Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode....

16
Unit 12: Semiconductor devices. Diode. P-N Junction in equilibrium. Diode. Diode bias. Forward and reverse bias. Diode current-voltage characteristics. Models. Applications.

Transcript of Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode....

Page 1: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

Unit 12: Semiconductor devices.

Diode.

P-N Junction in equilibrium. Diode.

Diode bias. Forward and reverse bias.

Diode current-voltage characteristics. Models.

Applications.

Page 2: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

Electrons Holes

PN junction in equilibrium

NP

Jpdrift

Jndif

Jpdif

Jndrift

300 K0 K

V0

rrrrE

At room temperature, holes onp area go by diffusion towards n

area, and e- from n area crossto p area (majority carrierscurrents).

Xp Xn

Diffusion Currents

of majority carriers

Drift Currents of

minority carriers

On junction area, holes and e-

are recombined, appearing anarrow depletion area (withoute- and holes) with a chargedensity due to the ions of theimpurities, negative on p areaand positive on n area.

So, an electric field appears,flowing drift currents of minoritycarriers (e- from p to n area,and holes from n to p area),canceling diffusion currents.

Page 3: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

On not biased p-n junction (or in equilibrium), diffusion currents of majority carriers are cancelled by drift currents of minority carriers.

A P-N junction is a DIODE

PN junction in equilibrium. Not biased junction.

V0p nrrrrE

driftJr

difJr

0JJ difdrift =+rr

xp xn

Page 4: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

PN

junct

ion in e

quili

brium

. Featu

res.

ρqND

-qNA

-0

+

pp0 ≈ ≈ ≈ ≈ NA nn0 ≈ ≈ ≈ ≈ ND

np0 pn0

Charge carriers density distribution.

Charge distribution

Xp Xn

V 0

rrrr

E

Xp Xn np

Page 5: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

V 0

rrrr

E

Xp Xn

Electric field on pn junction

EXp Xn

Drop of potential known as

Built-in potencial

V0

V

Xp Xn

V0 = 0.7 V for Si diodes

V0 = 0.3 V for Ge diodes

at 20 ºC

PN

junct

ion in e

quili

brium

. Featu

res.

Page 6: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

Diode bias. Forward bias

VD creates an electric field opposite to the field on the depletion area, being

lower Etotal and the drop of potential on the junction: V´=V0-VD. So, diffusion

majority current is increased, and drift minority current is decreased.

VDI

r r r r

E

p n

Jdes

J

Jdif

r r r r r r r r

r r r r

driftJr

difJr

V’

Page 7: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

Diode bias. Forward bias.

If VD>V0, diffusion and drift currents have same direction and current can be

higher. There isn’t opposition for flowing of current.

p n

driftJr

difJr

VD>V0

rrrrE

Jr

Page 8: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

Diode bias. Reverse bias.

VR creates an electric field reinforcing the field in the depletion area, increasing the

drop of potential: V´=V0+VR. Depletion area enlarges. So, the diffusion current of

majoritary carriers decreases (holes from p to n area and e- from n to p), and the

drift current of minoritary carriers should increase (e- from p to n area and holes

from n to p). But there are only few minoritary carriers availables (generated by

thermic generation), and this current I0 is very small, and it’s called REVERSE

SATURATION CURRENT.

VR I0 <<<<

r r r r E

p n

Jdes

J

Jdif r r r r

r r r r

r r r r

V’

driftJr

difJr

Page 9: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

Diode current-voltage characteristic.

-0,05

0,05

0,15

-70 -20 30 80

I (m

A)

V (mV)

Io

-0,05

0,05

0,15

-70 -20 30 80

I (m

A)

V (mV)

Io I0 < µA

I0: Reverse saturation current

Vu

Vu: Diode forward voltage drop

Symbol for diode:

p area n area

Anode Cathode

Inverse of the slope (m) on high voltage region is the internal resistance of the diode (rd=1/m)

m

Page 10: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

R

I I

ε ε

R

I

R

ε ε

R

Not taken in account neither Vu nor rd. Forward biased, the diode is a short-circuit. Reverse biased, the diode is an open circuit.

1st approaching. Ideal diode:

RI

ε=

I=0

Models of diode

Behaviour of diode can be modeled with three approachings:

V

I

voltage-current characteristic for a diode in 1st approaching

Page 11: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

Only taken in account diode forward voltage drop:

Vu= 0.3 V for Ge diode

Vu= 0.7 V for Si diode

5.3mA1k

0.76

R

VVI u0 =

−=

−=

Vu V

I

R=1kΩ

I

V0 = 6VR=1kΩ

V0 = 6V

I Vu=0.7 V

Models of diode

2nd approaching. Simplified model:

voltage-current characteristic for a diode in 2nd approaching

Page 12: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

R=1kΩ

ε= 6V Ird = 25Ω

Vu=0.7 V

5.4mA251000

0.76

R

VεI u =

+

−=

−=

Models of diode

3d approaching. Linear diode:

Taken in account both diode forward voltage drop as diode internal resistance.

Vu V

I

1/rd

voltage-current characteristic for a diode in 3d approaching

R=1kΩ

Iε= 6VVu=0,7 V

rd=25 Ω

Page 13: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

Three models for junction diode

Ideal diode (1st approaching)

I

V

Simplified model (2nd approaching)

Vu

I

VVu

Linear model (3d approaching)

rd Vu

I

V

rd

Vu

Models of diode

Page 14: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

t

I

polarizacióndirecta

polarizacióninversa

t

I

tiempo de recuperación inverso

tri

Reverse recovery time of diode

Forward biased Reverse biased

Reverse recovery time

Should be…

Is..…

Page 15: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

t

U

~

output

t

U

t

U

~

~

Routput

Half-wave rectifier:

Full-wave rectifier:

Application: Diode as rectifier

input

input

input

outputoutput

output

Page 16: Unit 12: Semiconductor devices. Diode. P-N Junction in ... 11/Slides unit 11. Diode.pdf · Diode. Diode bias. ... Application: Diode as rectifier input input input output output output.

Applications: logician circuits

AND and OR logic gates

A

B

R

Vs

10 V

“AND” gate with diodes

Vs

R

“OR” gate with diodes

V=10 V 1 Logic

V= 0 V 0 Logic

VA VB VS

0 (0) 0 (0) 0,7 (0)

0 (0) 10 (1) 0,7 (0)

10 (1) 0 (0) 0,7 (0)

10 (1) 10 (1) 10 (1)

VA VB VS

0 (0) 0 (0) 0 (0)

10 (1) 0 (0) 9,3 (1)

0 (0) 10 (1) 9,3 (1)

10 (1) 10 (1) 9,3 (1)

A

B

Rs

Rs R >>>Rs