Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta,...

30
Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014

Transcript of Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta,...

Page 1: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

Upgrade for high Luminosity - a list of things to do / to understand

Contributi da Davide, Roberta, Alessia

Martellotti Roma 9 /10 /2014

Page 2: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

• Can we reduce the DIALOG dead time (digit. formation time) ?• Confirm/understand % of correlated e uncorrelated hits • Better understand the long CARIOCA dead time• Are GEM well suited for performance required in M2M3R1 ? # Tests-Measurements to do as soon as we have beam# Something on Analysis

# Remind of the performance upgrade necessary / desirable

Page 3: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

ineffi

cien

cy (e

ffecti

ve d

ead

time

in n

s)

DIALOG formation time (ns)

Inefficiency induced by DIALOG strongly changes with the formation time. A reduction of few ns in the formation time would give a strong inefficiency reduction.

The inefficiency is also very sensitive to the muon time distribution (here assumed a gaussian with peack value at 11 ns) Timing optimization could be different depending on the Luminosity.At low luminosity we could be more efficient for high P muons and at high luminosity more efficient for low P muons arriving later…

INEFFICIENCY (effective dead time)OF MUON HITS at small dead time values

DIALOG dead time

Page 4: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

(Ho intervistato Sandro Cadeddu)• Il tempo di formazione del segnale digitale si può regolare a passi di circa 3ns da

un minimo di circa 6 ns fino a un massimo di circa 27 ns. • Usando il tempo massimo (come nella gran parte dei dati raccolti), con l’OR di

più canali fisici nel canale logico, non si può mai avere più di un hit nello stesso BC• Ad alta rate, visto che la distribuzione temporale degli hit è larga (~~25 ns), con

un tempo corto di formazione l’OR può ripartire nello stesso BC. L’aumento di hit nel BC corrente non cambia nulla per il tracking e la MisID. Per quanto riguarda il timing, il SYNC può dare una misura di tempo sbagliata (prende l’ultimo che arriva). Questo non mi sembra un vero problema : - Non credo che sia necessario ma eventualmente si potrebbero fare run di timing

a bassa rate o con tempo di formazione lungo

DIALOG dead time – can be reduced ?

Page 5: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

• Other drawback ?- Instability - Noise …..

• Measurements (a la Giacomo) with short and long formation time Look at the time distribution in the BC or with TAE events

• Measure efficiency

Test on beam short formation time

DIALOG dead time – can be reduced ?

Page 6: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

Correlated/uncorrelated hits - measure OR-AND on beam• Old measurements (see Giacomo muon meeting 18, 25 Feb 2013) - readout with FE of M2-M5 in OR - And • Repete measurements at current energy (richiesta solo stabilità delle

condizioni, non necessaria alta luminosità – fare le misure all’inizio) - with maximal DIALOG formation time (to avoid AND inefficiency) - AND-OR also for M1 (per indicazioni sulla natura degli hit in M1) - AND-OR in M2 - M5 with only one gap per FE (switch off HV on the first and the second gap of the bigap) • A measurement of correlated/uncorrelated hits can be done (a la Davide)

from the rate on physical channel counters with one or two gaps on. - with one gap on per bi-gap we can COMPARE the two measurements

Page 7: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

OSSERVAZIONE

In M1 abbiamo una sola gap per FE e abbiamo aumentato la tensione di circa 100 V (rispetto ad M2) per avere un Guadagno doppio e quindi una migliore efficienza…. Questo è una buona cosa per le tracce penetranti che vogliamo rivelare ma per quanto riguarda il dead time ha un effetto deleterio. Infatti il fondo di bassa energia è di «single gap tracks» e quindi è uguale nella bi-gap e nella single-gap dove però abbiamo alzato il guadagno di un fattore 2 peggiorando l’effetto di saturazione dell’amplificatore in M1R2 rispetto a M2R2

Questo può mettere in crisi la possibilità di alimentare una sola gap per FE nelle regioni ad altissima occupancy Importante fare i test menzionati con una sola gap alimentata

Page 8: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

Tempo morto del CARIOCA Misure di rate sui canali fisici vs Luminosità

Fare misure con più alta statistica in modo da poter misurare bene il dead time nelle diverse regioni (anche R3, R4).

