TSV Summit LMalier 130122 - SEMI Summit LMalier 130122... · Investigation on TSV impact on 65nm...

34
© CEA. All rights reserved TSV : impact on microelectronics European 3D TSV Summit MINATEC Campus Grenoble, January 22 nd , 2013

Transcript of TSV Summit LMalier 130122 - SEMI Summit LMalier 130122... · Investigation on TSV impact on 65nm...

© CEA. All rights reserved

TSV : impact on microelectronics

European 3D TSV SummitMINATEC Campus

Grenoble, January 22nd, 2013

© CEA. All rights reserved

Welcome in Grenoble

Grenoble : 3D by Nature

Pour modifier: Insertion / En Tête/Pied de page

- Titre de la présentation | Auteur| 2

© CEA. All rights reserved

Welcome in MINATEC Campus … a living example of heterogeneous integration

Pour modifier: Insertion / En Tête/Pied de page

- Titre de la présentation | Auteur| 3

European

Photon&Neutron

Science Campus

Nanoscience

Campus

Campus

© CEA. All rights reserved

Welcome in LETI

Pour modifier: Insertion / En Tête/Pied de page

- Titre de la présentation | Auteur| 4

© CEA. All rights reserved

Leti: Mission & Focus A unique mission :

Innovate with Industry

| 5

1,300 staff members

300 PhD Students & post-docs

250 industrial assignees

Over 1,900 patents

in portfolio

Welcome in LETI

© CEA. All rights reserved

MEMS & 3D 200 mm

CMOS 200 mm

CMOS 300 + 3D 300

Nanoscale Characterization

LETI : a complete toolset for 3D

• Fully operationnal 300mm line dedicated to 3D –

inaugurated in 2011, January

© CEA. All rights reserved

TSV applications

Where do we stand ?

What challenges & perspectives for digital

applications

Pour modifier: Insertion / En Tête/Pied de page

- Titre de la présentation | Auteur| 7

© CEA. All rights reserved

A whole set of applications

Yole Development, 2011

© CEA. All rights reserved

Where do we stand

CIS (imagers)

Power

Sensors

Passives

Pour modifier: Insertion / En Tête/Pied de page

- Titre de la présentation | Auteur| 9

In Production In Introduction In Development

Interposers

Stacked

memories

LEDs

Logic

© CEA. All rights reserved

Qualcomm

3D Industrialization status

| 10

Memory Stack Under industrialization

Large players : Hynix; members of HMC consortium (Samsung – Micron – IBM Altera..); Ziptronix

Logic with TSV Development – near to production, mainly depending on market

Many known technology players

ST

Renesas

TI (IBM/Amkor)

GF (Amkor)

Samsung

& fabless Qualcomm

STE

Interposer Passive: in production for TSMC (CoWos with Xilinx, Altera), Advanced level

of R&D for Shinko

Active: Qualcomm (& other fabless)

Photonics : IBM, Alcatel-Lucent

Logic on Logic Coarse partitionning : Prototyping and Development

Fine partitionning : Pushed by academics

Some fabless interested (Qualcomm)

Memory stack

Logic with TSV

Interposer

Logic on Logic

Samsung HMC cube

ST/STE

IBM

Xilinx

Imagers In production for Conventional Back Side Illuminated Imagers

(BSI)

Some recent announces from Sony for active BSI

© CEA. All rights reserved

Interposers

An important sector :

As a market

As a first introduction of digital « non-2D » architectures

As a first return on invests

With markets of various size to serve

Pour modifier: Insertion / En Tête/Pied de page

- Titre de la présentation | Auteur| 11

© CEA. All rights reserved

Silicon Interposer Technology Interposer size: 26x26mm² (warp management required)

TSV: 10x100µm

Cu damascene routing : Metal1-Via1-Metal2, 0.5µm line/0.5µm space

Micro copper pillars: Pitch 50µm, 100 000/interposer

TSV exposure

RDL and passivation: 10µm Line / Space, one level

Large copper pillar: pitch 500µm, height 70µm

Large Cu Pillar

TSV

RDL and Passivation

Damascene

Micro Cu pillar

J. Charbonnier et al., ESTC 2012

Joined Lab

cum

ulat

ive

© CEA. All rights reserved

Interposers are not just wires

Pour modifier: Insertion / En Tête/Pied de page

- Titre de la présentation | Auteur| 13

© CEA. All rights reserved

Towards smart interposers :

