TWO...

27
1 Basic Circuit Analysis Methods (KVL and KCL method, Node method) 6.002x CIRCUITS AND ELECTRONICS

description

mit cicuits week 2

Transcript of TWO...

Page 1: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

1  

Basic Circuit Analysis Methods (KVL and KCL method, Node method)

6.002x CIRCUITS AND ELECTRONICS

Page 2: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

2  

2  

Remember, our EECS playground

Review

Observe the lumped matter discipline LMD

Page 3: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

3  

3  

Lumped circuit element +  

-­‐  

power consumed by element =    

Review

i

v

vi

Page 4: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

4  

4  

LMD allows us to create the lumped circuit abstraction

Review

+!–! R1

R3 R2

V

Page 5: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

5  

5  

KVL: For all loops

KCL: For all nodes

0=∑ j jν

0=∑ j ji

Review Review

Maxwell’s equations simplify to algebraic KVL and KCL under LMD!

tdlE B

∂∂

−=⋅∫φ

Page 6: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

6  

6  

DEMO

+!–!

Review

R1 R4

R3

R2 R5

d

c

b

a

V0

Page 7: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

7  

7  

Let’s Begin by Building aToolchest of Analysis Techniques

+!–!

R1 R4

R3

R2 R5

Analyzing a circuit means:

Find all the element v’s and i’s

V0

Page 8: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

8  

8  

Method 1: Basic KVL, KCL method of Circuit analysis  

Goal: Find all element v’s and i’s

1. write element v-i relationships (from lumped circuit abstraction) 2. write KCL for all nodes 3. write KVL for all loops

lots of unknowns lots of equations lots of fun solve

Page 9: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

9  

9  

i +

-

Element e

Current is taken to be positive going into the positive voltage terminal

Method 1: Basic KVL, KCL method of Circuit analysis  

Then power consumed by element e

is positive = vi

This convention is called: Associated variables discipline

Goal: Find all element v’s and i’s Labeling element v’s and i’s

Page 10: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

10  

10  

Method 1: Basic KVL, KCL method of Circuit analysis  

For R For voltage source For current source

You will need this for step 1: Element Relationships

Page 11: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

11  

11  

Let’s Apply KVL, KCL Method to this Example

The Demo Circuit

+!–!

R1 R4

R3

R2 R5

V0

Goal: Find all element v’s and i’s

Page 12: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

12  

12  

KVL, KCL Example

a

d

c

+!–!

Note the use of associated variables…

R4

R5 R2

R1

R3 b V0

Label all v’s and i’s Goal: Find all element v’s and i’s

5050 , ii ……νν12 unknowns

Page 13: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

13  

Step 1 of KVL, KCL Method 12 unknowns

1. Element relationships ( )iv, 5id

c

1ν+ –

5ν+ –

+ – 2ν+ –

4ν+ – 0i

4i

+!–!

R4

R5 R2

R1

R3 b

v3 V0

i1

i3

i2 0ν+ –

a

5050 , ii ……ννL2

L3

L1

L4

Page 14: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

14  

Step 2 of KVL, KCL Method 12 unknowns

2. KCL at the nodes

(use convention, e.g., sum currents leaving the node)

5050 , ii ……νν5id

c

1ν+ –

5ν+ –

+ – 2ν+ –

4ν+ – 0i

4i

+!–!

R4

R5 R2

R1

R3 b

v3 V0

i1

i3

i2 0ν+ –

a

L2

L3

L1

L4

Page 15: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

Step 3 of KVL, KCL Method 12 unknowns

3. KVL for loops

(use convention, e.g., as you go around loop, assign first encountered sign to each voltage)

5050 , ii ……νν5id

c

1ν+ –

5ν+ –

+ – 2ν+ –

4ν+ – 0i

4i

+!–!

R4

R5 R2

R1

R3 b

v3 V0

i1

i3

i2 0ν+ –

a

L2

L3

L1

L4

Page 16: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

KVL, KCL Method

16  

ugh @#!

1. Element v, i relationships v0 = V0

v1 = i1R1

v2 = i2R2

v3 = i3R3

v4 = i4R4

v5 = i5R5

2. KCL at the nodes

redundant

0410 =++ iii0132 =−+ iii0435 =−− iii0520 =−−− iii

a: b: d:

c:

3. KVL for loops

0431 =−+ vvv0210 =++− vvv

0253 =−+ vvv0540 =++− vvv redundant

L1:

L2:

L3: L4:

Method 3 – the node method will be much better!