BLU R1ROSSO R2VERDE R3 R4

Ogni punto è un rapporto di rate misurate a due luminosità in un PAD. Lo spread verticale delle misure è dovuto all’ errore statisticoLe misure in R3 R4 non permettono di determinare la slope che misura il tempo morto del CARIOCA

Page 9: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

• Interessante separare la dipendenza dalla capacità del detector e la dipendenza dalla carica rilasciata dalle particelle nelle diverse regioni

Fare misure a 2 Luminosità con 2 HV diverse 2 tempi morti diversi corrispondenti ai due Guadagni diversi nella stessa regione(la spiegazione che ci diamo è che per grande carica rilasciata si ha saturazione dell’amplificatore e allungamento del tempo morto)

Le misure si possono fare appena sono raggiunte condizioni stabili di alta luminosità.- Le vecchie misure erano fatte integrando i conteggi in 1 secondo. - Non risulta che ci siano difficoltà ad aumentare molto il tempo (l’unica

condizione è la stabilità della luminosità nel tempo di misura - il tempo totale necessario per fare tutta la misura dipende molto poco dal tempo di integrazione)

Tempo morto del CARIOCA Misure di rate sui canali fisici vs Luminosità

Page 10: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

Analisi• In M2 abbiamo misurato un tempo morto del Carioca molto più lungo di

quanto ci si aspettava per una Mip. La interpretazione attuale è che questo sia dovuto alla grossa carica rilasciata dal low energy background con conseguente saturazione dell’amplificatore… • Per testare questa interpretazione possiamo confrontare il tempo morto in

M2R2 con quello in M1R2. Se l’interpretazione è giusta mi aspetto di misurare un dead time medio più basso in M1R2 dove mi aspetto una percentuale molto più alta di Mip • Risultato ??? • Nelle camere di M1 dietro la parete misuriamo una rate molto più alta (vedi

Giacomo). Nelle camere dietro le riinterazioni nel materiale della stazione e il back splash dal calorimetro potrebbe dare effetti simili al fondo di bassa energia in M2… Confrontare dead time CARIOCA misurato separatamente per camere davanti e camere dietro la parete.

Page 11: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

Riguardo al confronto davanti dietro:significativa e piccolissima differenza Nelle camere dietro dove si misura una rate più alta, si misura anche un dead time maggiore

Davide:Non sembra che M1 abbia un tempo morto minore di M2

Interpretation ???

Page 12: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

GEM

• A parte il vantaggio della resistenza alla radiazione, sono le GEM adatte/ottimali per lavorare in M2R1 M3R1 ?

- non mi riferisco (solo) alla risoluzione temporale/efficienza ma alla - rate di hit di fondo (generazione di single gap tracks nei piani sottili di materiale di alta densità vicino al gas) Finora gli studi fatti hanno riguardato soprattutto le MWPC.• La misura AND-OR in M1 ci potrebbe dare delle indicazioni riguardo a questo

punto• Si possono avere informazioni dal Monte Carlo ? - anche se il MC quantitativamente non dà la percentuale di hit scorrelati che misuriamo nelle MWPC, potremmo comunque vedere se le GEM sono relativamente meglio o peggio delle MWPC ? • Sono possibili altre misure ?

Page 13: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

Inefficiencies reported in the TDR

inefficiency from CARIOCAinefficiency mainly from DIALOG

Following my simulation DIALOG inefficiency is underestimated

Remind of performance

Page 14: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

UPGRADE

• General comment Before deciding the final strategy it would be important to verify the possibility of reducing the DIALOG dead time. If we can significantly reduce it ..…

• For what inefficiency is concerned: # It could be sufficient to make PAD detectors M2R1 M2R2 M3R1 (M3R2) + PAD readout in M2R3 and M5R4 going down to inefficiencies order of 1% in M2R1, M4R1, M5R1 and M5R4 (and lower in all the other regions) - Note that inefficiency in M3R2 with the present layout is at the same level of M4R1, M5R1 that are already pad detectors # The inefficiency goes down to order of 1% in M2R1 with pad = logical pad - If this solution brings to too many channels/cables OR of two X-adjacent pads in the FE would reduce by a factor 2 the cables with no change of inefficiency and almost no change in MisID

Page 15: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

• For what MisID is concerned : With several % of pad occupancy we will have a very high occupancy in the FOIs very high accidental probability

# Assuming the rates reported in the TDR table and with present detector PAD occupancy goes up to ~50% in M5R4, ~ 9% - 4% in M2R1-M2R2 eliminating ghosts with a PAD detector occupancy goes down by > (~) a factor 2 necessary but not sufficient for a good performance locally (unless we have a good surprise from shielding - but simulated M2 shielding effect was already considered) - PAD detector in M2R1 M2R2 M3R1 (M3R2) necessary - PAD readout in M5R4 necessary PAD occupancy goes up to ~2.5% - 2% in M2R3-M2R4 - PAD readout in M2R3, M2R4 usefull (more for MUID than for efficiency) Once eliminated the ghosts we cannot do much more for MUID but in the inner regionwe could still improve with a pad size X=2X, Y=1/2Y (it would permit to reduce YFOI) # ... too many channels …

Page 16: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

Spares

Page 17: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

dead time inefficiencies

Given a dead time of the electronics, the induced inefficiency significantly depend on the time distributions of the background and muon signals on the FE.