More than Wires

Passives Interposer

Thermal Interposer

Photonic Interposer

Active Interposer

RF Platform for BasebandLightingApplication Processor (decoupling capacitance)Health: Implantable electronics

ComputingPowerLightingApplication processor

Power managementHigh VoltageExternal I/O(Mature node)

ServersData centersComputing

Smart interposer

© CEA. All rights reserved

Active Interposer Concept

SDRAMMulti-core SoC

Multi-core SoC Multi-core SoC

Heterogeneous integration rationale: Small dies shorten new process introduction and improve overall yield

Analog design and IOs doesn’t shrink a lot with process technology

Short interconnect improves signal and power integrity

SoC partitioning into several dies, with different technology nodes

Active Interposer:

Analog, interconnect,

memory control and I/O

peripherals

Processing layer:

High performance multi-

core processors

Memory layer:

High bandwidth,

Wide data interface

On LETI roadmap for 2015

© CEA. All rights reserved

Digital applications

A generic trend and expectation :

Power Efficiency

Pour modifier: Insertion / En Tête/Pied de page

- Titre de la présentation | Auteur| 16

PC, Video, GamingMID Segment Servers

© CEA. All rights reserved

A global approach to energy efficiency

in nanoelectronics

I/O

µ-proc to memaccess

Intrinsic power consumption

Speed

New transistors (FinFET vs Planar/SOI)

Local & dynamical trade-offs

Multi-core HW/SW architectures

Integratedphotonics

3D integration & architectures

© CEA. All rights reserved

Wide IO Memory Logic-on-analogLogic-on-logic (Advanced on Mature)

Active interposer Modular and Stackable logic(3D Network-On-Chip)

2,5D

3D

Si interposer

3D IC evolution

Large grain 3D

partitionning

(∼∼∼∼50µm pitch)

© CEA. All rights reserved

© CEA. All rights reserved

Face-to-Back integration

Cum

ulat

ed p

erce

ntag

e

2,4 2,6 2,8 3,0 3,2 3,4 3,60,0

0,2

0,4

0,6

0,8

1,0

pour

cent

age

cum

ulé

R50 TSV

(Ω)

P01P02P03P04

Cum

ulat

ed p

erce

ntag

e

In collaboration

with

200mm & 300mm processes & characterization for face to back flow

chart for Wide I/O, S. Chéramy & Al, 8th International Conference

and Exhibition on Device Packaging (2012)

WideIO Matrix TSV SoC Front Side Bumps

SoC

WideIO Memory

© CEA. All rights reserved

Face-to-Face Integration for

logic/analog partitioning (65nm technology stacked on 65nm)

TSV

Top / bottom dies

connection

Bottom die / BGA

connection

Cu RDL

Cu TSV

BEOL

Cu TSV

BGA

© CEA. All rights reserved

Wide IO Memory Logic-on-analogLogic-on-logic (Advanced on Mature)

Active interposer Modular and Stackable logic(3D Network-On-Chip)

2,5D

3D

Si interposer

3D IC evolution

Large grain 3D

partitionning

(∼∼∼∼50µm pitch)

© CEA. All rights reserved

Logic-on-logic : 3D Asynchronous NoC

Constraints ? High bandwidth between dies,

Easy staking, no clock distribution issues

Power distribution,

Testability, Fault Tolerance

Proposal : 3D Asynchronous NoC Fast serial link

Full asynchronous logic

2D NoC Router

3D NoC Router

Processing Unit

NoC Serial Links

Demonstration in 2014

Easily stackable logic “tiles” A set of tiles will give you the performance for your application

Increase number of applications for a single die, reach required volume

production

© CEA. All rights reserved

Wide IO Memory Logic-on-analogLogic-on-logic (Advanced on Mature)

Active interposer Modular and Stackable logic(3D Network-On-Chip)

2,5D

3D

Si interposer

3D IC evolution

Fine grain 3D

partitionning

(∼∼∼∼10µm pitch)

3D Cache memory on

manycore processor

Large grain 3D

partitionning

(∼∼∼∼50µm pitch)

