Triple Integrals in Rectangular coordinates › ~wziller › math114s14 › ch15-5-6-7.pdfTriple...

18
15.5 Triple Integrals in Rectangular coordinates

Transcript of Triple Integrals in Rectangular coordinates › ~wziller › math114s14 › ch15-5-6-7.pdfTriple...

  • 15.5

    Triple Integrals in

    Rectangular coordinates

  • , ,D D

    FdV F x y z dxdydz Volume element: dV dzdydx

    Rectangular Coordinates , , :x y z

    Triple integrals where is a region is 3-space,

    and the volume element

    D

    FdV D

    dV

    Volume of : ( ) 1D

    D vol D dV

    Review:

    the region is typically described by:

    ( ) ( ),

    R

    g r h

    ( )

    ( )

    area

    h

    g

    rdrd

    ( , ) ( cos , sin )

    R R

    f x y dA f r r rdrd

    Double Integrals in polar coordinates:

  • 2 2 2 2 Find the volume bounded by + and 8 .y x z y x z Example :

    VolumeD

    dV 2 2

    2 2

    8 x z

    R x z

    dydA

    2 28 2 2

    R

    x z dA

    use polar coordinates for the plane:x z

    projection into the plane is a circle of radius 2x z

    2 2

    2

    0 0

    8 2Vol r rdrd

    22

    2 4

    00

    24 2 16 8 16

    4r r d

    2 2 2 2 2 2 the surfaces meet when + 8 or + 4y x z x z x z

  • 15.6

    Moments and center of mass

  • mass density = mass/area or mass/volume

    mass density is a function of position: ( , , ) x y z

    total mass: ( ) or ( )R D

    M R dA M D dV

    Mass:

    Moment and center of mass:

    moment = mass x distance

    at the center of mass, moments must add to 0

    mass are distributed on the axis at coordinate i im x x

    if x is the center of mass, then need ( ) 0i im x x

    or i i im x m x 1

    or i i

    i i

    i

    m xx m x

    m M

    total massiM m

    if ( ) is mass density, and the center of mass, needx x

    ( ) 0x x dx or xdx xdx x dx x M xdx

    xM

  • if ( , ) is mass density of a region in the x-y plane, total mass is R

    x y R M dA

    is moment around the axis,yM y

    since distance to the axis is , we have: = yR

    y x M xdA

    is moment around the axis:xM x

    = xR

    M ydA

    if ( , ) is the center of mass, then both

    the moment around the axis and moment

    around the axis must cancel:

    x y

    x

    y

    and y y xR R

    R R

    xdA ydAM M

    xM MdA dA

  • ,R

    mass x y dA 1

    0 0

    x

    xdydx 1

    0 0

    x

    xy dx 1

    3/2

    0

    x dx

    15/2

    0

    2

    5

    x

    2

    5

    ,xR

    M y x y dA 1

    0 0

    x

    xy dydx 1 2

    0 02

    x

    xydx

    1 2

    0

    2

    xdx

    13

    06

    x

    1

    6

    ,yR

    M x x y dA

    1

    2

    0 0

    x

    x dydx 2

    7

    ,

    ,y x

    Center of Mass x y

    M M

    mass mass

    5 5,

    7 12

    1

    2

    0 0

    x

    x y dx 1

    5/2

    0

    x dx

    17/2

    0

    2

    7

    x

    (0.71,0.42)

    Find the mass and center of mass of the lamina that

    ocuppies the region bounded by , 0, 1 and has

    mass densiy ( , )

    y x y x

    x y x

    Example :

  • If mass density is constant, R R R

    R R R

    xdA xdA xdA

    xdA dA dA

    centroid: , ( ) ( )

    R R

    xdA ydA

    x yarea D area D

    if ( , , ) is mass density of a region in the 3-space, total mass is D

    x y z D M dV is moment around the x-y plane

    distance to the x-y plane is , hence:

    xyM

    z= xy

    D

    M zdV

    = , == xz yzD D

    M ydV M xdV

    , y yz xyxzD D D

    D D D

    xdV ydV zdVM MM

    x zM M MdV zdV dV

    center of mass ( , , ) :x y z

    Centroid

  • mass density is a function of position: (x,y) or ( , , ) x y z

    total mass: ( ) or ( )R D

    M R dA M D dV

    Summary: Center of mass and centroid

    center of mass: , y D D D

    D D D

    xdV ydV zdV

    x zdV zdV dV

    1 1centroid (constant ): ,

    ( ) ( )R R

    x xdA y ydAarea R area R

    1 1 1centroid in 3-space: , ,

    vol( ) vol( ) vol( )D D D

    x xdV y ydV z zdVD D D

  • Average value of a function:

