obtained for the need of

studying the effect of given variation of both suspension stiffness coefficient and

suspension damping coefficient. Finally, the resulted responses in frequency

domain are then evaluated using ISO-2631 criteria to evaluate the passenger

comfortability.

Keywords: Semar-T, passive suspension system, comfortability, ISO-2631.

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

Pembelajaran Awal Untuk Model Dinamika Ride Semar-T Menggunakan

Matlab-Simulink

Ipnu Candra

Jurusan Teknik Mesin

Fakultas Teknik

Universitas Sebelas Maret

Surakarta, Indonesia

E-mail: [email protected]

Abstrak

Tujuan dari penelitian ini adalah untuk mempelajari respon vertikal,

longitudinal dan lateral dari performa ride Semar-T. Masalah-masalah yang terkait

dengan desain model kendaraan menggunakan sistem suspensi pasif akan dibahas

dalam penelitian ini. Model penuh kendaraan tujuh derajat kebebasan (DOF)

digunakan untuk meneliti respon dinamik dengan memberikan gangguan jalan

yang berbentuk sinusoid. Respon domain frekuensi heave, roll, pitch dari massa

sprung dan perpindahan suspensi diperoleh untuk mempelajari pengaruh dari

variasi nilai konstanta pegas dan peredam. Respon domain frekuensi kemudian

digunakan untuk evaluasi berdasarkan standar ISO-2631 guna mengevaluasi

kenyamanan penumpang.

Kata kunci: Semar-T, sistem suspensi pasif, kenyamanan, ISO-2631.

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

PREFACE

First of all, the writer wants to thank to Allah SWT for the blessing and

guidance. Sholawat and also salam for my prophet Muhammad SAW, the person

who we will hope his syafaat in the end world later. The writer also would like to

say very much thank you to all family and friends for supporting writer to finish

this final project report well.

In this report, the writer is interested to discuss the Preliminary Study For

Ride Dynamics Model Of Semar-T Using Matlab-Simulink, including the

problem of influence road profile and variation of suspension stiffness coefficient

and suspension damping coefficient on the ride comfort of Semar-T. The writer

tried to make this final project report become the best final project report that ever

writer made.

The writer realized that this report is still far from being perfect. Therefore,

the writer will be happy to accept the suggestion and constructive criticism to

make this report be better. The writer hopes, this final project report would give

benefit for the others later.

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

ACKNOWLEDGEMENT

Praise be to Allah SWT who always gives the power from first until end so

that Writer can finish this final project report well. However, the writer could not

accomplish this report without the help of many people. Therefore, the writer

would like to thank to all of them. They are:.

1. Ubaidillah S.T., M.Sc., as supervisor, who has patiently given his

guidance, advice, suggestions and time from the beginning up to the

complection of writing this report.

2. Wibowo S.T., M.T., as co-supervisor, who has given his guidance,

advice and encouragement in writing this report.

3. Didik Djoko Susilo S.T., M.T., the head of mechanical engineering

department for his permission to write this report.

4. Parents, you are everything in here, thanks for everything that you have

given for the writer.

5. Brother and sisters, for being the writer’s inspiration and giving strength

in facing this life.

6. Hadana Ulufannuri, who has given her support everyday.

7. All poeple and friends who can’t able to mention one by one.

Surakarta, July 2013

The writer

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

TABLE OF CONTENTS

Page

COVER ........................................................................................................ i

ASSIGNMENT ............................................................................................ ii

APPROVAL ................................................................................................. iii

DEDICATIONS ............................................................................................ iv

MOTTO ........................................................................................................ v

ABSTRACK ................................................................................................ vi

PREFACE .................................................................................................... viii

ACKNOWLEDGEMENT ............................................................................ ix

TABLE OF CONTENTS .............................................................................. x

LIST OF TABLES ....................................................................................... xii

LIST OF FIGURES ..................................................................................... xiii