# For the response of the bi-gap to background hits, I used the time distribution measured for MinBias TAE events (smoothed) # For the muons I assumed a gaussian: Peak 11ns, σ = 5ns

Both are approximations that should be better tuned.

M2R1 pad timeFor backgr hitsFor muon hits

Page 18: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

Inefficiency induced by CARIOCA dead time at 40 MHz will be higher w.r.t. the case of 20 MHz(+ 15% for wires + 14% for cathodes)

BCR = 40 MHz

Inefficiency expressed in δeff

Measured <δcar> ns

inefficiency = δeffR*following dead time formula R*/Rh = (1- δeffR*) (δeff in ns, R*=rate measured/0.7 in GHz)

ineffi

cien

cy (e

ffecti

ve d

ead

time

δeff)

Inefficiency is higher for muon hits than for background hits

In the case of DIALOG the inefficiency depends critically on the assumptions made

• background hits (FE counters)

- Muon hits

Page 19: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

Rates of particles (no ghosts) at L=2x1033 Rates in kHz/cm2

Simulation input: Foreseen ratesreported in TDR

Note :- The effect simulated of the new shielding

to be added at M2-inner has been put in

- The effect of the last shielding already added at M5R4, has to be evaluated and put in

Page 20: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

Inefficiency =5 11 23 % at 162 327 590 kHz/cm2

Logi

cal p

ad o

ccup

ancy

Rate/cm2 (kHz)

EXAMPLE: M2R1 present detector (TS=95cm2) X,Y= 6+8 phys.channels per Trig. Sect. 48x8 crossings per chamber (0.63x3.1 ~ 2cm2)

Important inefficiency of a single pad hit by a muon5 11 23 % at 162 327 590 kHz/cm2

Reconstructed hits (with ghosts)

Real particles

The 3 red vertical lines correspond to the rates foreseen at L=2x1033 in the chamber of the region having minimal, average, maximal population

inefficiencyineffi

ciency

Important contribution of ghosts

8

Page 21: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

In M2R1, M3R1 inefficiency comes only from CARIOCA dead time. In the regions where we have pads Ored in the readout, DIALOG inefficiency is important. In most regions the inefficiency will come essentially from the ‘’DIALOG dead time’’ (18 ns assumed)

Min Aver Max

5.0 11.0 23.0 %2.0 7.5 13.0 0.7 3.9 9.30.0 1.7 7.40.7 3.2 6.9

Inefficiencies reported in TDR

Inefficiencies from my simulation (different definitions but significant differences)

Effect of DIALOG seems to be important not only in M5R4 Can we further reduce DIALOG formation time ? Possibly increase nODE number in other regions 9

Page 22: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

Inefficiency: very large improvement 0.4 0.7 1.5 % at162 327 590 kHz/cm2

MisID: No ghosts improvement using the usual FOI With this Ypad size , one could use a smaller FOI (in Y) with further improvement.

M2R1 PAD DETECTOR X=2X, Y=1/2Y of logical pad384 pads per chamber (1.26x1.6 ~ 2 cm2)

M2R1 PRESENT DETECTOR (TS = 95 cm2 )X,Y= 6+8 phys.channels per Trig. Sect.48x8 crossings/chamber (0.63x3.1 ~ 2cm2)

Inefficiency :5 11 23 % at 162 327 590 kHz/cm2

MisID: many ghosts

Logi

cal p

ad o

ccup

ancy

Rate/cm2 (kHz)

Switching off one gap

11

Pad

occu

panc

y

Rate/cm2 (kHz)

Page 23: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

M2R1 PAD DETECTOR X=2X, Y=Y of logical pad192 pads per chamber (1.26x3.2 ~ 4 cm2)

Inefficiency increases: 0.8 1.6 3.3 % MisID:~ the same using the standard FOI but nofurther improvement is possible using a smaller FOI.

Pad

occu

panc

y

Rate/cm2 (kHz)

Inefficiency: 0.4 0.7 1.5 % at162 327 590 kHz/cm2

MisID: With this Ypad size , one could use a smaller FOI (in Y) with further improvement.

M2R1 PAD DETECTOR X=2X, Y=1/2Y of logical pad384 pads per chamber (1.26x1.6 ~ 2 cm2)

12Rate/cm2 (kHz)Pa

d oc

cupa

ncy

Page 24: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

M2R2 PRESENT DETECTOR (TS=380 cm2)X,Y= 12+16 phys.ch. =12 + 4 logic. per TS48x4=192 crossings/chamber (1.26x6.3~8 cm2)

M2R2 PAD DETECTOR X=2X, Y=1/2Y of logical (it is convenient)192 pads per chamber (2.5x3.1 ~ 8 cm2)

large improvement: 0.1 0.6 1.1 %

MisID Improvement (no ghosts) possible further improvementreducing YFOI

Pad

occu

panc

yRate/cm2 (kHz)

Inefficiency :2 7.5 13 % at15 52 97 kHz/cm2

Rate/cm2 (kHz)

HIT

S in

Trig

ger S

ecto

r – p

ad o

ccup

ancy

13

/48

Page 25: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

M2R2 PAD DETECTOR X=2X, Y=Y of logical pads96 pads per chamber (2.5x6.3 ~ 16 cm2)

Pad

occu

panc

y

MisID :Going back to the Y pad size = 6.3 cm, we have lost the possibility of reducing FOI having a lower MisID with ~ the same muon matching efficiency.

