TRIANGLE ZONES IN ACCRETIONARY WEDGES: EXAMPLES...

1
Chambly-Fortierville Syncline GRENVILLE BASEMENT 47 o N 46 o 73 o 71 o W 20 km Montreal Joliette Trois Rivières Portneuf Neuville Quebec City Drummondville Saint- Dominique Chaudière Nappe Richardson Nappe N Normal fault Thrust fault Grenville basement Parautochthonous imbricate fault zone + + + + + + + + + + + + + Logan’s Line Aston Fault St. Lawrence Lowlands Autochthonous domain Appalachian thrusts Allochthonous domain c-c’ TRIANGLE ZONES IN ACCRETIONARY WEDGES: EXAMPLES FROM THE QUÉBEC APPALACHIANS AND PHYSICAL MODELING Elena Konstantinovskaya 1 , Diego Rodriguez 2 , Donna Kirkwood 3 , Lyal B. Harris 1 , Robert Theriault 4 1 - INRS-ETE, Quebec City, QC, Canada ([email protected]); 2 - Ecopetrol S.A., Bogota, Colombia; 3 - GSC-Quebec, Quebec City, QC, Canada; 4- MRNF, Quebec City, QC, Canada Research was funded by NSERC, CFI, MELS, and INRS-ETE 2 cm syn-orogenic sand layers décollement level SE NW 410 450 500 550 TRACE 2.0 0.0 0.4 0.8 1.2 1.6 TIME (s) 1km 5Q-33 ? JCF Neuville Fault Backthrust GB TZ Ni CFS Ni Tr Pts Lb Ut Bm PC PC PC Tr Lb Lb Ut 0.0 0.4 0.8 1.2 1.6 2.0 TIME (s) SE 155 205 255 305 355 405 455 TRACE 105 NW 1km 78-824 Aston Fault Logan’s Line A168 A161 Neuville Fault Neuville Fault Backthrust Ut-Tr Pts Bm PC Lt Ut-Tr PC CFS TZ GB Ni Lb Bt LF Bt Lb Lb Ni Ni Ni Bc Pg Pg Ni SE NW 20 15 10 05 TRACE 0.0 0.4 0.8 1.2 1.6 2.0 TIME (s) 1km M2001 Aston Fault Ct Logan’s Line A192 A167 A072 Bt GB PC PC Tr Ut Lb LF LF Pts Bm Tr Ut Ut Lb Lb Ut Lb CFS Ni SE NW 110 135 160 185 210 TRACE 1km 78-821 Aston Fault VQ 0.0 0.4 0.8 1.2 1.6 TIME (s) GB PC Pts Tr Ut Ut Ni LF Lb SE NW 50 100 150 200 250 300 350 400 450 TRACE 0.0 0.4 0.8 1.2 1.6 2.0 TIME (s) 1km 78-825 Aston Fault Ut Tr Pts Bm PC Backthrust GB Lb Ni Pg Ni LF TZ Lb Ni CFS Ni 0.6 cm 1.0-1.7 cm 2.2 cm Depth to basement: initial sand layers syn-orogenic sand layers basement On profiles: 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Max. shear strain, % a b c d e f g h i j a-a’ b-b’ c-c’ d-d’ e-e’ 2 cm syntectonic erosion backthrust 5 cm a-a’ 7 cm 6 cm 3 cm 2 cm f-f’ b-b’ d-d’ c-c’ e-e’ 2 cm a-a’ b-b’ d-d’ c-c’ f-f’ e-e’ detachment initial sand layers syn-orogenic sand layers post-orogenic sand layers basement On profiles: 0.5 cm 2.0 cm Depth to basement: a-a’ 5 cm 2 cm b-b’ c-c’ a-a’ b-b’ c-c’ 2 cm 3 cm 6 cm 7 cm syntectonic erosion backthrusts BTR basal detachment SERIES NW-SE SERIES SW-NE I II III IV V GEOLOGY OF THE APPALACHIAN FRONT IN THE QUEBEC