LIST OF EQUATIONS ................................................................................ xix

LIST OF NOTATIONS ............................................................................... xx

CHAPTER I INTRODUCTION

1.1. Background .............................................................................. 1

1.2. Problem Statement ................................................................... 3

1.3. Scopes And Limitations ........................................................... 4

1.4. Objectives ................................................................................. 4

1.5. Benefits .................................................................................... 4

1.6. Writing Systematics ................................................................. 4

CHAPTER II LITERATURE REVIEW

2.1. Previous Researches ................................................................ 6

2.2. Basic of Theory ........................................................................ 8

2.2.1. Vehicle Ride Model ......................................................... 8

2.2.2. Bumps and potholes profiles ............................................ 11

CHAPTER III RESEARCH METHODOLOGY

3.1. Methodology ........................................................................... 13

3.2. Implementation of project ....................................................... 15

3.3. Schedule ................................................................................. 19

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

CHAPTER IV RESULTS AND ANALYSIS

4.1. Simulation Setup ..................................................................... 20

4.2. Arrangement of Variations ..................................................... 21

4.3. Road sinusoidal Test ............................................................... 22

4.4. Validation ................................................................................ 23

4.5. Results ..................................................................................... 30

4.5.1. Simulation Results of 1st Variation (ks = constant) ......... 30

4.5.2. Simulation Results of 2nd

Variation (cs = constant) ........ 44

4.6. International Standard ISO-2631 ............................................ 57

4.7. Ride Comfort Comparison Using ISO-2631 ........................... 59

4.7.1. Under Full Load (m=1400 kg) Condition ....................... 59

4.7.2. Under Full Load (m=1400 kg) Versus Half Load

(m=1200 kg) Conditions .................................................. 61

4.8. Analysis ................................................................................... 62

4.8.1. Frequency Responses ...................................................... 62

4.8.1.1. Frequency Responses of 1st Variation ............. 62

4.8.1.2. Frequency Responses of 2nd

Variation ............ 63

4.8.2. Time Responses................................................................ 63

4.8.2.1. Time Responses of 1st Variation ..................... 63

4.8.2.2. Time Responses of 2nd

Variation ..................... 64

4.8.3. ISO-2631 ......................................................................... 64

4.8.3.1. ISO-2631 for 1st Variation (ks = constant) ...... 64

4.8.3.2. ISO-2631 for 2nd

Variation (cs = constant) ....... 65

4.8.3.3. ISO-2631 for Full Load (m=1400 kg) Versus

Half Load (m=1200 kg) Conditions ..................... 66

4.8.4. The Most Optimal Suspension System Variation ........... 66

CHAPTER V CONCLUSION AND RECOMMENDATION

5.1. Conclusion ............................................................................... 67

5.2. Recommendation...................................................................... 67

REFERENCES ............................................................................................. 68

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

LIST OF TABLES

Page

Table 3.1. Semar-T parameters ................................................................ 15

Table 3.2. Description of free body diagram symbol .............................. 16

Table 3.3. Schedule of project ................................................................. 19

Table 4.1. Simulation Setup ..................................................................... 20

Table 4.2. List of parameter variations .................................................... 20

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

LIST OF FIGURES

Page

Figure 2.1. Vehicle body acceleration due to road excitation in

comparison with ISO ride comfort boundaries .................... 7

Figure 2.2. Vehicle coordinate systems .................................................. 9

Figure 2.3. Complete-vehicle model ....................................................... 10

Figure 2.4. (a) Rectangular cleat and (b) cosine-shaped bump ............... 11

Figure 3.1. Flow chart of project ............................................................ 14

Figure 3.2. Complete Semar-T model ..................................................... 16

Figure 3.2.a Wheels Responses ................................................................ 17

Figure 3.2.b Body Responses .................................................................... 17

Figure 3.2.c Scopes ................................................................................... 18

Figure 3.3. Complete Semar-T block diagram ........................................ 18

Figure 4.1. Suspension damping coefficient testing result ..................... 21

Figure 4.2. Suspension stiffness coefficient testing result ...................... 22

Figure 4.3. Mode sinusoidal test ............................................................. 23

Figure 4.4. Validation graphic of body displacement response .............. 24

Figure 4.5. Validation graphic of body acceleration response ................ 24

Figure 4.6. Validation graphic of pitch angle response .......................... 25

Figure 4.7. Validation graphic of roll angle response ............................. 25

Figure 4.8. Validation graphic of front-left suspension travel response . 26

Figure 4.9. Validation graphic of front-left wheel acceleration response 26

Figure 4.10. Validation graphic of rear-left suspension travel response .. 27

Figure 4.11. Validation graphic of rear-left wheel acceleration response 27

Figure 4.12. Validation graphic of rear-right suspension travel response 28

Figure 4.13. Validation graphic of rear-right wheel acceleration response 28

Figure 4.14. Validation graphic of front-right suspension travel response 29

Figure 4.15. Validation graphic of front-right wheel acceleration

response ................................................................................ 29

Figure 4.16. Bode plots of (a) body displacement and (b) body

acceleration response, for different values of the suspension

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

damping coefficients ( sc ) and constant value of the

suspension stiffness coefficients ( sk = 18000 mN / ) ........... 31

Figure 4.17. Bode plots of (a) roll angle and (b) pitch angle response, for

different values of the suspension damping coefficients ( sc )

and constant value of the suspension stiffness coefficients

( sk = 18000 mN / ) ................................................................ 32