    1 2

    1The average value of quantities , ,..., is n ix x x x

    n

    The average value of a function ( ) over the interval [ , ] is

    1( )

    b

    a

    y f x a b

    f x dxb a

    The average value of a function ( , ) over a region R in the x-y plane

    1is ( , )

    ( )R

    z f x y

    f x y dAarea D

    The average value of a function ( , , ) over a region D in the 3-space

    1is ( , , )

    vol( )D

    f x y z

    f x y z dVD

  • 15.7

    Triple Integrals in

    Cylindrical and spherical coordinates

  • , , , ,D D

    F r z dV F r z rdzdrd

    rdV dz drd

    drdzdr

    Cylindrical coordinates:

    ( , , ) ( , , )

    cos( ), sin( )

    x y z r z

    x r y r

    Volume element:

  • 3 2

    2 2

    Evaluate where is the solid in the first octant

    that lies beneath the paraboloid 1 .

    E

    x xy dV E

    z x y

    Example :

    R

    ESince the region in the plane is circular, we use cylindrical coordinates:xy2 2 20 1 0 1z x y rz

    2 2 10 1z x y r

    3 2 3 3 3 2cos cos sinx xy r r

    3 2 2cos cos sinr 3 cosr

    21 123

    0 0 0

    cos

    r

    r dzdr rd

    02

    2

    1214

    0

    0 0

    cosr

    r z drd

    12

    4 2

    0 0

    1 cosr r drd

    1 2

    4 6

    0 0

    cosr r dr d

    21

    5 7

    0

    0

    sin5 7

    r r

    1 1

    15 7

    7 5

    35

    2

    35

  • Spherical coordinates:

    distance to the origin

    angle with the axisz

    angle of the projection into

    the x-y plane with the axisx

    2 2 2 2certainly x y z

    how do we convert this into x,y,z coordinates?

  • Spherical

    Coordinates

    , ,

    sin cos

    r

    x

    sin siny

    cosz

    2 2 2 2x y z

    sinr r

    r

    2 2 2r z

    0

    , ,

    z

    r

    z

    sinr

    cosz

    0 2

  • Volume element :

    2 sindV d d d

    Volume of little box is =

    width x depth x height

    ( ) ( )r

    now use sinr

    2

    ( ) ( sin( ) )

    sin( )

  • Spherical

    Coordinates

    , ,

    sin( )cos( )

    sin( )sin( )

    z cos( )

    x

    y

    0

    0 2

    0

    2 sindV d d d

    2, , , , sinD D

    F dV F d d d

    : Compute the volume of a sphere of radius r.Example

    2Vol = 1 sinD D

    dV d d d 2

    2

    0 0 0

    sin

    r

    d d d

    3 2 3 3

    000

    1 1 4cos( ) 2 2

    3 3 3

    r

    r r

  • /2

    3

    0

    28sin( ) cos ( )sin( )

    3d

    Compute the volume between =cos( ) and

    the hemisphere 2, 0.z

    Example :

    what is =cos( ) ? 2 cos( ) z 2 2 2or x y z z

    2

    2 2 1 1or 2 4

    x y z

    1 1a sphere of radius centered at 0,0,

    2 2

    thus cos( ) 2 and 0 , 0 22

    21 sinD D

    dV d d d 2 /2 2

    2

    0 0 cos( )

    sin d d d

    22 /2

    3

    cos( )0 0

    1d sin( )

    3d

    /2

    3

    0

    28 cos ( ) sin( )

    3d

    /2

    4

    0

    2 18cos( ) cos ( )

    3 4

    2 18

    3 4

    31

    6

    3 31 4 4 1 16easier: (2) ( )

    2 3 3 2 3 6

    2

    sin( )cos( )

    sin( )sin( )

    z cos( )

    sin

    x

    y

    dV d d d