UIN Malang · Analisis Numerik (P6) 2 Introduction Interpolation was used for long time to provide...

43
Analisis Numerik (P6) 1 Analisis Numerik Pertemuan 6: Interpolation UIN Malang Read Chapter 18, Sections 1-5

Transcript of UIN Malang · Analisis Numerik (P6) 2 Introduction Interpolation was used for long time to provide...

Analisis Numerik (P6) 1

Analisis NumerikPertemuan 6:

Interpolation

UIN Malang

Read Chapter 18, Sections 1-5

Analisis Numerik (P6) 2

Introduction

Interpolation was used for long time to provide an estimate of a tabulated function at values that are not available in the table.

What is sin (0.15)?

x sin(x)

0 0.0000

0.1 0.0998

0.2 0.1987

0.3 0.2955

0.4 0.3894

Using Linear Interpolation sin (0.15) ≈ 0.1493

True value (4 decimal digits) sin (0.15) = 0.1494

Analisis Numerik (P6) 3

The Interpolation Problem

Given a set of n+1 points,

Find an nth order polynomial

that passes through all points, such that:

)(,....,,)(,,)(, 1100 nn xfxxfxxfx

)(xfn

niforxfxf iin ,...,2,1,0)()(

Analisis Numerik (P6) 4

Example

An experiment is used to determine the viscosity of water as a function of temperature. The following table is generated:

Problem: Estimate the viscosity when the temperature is 8 degrees.

Temperature

(degree)

Viscosity

0 1.792

5 1.519

10 1.308

15 1.140

Analisis Numerik (P6) 5

Interpolation Problem

Find a polynomial that fits the data points exactly.

)V(TV

TaV(T)

ii

n

k

k

k

0

tscoefficien

Polynomial:

eTemperatur:

Viscosity:

ka

T

V

Linear Interpolation: V(T)= 1.73 − 0.0422 T

V(8)= 1.3924

Analisis Numerik (P6) 6

Existence and Uniqueness

Given a set of n+1 points:

Assumption: are distinct

Theorem:

There is a unique polynomial fn(x) of order ≤ nsuch that:

,...,n,iforxfxf iin 10)()(

nxxx ,...,, 10

)(,....,,)(,,)(, 1100 nn xfxxfxxfx

Analisis Numerik (P6) 7

Examples of Polynomial Interpolation

Linear Interpolation

Given any two points, there is one polynomial of order ≤ 1 that passes through the two points.

Quadratic Interpolation

Given any three points there is one polynomial of order ≤ 2 that passes through the three points.

Analisis Numerik (P6) 8

Linear InterpolationGiven any two points,

The line that interpolates the two points is:

Example :

Find a polynomial that interpolates (1,2) and (2,4).

)(,,)(, 1100 xfxxfx

001

0101

)()()()( xx

xx

xfxfxfxf

xxxf 2112

242)(1

Analisis Numerik (P6) 9

Quadratic Interpolation Given any three points:

The polynomial that interpolates the three points is:

)(, ,)(,,)(, 221100 xfxandxfxxfx

02

01

01

12

12

2102

01

01101

00

1020102

)()()()(

],,[

)()(],[

)(

:

)(

xx

xx

xfxf

xx

xfxf

xxxfb

xx

xfxfxxfb

xfb

where

xxxxbxxbbxf

Analisis Numerik (P6) 10

General nth Order Interpolation

Given any n+1 points:

The polynomial that interpolates all points is:

)(,..., ,)(,,)(, 1100 nn xfxxfxxfx

],...,,[

....

],[

)(

......)(

10

101

00

10102010

nn

nnn

xxxfb

xxfb

xfb

xxxxbxxxxbxxbbxf

Analisis Numerik (P6) 11

Divided Differences

0

1102110

02

1021210

01

0110

],...,,[],...,,[],...,,[

............

DDorder Second],[],[

],,[

DDorder First ][][

],[

DDorder Zeroth )(][

xx

xxxfxxxfxxxf

xx

xxfxxfxxxf

xx

xfxfxxf

xfxf

k

kkk

kk

Analisis Numerik (P6) 12

Divided Difference Table

x F[ ] F[ , ] F[ , , ] F[ , , ,]

x0 F[x0] F[x0,x1] F[x0,x1,x2] F[x0,x1,x2,x3]

x1 F[x1] F[x1,x2] F[x1,x2,x3]

x2 F[x2] F[x2,x3]

x3 F[x3]

n

i

i

j

jin xxxxxFxf0

1

0

10 ],...,,[)(

Analisis Numerik (P6) 13

Divided Difference Table

f(xi)

0 -5

1 -3

-1 -15

ixx F[ ] F[ , ] F[ , , ]

0 -5 2 -4

1 -3 6

-1 -15

Entries of the divided difference table are obtained from the data table using simple operations.