Page 17: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

17  

17  

Other Analysis Methods Method 2— Apply element combination rules

A …R1 R2 R3 RN

B G2 G1 GN

Page 18: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

18  

18  

Method 2 — Apply element combination rules

Page 19: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

19  

19  

Method 2— Apply element combination rules

+!–!

Example

R1

R3 R2

V

Page 20: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

20  

20  

1. 2. 3. 4. 5.

Select reference node ( ground) from which voltages are measured. Label voltages of remaining nodes with respect to ground. These are the primary unknowns. Write KCL for all but the ground node, substituting device laws and KVL. Solve for node voltages. Back solve for branch voltages and currents (i.e., the secondary unknowns).

Particular application of KVL, KCL method

Method 3 — Node analysis

6.002x workhorse!

Page 21: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

21  

21  

Example: Old Faithful, plus current source

+!–!

R1 R4 R3

R2 R5

V0

Method 3 — Node analysis

1. Select reference ground node

2. Label node voltages with respect to ground.

g

I1

Page 22: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

22  

22  

Step 3 of Node Method

For convenience, write i

i RG 1

=

To avoid mistakes, use convention – E.g., always sum the currents leaving a node

g

+!–!

I1

e1

R4 R3 R1

R2 R5

e2 V0

V0

3. Write KCL for nodes, substituting device laws and KVL.

Page 23: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

23  

Step 4 of Node Method

Move constant terms to RHS & collect unknowns

2 equations, 2 unknowns Solve for e’s (compare units)

0)()()( 21321101 =+−+− GeGeeGVe

0)()()( 152402312 =−+−+− IGeGVeGee

KCL at e1

KCL at e2

4. Solve for node voltages

g

+!–!

I1

e1

R4 R3 R1

R2 R5

e2 V0

V0

Page 24: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

24  

Step 5 of Node Method

5. Back solve for branch voltages and currents

g

+!–!

I1

e1

R4 R3 R1

R2 R5

e2 V0

V0

e1 e2 Once you have solved for and , easy to find branch v’s and i’s

For example:

i1 + – v1

Page 25: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

25  

In matrix form:

⎥⎦

⎤⎢⎣

⎡+

=⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡++−

−++

104

01

2

1

5433

3321

IVGVG

ee

GGGGGGGG

conductivity matrix

unknown node

voltages sources

Revisit Step 4 of Node Method for Cultural Interest )()()( 10323211 GVGeGGGe =−+++

140543231 )()()( IGVGGGeGe +=+++−

4. Solve for node voltages

Page 26: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

26  

⎥⎦

⎤⎢⎣

⎡+

=⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡++−

−++

104

01

2

1

5433

3321

IVGVG

ee

GGGGGGGG

( )( ) 23543321

104

01

3213

3543

2

1

GGGGGGGIVG

VGGGGG

GGGG

ee

−++++

⎥⎦

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡++

++

=⎥⎦

⎤⎢⎣

Solve

( )( ) ( )( )5G3G4G3G

23G5G2G4G2G3G2G5G1G4G1G3G1G1I0V4G3G0V1G5G4G3G

1e ++++++++

++++=

( )( ) ( )( )5343

23524232514131

1043210132 GGGGGGGGGGGGGGGGG

IVGGGGVGGe++++++++

++++=

(same denominator)

Notice: linear in , , no negatives in denominator – we will use this later

V0 I1

Step 4 of Node Method 4. Solve for node voltages

Page 27: TWO https___courses.edx.org_asset-v1_MITx+6.002x_6x+1T2015+type@asset+block@handouts_6002-L2-oei12-gaps-annotated

27  

E.g., solve for , given

K2.81

GG

5

1 =⎭⎬⎫

K9.31

GG

4

2 =⎭⎬⎫

K5.11G3 = 01 =I

02 6.0 Ve =

If , then VV 30 = 02 8.1 Ve =

Step 4 of Node Method

g

+!–!

I1

e1

R4 R3 R1

R2 R5

e2 V0

V0

e2