CITY AREA GENERAL GEOLOGY OF THE SOUTHERN QUEBEC APPALACHIANS TIME STRUCTURE MAP OF THE PRECAMBRIAN BASEMENT 46 o 30' 46 o 45' 71 o 30' 71 o 00' 0 5 10 km St. Flavien Two-way time (s) N Light angle 300 o 0.1 0.5 1.0 2.0 3.0 3.5 1.5 2.5 GRENVILLE BASEMENT Montmorency Fault Neuville Fault Jacques Cartier Fault Deschambault Fault Saint Prosper Fault Quebec + + + + + + + + + + + + Syncline axial plane CFS Chambly-Fortierville Syncline Aston Fault Backthrust CFS 78-824 78-825 M2001 78-821 5Q-33 72 o 00' Declination 25 o Vertical exageration 10 x SEISMIC LINES ACROSS THE APPALACHIAN FRONT STRATIGRAPHIC CORRELATIONS BASED ON WELL LOG DATA MAP OF ELEVATIONS OF BASEMENT AND WELL LOCATIONS CONCEPTUAL MODEL OF BASEMENT GEOMETRY AND REGIONAL GEOLOGY RESULTS OF SANDBOX MODELING TRIANGLE ZONES IN MODEL THRUST WEDGES SYNTECTONIC SEDIMENTATION, EROSION, AND OBLIQUE RAMP IN BASEMENT SYNTECTONIC SEDIMENTATION SYNTECTONIC SEDIMENTATION, EROSION, AND ORTHOGONAL RAMP IN BASEMENT SYNTECTONIC SEDIMENTATION AND OBLIQUE RAMP IN BASEMENT: FRONTAL THRUST DEFLECTION PIV imaging of step-by-step frontal thrust deflection Geometry of deflected detachment TZ - triangle zone Lr Tr Lr Tr Tr Tr Lr Tr Pts Pts Lr Tr Lr Tr Lr Tr Lr Tr Lr Tr Pts Lr Tr Pts Lr Tr Pts Lr Tr Lr Tr Lr Tr Pts Lr Tr Lr Tr A187 C A D E SW NE NW SE NW SE SW NE PC Bm Chz Ut BR A175 A176 A167 A161 A010 A009 A072 A069 A167 A192 A016 A015 A069 A161 Ut Pts Ut Ut Ut BR Ut BR PC Ut Lr Ut B NW SE A072 A192 A167 PC Bm Chz Ut Ut Ut PC BR Pts Bm Ut Bm Ut BR Ut PC BR Chz Bm Ut Chz PC Ut PC Ut PC Ut BR PC PC PC BR BR 305 610 914 1219 1524 1829 890 244 015 549 m m 595 942 1525 1862 2427 2845 m 005 596 018 890 1667 2026 2661 3106 m 305 610 914 1219 1524 1829 m Lr Tr Pts Ct 46 o 30' 46 o 45' 71 o 30' 71 o 00' 72 o 00' Logan's Line St. Lawrence River Parautochthonous zone Queenston Group (Bécancour Fm) Lorraine Group Sainte-Rosalie Gr. (Lotbinière Fm) Utica Shale Pontgravé Fm. Nicolet Fm. Black River and Trenton groups GRENVILLE BASEMENT N Normal fault Thrust fault Syncline axial plane Anticline axial plane Sainte-Rosalie Gr. (Les Fonds Fm) Slope, rise siliclastics Reversely reactivated normal fault 0 5 10 km Chaudière Nappe Boyer River Nappe Bacchus Nappe Neuville Fault Jacques Cartier Fault Deschambault Fault CFS Chambly-Fortierville Syncline Montmorency Fault Saint Prosper Fault Aston Fault + + + + + + + + + + + + ? TZ Backthrust CFS LT PQT St Lawrence platform, Autochthonous domain Appalachian thrusts Allochthonous domain Saint Alban