Analisis Numerik (P6) 14

Divided Difference Table

f(xi)

0 -5

1 -3

-1 -15

ixx F[ ] F[ , ] F[ , , ]

0 -5 2 -4

1 -3 6

-1 -15

The first two column of the

table are the data columns.

Third column: First order differences.

Fourth column: Second order differences.

Analisis Numerik (P6) 15

Divided Difference Table

0 -5

1 -3

-1 -15

iyixx F[ ] F[ , ] F[ , , ]

0 -5 2 -4

1 -3 6

-1 -15

201

)5(3

01

0110

][][],[

xx

xfxfxxf

Analisis Numerik (P6) 16

Divided Difference Table

0 -5

1 -3

-1 -15

iyixx F[ ] F[ , ] F[ , , ]

0 -5 2 -4

1 -3 6

-1 -15

611

)3(15

12

1221

][][],[

xx

xfxfxxf

Analisis Numerik (P6) 17

Divided Difference Table

0 -5

1 -3

-1 -15

iyixx F[ ] F[ , ] F[ , , ]

0 -5 2 -4

1 -3 6

-1 -15

4)0(1

)2(6

02

1021210

],[],[],,[

xx

xxfxxfxxxf

Analisis Numerik (P6) 18

Divided Difference Table

0 -5

1 -3

-1 -15

iyixx F[ ] F[ , ] F[ , , ]

0 -5 2 -4

1 -3 6

-1 -15

)1)(0(4)0(25)(2 xxxxf

f2(x)= F[x0]+F[x0,x1] (x-x0)+F[x0,x1,x2] (x-x0)(x-x1)

Analisis Numerik (P6) 19

Two Examples

x y

1 0

2 3

3 8

Obtain the interpolating polynomials for the two examples:

x y

2 3

1 0

3 8

What do you observe?

Analisis Numerik (P6) 20

Two Examples

1

)2)(1(1)1(30)(

2

2

x

xxxxP

x Y

1 0 3 1

2 3 5

3 8

x Y

2 3 3 1

1 0 4

3 8

1

)1)(2(1)2(33)(

2

2

x

xxxxP

Ordering the points should not affect the interpolating polynomial.

Analisis Numerik (P6) 21

Properties of Divided Difference

],,[],,[],,[ 012021210 xxxfxxxfxxxf

Ordering the points should not affect the divided difference:

Analisis Numerik (P6) 22

Example

Find a polynomial to interpolate the data.

x f(x)

2 3

4 5

5 1

6 6

7 9

Analisis Numerik (P6) 23

Example

x f(x) f[ , ] f[ , , ] f[ , , , ] f[ , , , , ]

2 3 1 -1.6667 1.5417 -0.6750

4 5 -4 4.5 -1.8333

5 1 5 -1

6 6 3

7 9

)6)(5)(4)(2(6750.0

)5)(4)(2(5417.1)4)(2(6667.1)2(134

xxxx

xxxxxxf

Analisis Numerik (P6) 24

Summary

.polynomial inginterpolat affect thenot should points theOrdering

methodsOther -

2] 18.[Section ion Interpolat Lagrange -

] 18.1[Section Difference DividedNewton -

itobtain toused becan methodsDifferent *

unique. is Polynomial inginterpolat The *

..., ,2 ,1 ,0)()(:Condition ingInterpolat niforxfxf ini

Analisis Numerik (P6) 25

Lecture 21

Lagrange Interpolation

Analisis Numerik (P6) 26

The Interpolation Problem

Given a set of n+1 points:

Find an nth order polynomial:

that passes through all points, such that:

)(,....,,)(,,)(, 1100 nn xfxxfxxfx

)(xfn

niforxfxf iin ,...,2,1,0)()(

Analisis Numerik (P6) 27

Lagrange Interpolation

Problem:

Given

Find the polynomial of least order such that:

Lagrange Interpolation Formula:

niforxfxf iin ,...,1,0)()(

)(xfn

….

….