© CEA. All rights reserved

3D Cache Memory on manycore Non-uniform Memory Architecture (NUMA) : splitting uniform cache into

multiple banks interconnected with a NOC

3D stacking adding flexibility, high capacity and a gain on power consumption

High bandwidth and fault tolerance

Eric Guthmuller et al., “Adaptive Stackable 3D

Cache Architecture for Manycores”, ISVLSI2012

1Oµm TSV pitch required

>10000 TSVs per chip

© CEA. All rights reserved

| 26

TSV shrink for cost reduction

Surface Cost TSV surface + Keep away zone (KAZ)

Active + M1-Mx layers

Number of TSVs (today 1000 for Wide IO memory)

KAZ

TSV diameter

TSV

Si

Si

0

1

2

3

4

5

6

0 2 4 6 8 10

Su

rfa

ce [

mm

²]

TSV diameter [µm]

Surface occupied by x TSV [mm²]

1000

2000

5000

10000

© CEA. All rights reserved

Low diameter TSV

Reducing Si thickness : 15µm

High Density TSV’s demosntrated in 65nm MOSFETS

3µm

M1

M5

15µm15µm

Investigation on TSV impact on 65nm CMOS devices an d circuitsH. Chaabouni, M. Rousseau, P. Leduc et al., IEDM 2010

© CEA. All rights reserved

Acoustic image of bonding

0.5 µm thick line

>90% yield of daisy Chain with 30000 3x3µm² Cu contacts

Contact resistance : 2,5 mΩ

Cu direct bonding

Contact chain SEM cross section

Res

ista

nce

(Ω)

Full characterization of Cu/Cu direct bonding for 3D integration, Rachid Taibi, Léa Di Ciocciob et al., ECTC2010

standard deviation σ ~ 1.2%

Optical top view

© CEA. All rights reserved

A global approach to energy efficiency

in nanoelectronics

I/O

µ-proc to memaccess

Intrinsic power consumption

Speed

New transistors (FinFET vs Planar/SOI)

Local & dynamical trade-offs

Multi-core HW/SW architectures

Integratedphotonics

3D integration & architectures

© CEA. All rights reserved

Design challenges : collaborative definition of flow

with EDA partners3D Stack definition

- Multiple techno nodes

- Die partitioning

- Architecture exploration

- Simultaneous floorplan and

TSV location exploration

3D Stack/Package analysis &

optimization:

- Early floorplan &

TSV Placement

- 3D Thermal Profile

- 3D Test

3D Implementation

- 3D Floorplan

- 3D Power planning

- 2D Place & CTS & Route

- 3D analysis (power/timing)

- 3D Verification

Yesterday: Survivor kit…

- manual implementation of TSV

- Manual partitioning with 2D tools

Multiple partnerships to prepare

3D design flow

Optimized design and modeling

© CEA. All rights reserved

Impact on advanced devices

• Thermal studiesPossibility of measure after back end

3D assembly & packaging

• Stress impactDetermination of the min

distance TSV - MOS

• Electrical impactInterconnects modelization

& density impact

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

0 1 2 3 4 5 6 7 8 9 10Distance from TSV (µm)

Mob

ility

var

iatio

n (%

)

Longitudinal NMOS

Transverse NMOS

Longitudinal PMOS

Transverse PMOS

TSV Radius in <110> direction

BEOL bottom die

BEOL top die

MOS

Lcupi +LCupB

Rcupi +RCupB

LTSV

RTSV Vsub

Vsub

Cox Cdep Csi

Cbeol-SubCM1-Sub

Gsi

Custress

Mode de conduction

IFoucauts

MMMM

MMMM

- - - - - -

+ + + + +

amincissement

Deep understanding of impact on CMOS

complete design rules for design kits

© CEA. All rights reserved

Thermal challenges

Thermal model and

design Rules

Local heat dissipation

(hot spot removal)Phase change materials

Dynamic temperature

smoothingcold

Long distance heat

dissipation

Heat spreader

2013 2014 2016 2017

Thermal heat spreader (carbone

graphite, Cu, AlN

Temperature

Time

© CEA. All rights reserved

Conclusions

• TSV and 3D have (and will have) a global impact

• Applications in Digital require a global approach

• Leti develops 3D globally:• A generic toolbox available (technology & design)

• Capability to transform 3D concepts into silicon demonstrators

• A roadmap of developments and demonstrators

Generic R&D run in open innovation model

Specific developments and prototyping through proprietary

cooperation

© CEA. All rights reserved

Thank you for

your attention

and questions