Inefficiency : 0.3 1.3 2.4 %

M2R2 PAD DETECTOR X=2X, Y=1/2Y of logical (it is convenient)192 pads per chamber (2.5x3.1 ~ 8 cm2)

Inefficiency : 0.1 0.6 1.1 %

MisID : possible further improvementreducing YFOI

Pad

occu

panc

y

Rate/cm2 (kHz) 14

Page 26: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

M3R1 PRESENT DETECTOR (TS = 109 cm2 )X,Y= 6+8 phys. channels (48 crossings/TS) 384 crossings per chamber (0.63x3.1 ~2 cm2)

Logi

cal p

ad o

ccup

ancy

Inefficiency: 0.7 3.2 6.9 % at39 123 216 kHz/cm2

Rate/cm2 (kHz)

M3R1 PAD DETECTORX=2X, Y=Y (#phys chan. = #logical pad/2)192 pads per chamber (1.26x3.1 ~4 cm2)

Inefficiency:0.2 0.6 1.0 %

MisID: improvement (no ghosts) ~ same FOI can be used.

Pad

occu

panc

yRate/cm2 (kHz)

15

Page 27: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

M3R1 PAD DETECTORX=2X, Y=Y (#phys chan. = #logical pad/2)192 pads per chamber (1.26x3.1 ~4 cm2)

Inefficiency:0.2 0.6 1.0 %

MisID: improvement (no ghosts) ~ same FOI can be used.

Pad

occu

panc

y

Reducing granularity to 96 pads Inefficiency increases= 0.3 1.2 2.3 %

M3R1 PAD detectorX=4X, Y=Y (#phys. chan. = #logical pad /4)96 pads per chamber (2.5x3.1 ~ 8 cm2)

Pad

occu

panc

y

CARIOCA inefficiency can be recovered building the pad detector with smaller physical channels OR-ed in the DIALOG (without increasing output cables)What cannot be recovered is the increase of MisID if FOI must be increased to save muon matching efficiency

16Rate/cm2 (kHz) Rate/cm2 (kHz)

Page 28: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

M2R3 X Y= 24x4=96 phys. channels 24+ 4 logic. strips per TS Area TS = 60x50=3000 cm2

With inefficiency due to DIALOG formation time = 18 ns = 3.9 % at 5.4 kHz/cm2

(the average rate in the region)

Here a gaussian with peak value = 11nsand σ = 5ns was assumed for the time distribution of the muon hits in the bi-gap. A uniform rate in the trigger sector was also assumed. This is not fully correct… nevertheless this value is significantly higher w.r.t. what reported in the TDR (2.6 %)And what is relevant is that, if I use the same time distribution used for the background hits, I get a much smaller inefficiency: 2.2 % (to be compared with 2.6% of TDR)

HIT

S in

Trig

ger S

ecto

r – p

ad o

ccup

ancy

Rate/cm2 (kHz)

Real particles

Reconstructed hits/96

Page 29: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

M2R4 present detector (TS=12000 cm2)X Y= 24x4=96 phys. channels 24+ 4 logic. strips per TSArea TS = 120x100=3000 cm2

Inefficiency comes from DIALOG

0. 1.7 7.4 % at0.12 0.63 2.6 kHz/cm2

HIT

S in

Trig

ger S

ecto

r – p

ad o

ccup

ancy

/96

Page 30: Upgrade for high Luminosity - a list of things to do / to understand Contributi da Davide, Roberta, Alessia Martellotti Roma 9 /10 /2014.

M5R4 present set up (TS=18480 cm2)X,Y= 24+4 phys. ch. = 6+4 logic. Ch. per TS24 crossings per TS (~770 cm2)

ONLY CARIOCA dead time inefficiency simulated2.3 % at 9 kHz

Pad

occu

panc

y

Rate/cm2 (kHz)H

ITS

in th

e Tr

igge

r Sec

tor

Also DIALOG dead time simulated. Inefficiency = 1.3, 9, 30 % at 0.2, 2, 9 kHz/cm2

Inefficiency from DIALOG (formation 18ns) to be revised : TAE time distribution of M2R1 was used

Rate/cm2 (kHz)