1x nx

0y 1y ny

ix

iy

n

ijj ji

j

i

n

i

iin

xx

xxx

xxfxf

,0

0

)(

)()(

0x

Analisis Numerik (P6) 28

Lagrange Interpolation

ji

jix

x

ji

th

i

1

0)(

:spolynomialorder n are cardinals The

cardinals. thecalled are)(

Analisis Numerik (P6) 29

Lagrange Interpolation Example

x 1/3 1/4 1

y 2 -1 7

)4/1)(3/1(27

)1)(3/1(161)1)(4/1(182)(

4/11

4/1

3/11

3/1)(

14/1

1

3/14/1

3/1)(

13/1

1

4/13/1

4/1)(

)()()()()()()(

2

12

1

02

02

21

2

01

01

20

2

10

10

2211002

xx

xxxxxP

xx

xx

xx

xx

xxx

xx

xx

xx

xx

xxx

xx

xx

xx

xx

xxx

xxfxxfxxfxP

Analisis Numerik (P6) 30

Example

Find a polynomial to interpolate:

Both Newton’s interpolation

method and Lagrange interpolation method must give the same answer.

x y

0 1

1 3

2 2

3 5

4 4

Analisis Numerik (P6) 31

Newton’s Interpolation Method

0 1 2 -3/2 7/6 -5/8

1 3 -1 2 -4/3

2 2 3 -2

3 5 -1

4 4

Analisis Numerik (P6) 32

Interpolating Polynomial

4324

4

8

5

12

59

8

95

12

1151)(

)3)(2)(1(8

5

)2)(1(6

7)1(

2

3)(21)(

xxxxxf

xxxx

xxxxxxxf

Analisis Numerik (P6) 33

Interpolating Polynomial Using

Lagrange Interpolation Method

24

)3)(2)(1(

)34(

)3(

)24(

)2(

)14(

)1(

)04(

)0(

6

)4)(2)(1(

)43(

)4(

)23(

)2(

)13(

)1(

)03(

)0(

4

)4)(3)(1(

)42(

)4(

)32(

)3(

)12(

)1(

)02(

)0(

6

)4)(3)(2(

)41(

)4(

)31(

)3(

)21(

)2(

)01(

)0(

24

)4)(3)(2)(1(

)40(

)4(

)30(

)3(

)20(

)2(

)10(

)1(

4523)()(

4

3

2

1

0

43210

4

0

4

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xfxf

i

ii

Analisis Numerik (P6) 34

Inverse Interpolation

given is where,)( : thatsuch Find

valuesof a table Given :Problem

kk yyxfx

….

….

1xnx

0y 1y ny

ix

iy

One approach:

Use polynomial interpolation to obtain fn(x) to interpolate the

data then use Newton’s method to find a solution to x

kn yxf )(

0x

Analisis Numerik (P6) 35

Inverse Interpolation

….

….

1x nx

0y 1y ny

ix

iy

Inverse interpolation:

1. Exchange the roles

of x and y.

2. Perform polynomial

Interpolation on the

new table.

3. Evaluate

)( kn yfx

….

….

iy 0y 1y ny

ix 0x 1x nx

0x

Analisis Numerik (P6) 36

Inverse Interpolation

x

y

y

x

Analisis Numerik (P6) 37

Inverse Interpolation

Question:

What is the limitation of inverse interpolation?

• The original function has an inverse.

• y1, y2, …, yn must be distinct.

Analisis Numerik (P6) 38

Inverse Interpolation Example

5.2)( that such Find table. theGiven

:Problem

xfx

x 1 2 3

y 3.2 2.0 1.6

3.2 1 -.8333 1.0417

2.0 2 -2.5

1.6 3

2187.1)5.0)(7.0(0417.1)7.0(8333.01)5.2(

)2)(2.3(0417.1)2.3(8333.01)(

2

2

fx

yyyyfx

Analisis Numerik (P6) 39

Errors in polynomial Interpolation

Polynomial interpolation may lead to large errors (especially for high order polynomials).

BE CAREFUL

When an nth order interpolating polynomial is used, the error is related to the (n+1)th order derivative.

Analisis Numerik (P6) 40

-5 -4 -3 -2 -1 0 1 2 3 4 5-0.5

0

0.5

1

1.5

2

true function

10 th order interpolating polynomial

10th Order Polynomial Interpolation

Analisis Numerik (P6) 41

1

)1()1(

)1(4)()(

:Then points). end the(including b][a, in

points spacedequally 1at esinterpolatthat

n degree of polynomialany beLet

.)( and b],[a, on continuous is )(

: thatsuch functiona be)(Let

n

nn

n

ab

n

Mx-Pxf

nf

P(x)

Mxfxf

xf

Errors in polynomial InterpolationTheorem

Analisis Numerik (P6) 42

Example

9

10

1

)1(

th

1034.19

6875.1

)10(4

1

)1(4

9 ,1

01

.[0,1.6875] interval in the points) spacedequally 01 (using

f(x) einterpolat topolynomialorder 9 use want toWe

sin

f(x)-P(x)

n

ab

n

Mf(x)-P(x)

nM

nforf

(x) f(x)

n

n

Analisis Numerik (P6) 43

Summary

The interpolating polynomial is unique.

Different methods can be used to obtain it.

Newton’s divided difference

Lagrange interpolation

Others

Polynomial interpolation can be sensitive to data.

BE CAREFUL when high order polynomials are used.