Figure 4.18. Bode plots of (a) front-left suspension travel and (b) front-

left wheel acceleration response, for different values of the

suspension damping coefficients ( sc ) and constant value of

the suspension stiffness coefficients ( sk = 18000 mN / ) ..... 33

Figure 4.19. Bode plots of (a) front-right suspension travel and (b) front-

right wheel acceleration response, for different values of the

suspension damping coefficients ( sc ) and constant value of

the suspension stiffness coefficients ( sk = 18000 mN / ) ..... 34

Figure 4.20. Bode plots of (a) rear-left suspension travel and (b) rear-left

wheel acceleration response, for different values of the

suspension damping coefficients ( sc ) and constant value of

the suspension stiffness coefficients ( sk = 18000 mN / ) ..... 35

Figure 4.21. Bode plots of (a) rear-right suspension travel and (b) rear-

right wheel acceleration response, for different values of the

suspension damping coefficients ( sc ) and constant value of

the suspension stiffness coefficients ( sk = 18000 mN / ) ..... 36

Figure 4.22. Peak-to-Peak values of (a) body displacement and (b) body

acceleration response, for different values of the suspension

damping coefficients ( sc ) and constant value of the

suspension stiffness coefficients ( sk = 18000 mN / ) ........... 38

Figure 4.23. Peak-to-Peak values of (a) roll angle and (b) pitch angle

response, for different values of the suspension damping

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

coefficients ( sc ) and constant value of the suspension

stiffness coefficients ( sk = 18000 mN / ) ............................. 39

Figure 4.24. Peak-to-Peak values of (a) front-left suspension travel and

(b) front-left wheel acceleration response, for different

values of the suspension damping coefficients ( sc ) and

constant value of the suspension stiffness coefficients ( sk =

18000 mN / ) ........................................................................ 40

Figure 4.25. Peak-to-Peak values of (a) front-right suspension travel and

(b) front-right wheel acceleration response, for different

values of the suspension damping coefficients ( sc ) and

constant value of the suspension stiffness coefficients ( sk =

18000 mN / ) ........................................................................ 41

Figure 4.26. Peak-to-Peak values of (a) rear-left suspension travel and

(b) rear-left wheel acceleration response, for different

values of the suspension damping coefficients ( sc ) and

constant value of the suspension stiffness coefficients ( sk =

18000 mN / ) ........................................................................ 42

Figure 4.27. Peak-to-Peak values of (a) rear-right suspension travel and

(b) rear-right wheel acceleration response, for different

values of the suspension damping coefficients ( sc ) and

constant value of the suspension stiffness coefficients ( sk =

18000 mN / ) ........................................................................ 43

Figure 4.28. Bode plots of (a) body displacement and (b) body

acceleration response, for different values of the suspension

stiffness coefficients ( sk ) and constant value of the

suspension damping coefficients ( sc = 900 mNs / ) ............. 45

Figure 4.29. Bode plots of (a) roll angle and (b) pitch angle response, for

different values of the suspension stiffness coefficients ( sk )

... and constant value of the suspension damping coefficients

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

( sc = 900 mNs / ) ................................................................... 46

Figure 4.30. Bode plots of (a) front-left suspension travel and (b) front-

left wheel acceleration response, for different values of the

suspension stiffness coefficients ( sk ) and constant value of

the suspension damping coefficients ( sc = 900 mNs / ) ....... 47

Figure 4.31. Bode plots of (a) front-right suspension travel and (b) front-

right wheel acceleration response, for different values of the

suspension stiffness coefficients ( sk ) and constant value of

the suspension damping coefficients ( sc = 900 mNs / ) ....... 48

Figure 4.32. Bode plots of (a) rear-left suspension travel and (b) rear-left

wheel acceleration response, for different values of the

suspension stiffness coefficients ( sk ) and constant value of

the suspension damping coefficients ( sc = 900 mNs / ) ....... 49

Figure 4.33. Bode plots of (a) rear-right suspension travel and (b) rear-

right wheel acceleration response, for different values of the

suspension stiffness coefficients ( sk ) and constant value of

the suspension damping coefficients ( sc = 900 mNs / ) ....... 50

Figure 4.34. Peak-to-Peak values of (a) body displacement and (b) body

acceleration response, for different values of the suspension

stiffness coefficients ( sk ) and constant value of the

suspension damping coefficients ( sc = 900 mNs / ) ............. 51

Figure 4.35. Peak-to-Peak values of (a) roll angle and (b) pitch angle

response, for different values of the suspension stiffness

coefficients ( sk ) and constant value of the suspension

damping coefficients ( sc = 900 mNs / ) ............................... 52

Figure 4.36. Peak-to-Peak values of (a) front-left suspension travel and

(b) front-left wheel acceleration response, for different

values of the suspension stiffness coefficients ( sk ) and

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

constant value of the suspension damping coefficients ( sc =

900 mNs / ) ........................................................................... 53

Figure 4.37. Peak-to-Peak values of (a) front-right suspension travel and

(b) front-right wheel acceleration response, for different

values of the suspension stiffness coefficients ( sk ) and

constant value of the suspension damping coefficients ( sc =

900 mNs / ) ........................................................................... 54

Figure 4.38. Peak-to-Peak values of (a) rear-left suspension travel and

(b) rear-left wheel acceleration response, for different

values of the suspension stiffness coefficients ( sk ) and

constant value of the suspension damping coefficients ( sc =

900 mNs / ) ........................................................................... 55

Figure 4.39. Peak-to-Peak values of (a) rear-right suspension travel and

(b) rear-right wheel acceleration response, for different

values of the suspension stiffness coefficients ( sk ) and

constant value of the suspension damping coefficients ( sc =

900 mNs / ) ........................................................................... 56

Figure 4.40. ISO 2631 “fatigue-decreased proficiency boundary”:

vertical vibration limits as a function of frequency and

exposure time [2] .................................................................. 58

Figure 4.41. Vehicle body acceleration due to road excitation in

comparison with ISO ride comfort boundaries, for different

values of the suspension damping coefficients ( sc ) and

constant value of the suspension stiffness coefficients ( sk =

18000 mN / ) ........................................................................ 59

Figure 4.42. Vehicle body acceleration due to road excitation in

comparison with ISO ride comfort boundaries, for different

values of the suspension stiffness coefficients ( sk ) and

constant value of the suspension damping coefficients ( sc =

900 mNs / ) ........................................................................... 60

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

Figure 4.43. Vehicle body acceleration due to road excitation in

comparison with ISO ride comfort boundaries, under full

load (m=1400 kg) versus half load (m=1200 kg) conditions 61

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

LIST OF EQUATIONS

Page

Equation 2.1. RMS value of the sprung mass displacement ................... 7

Equation 2.2. The second law of Newton ................................................ 10

Equation 2.3. Body vertical response ...................................................... 10

Equation 2.4. Body pitch response .......................................................... 10

Equation 2.5. Body roll response ............................................................ 11

Equation 2.6. Front-left wheel response .................................................. 11

Equation 2.7. Rear-left wheel response ................................................... 11

Equation 2.8. Rear-right wheel response ................................................. 11

Equation 2.9. Front-right wheel response ................................................ 11

Equation 2.10. Height of rectangular cleat ................................................ 12

Equation 2.11. Height of cosine-shaped bump .......................................... 12

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

LIST OF NOTATIONS

sm = Sprung mass ............................................................................ (kg)

yyI = Pitch moment of inertia ........................................................... (kgm2)

xxI = Roll moment of inertia ............................................................ (kgm2)

1mu = Front-left unsprung mass ......................................................... (kg)

2mu = Rear-left unsprung mass .......................................................... (kg)

3mu = Rear-right unsprung mass ........................................................ (kg)

4mu = Front-right unsprung mass ...................................................... (kg)

1ks = Front-left suspension stiffness coefficient .............................. (N/m)

2ks = Rear-left suspension stiffness coefficient ................................ (N/m)

3ks = Rear-right suspension stiffness coefficient ............................. (N/m)

4ks = Front-right suspension stiffness coefficient ............................ (N/m)

1cs = Front-left suspension damping coefficient .............................. (N/m)

2cs = Rear-left suspension damping coefficient ............................... (N/m)

3cs = Rear-right suspension damping coefficient ............................. (N/m)

4cs = Front-right suspension damping coefficient ............................ (N/m)

fl = Side distance from center of gravity to the front axle ............. (m)

rl = Side distance from center of gravity to the rear axle ............... (m)

fla = Frontal distance from center of gravity to the front-left axle .. (m)

rla = Frontal distance from center of gravity to the rear-left axle ... (m)

rra = Frontal distance from center of gravity to the rear-right axle . (m)

fra = Frontal distance from center of gravity to the front-right axle (m)

1x = Sprung mass heavy displacement ............................................ (m)

2x = Sprung mass pitch angular displacement ................................ (rad)

3x = Sprung mass roll angular displacement ................................... (rad)

4x = Front-left unsprung mass displacement ................................... (m)

perpustakaan.uns.ac.id digilib.uns.ac.id

commit to user

5x = Rear-left unsprung mass displacement .................................... (m)

6x = Rear-right unsprung mass displacement ................................. (m)

7x = Front-right unsprung mass displacement ................................ (m)

1inx = Front-left displacement input .................................................. (m)

2inx = Rear-left displacement input ................................................... (m)

3inx = Rear-right displacement input ................................................. (m)

4inx = Front-right displacement input ................................................ (m)

RMSz .1 = RMS value of the sprung mass =