Fault Grondines Portneuf Neuville Chateau Richer Quebec City Neuville Fault Jacques Cartier Fault Deschambault Fault Montmorency Fault Saint Prosper Fault N 46 o 30' 46 o 45' 71 o 30' 71 o 00' 72 o 00' 0 5 10 km GRENVILLE BASEMENT Normal fault at surface Lineament at depth Stratigraphic contact A069 A190 A187 A015 A194 A160 A051 + + + + + + + + + + + + A168 A173 St. Flavien Two-way time (s) 0.5 1.0 2.0 1.5 2.5 I II III IV V A016 427 A072 549 A167 1862 A161 2845 A176 945 A175 942 A192 1050 A010 244 A167 1862 well number elevations of basement, m A009 290 OBLIQUE RAMP LATERAL RAMP Oblique basement escarpment Forward propagated detachment (glass microbeads) SHORTENING Deflection and rotation of detachment surface FIXED WALL MOVING WALL Well No. Well Name Latitude Latitude Longitude Longitude A009 Bald Mountain, Cap-Santé No 1 46° 40' 42,1" 46,6784 -71° 47' 01,4" -71,7837 A010 Bald Mountain, Cap-Santé No 2 46° 41' 48,1" 46,6967 -71° 47' 15,4" -71,7876 A015 Bald Mountain, Portneuf No 1 46° 40' 59,1" 46,6831 -71° 55' 17,4" -71,9215 A016 Bald Mountain, Portneuf No 2 46° 40' 58,1" 46,6828 -71° 55' 16,4" -71,9212 A069 Impérial Lowlands No 1 46° 32' 57,1" 46,5492 -71° 59' 55,4" -71,9987 A072 Impérial Lowlands No 4, Lotbinière 46° 36' 59,1" 46,6164 -71° 52' 02,4" -71,8673 A160 CPOG SOQUIP Sisque, Île d'Orléans No 1 46° 58' 29,1" 46,9748 -70° 55' 23,3" -70,9231 A161 Shell, Sainte-Françoise-Romaine No 1 46° 28' 25,1" 46,4736 -71° 54' 55,4" -71,9154 A167 SOQUIP Shell, Sainte-Croix No 1 46° 37' 17,6" 46,6216 -71° 42' 14,5" -71,704 A168 SOQUIP Shell, Villeroy No 1 46° 27' 55,1" 46,4653 -71° 54' 04,4" -71,9012 A173 SOQUIP et al., Villeroy No 2 46° 29' 47,0" 46,4964 -71° 51' 22,2" -71,8562 A175 SOQUIP et al., Les Saules No 1 46° 49' 05,1" 46,8181 -71° 20' 07,3" -71,3354 A176 SOQUIP et al., Ancienne-Lorette No 1 46° 46' 58,7" 46,783 -71° 23' 50,5" -71,3974 A187 SOQUIP et al., Du Chêne No 1 (Villeroy) 46° 25' 23,1" 46,4231 -71° 50' 26,4" -71,8407 A190 SOQUIP, Sainte-Françoise-Romaine No 1 46° 27' 04,1" 46,4511 -71° 54' 52,4" -71,9146 A192 SOQUIP, Sainte-Croix No 1 Lotbinière 46° 37' 38,1" 46,6272 -71° 46' 01,4" -71,7671 A194 SOQUIP, Pintendre No 1 Lévis 46° 46' 48,9" 46,7803 -71° 06' 29,1" -71,1081 WELL NAMES AND COORDINATES (NAD83) FROM THE PRESENT STUDY A triangle zone (lines 78-825, 78-824, 5Q-33) is bounded by backthrusts at the SE limb of the Chambly-Fortierville syncline and by imbricate faults of the Appala- chian thrust wedge and parau- tochthonous units. The basal de- tachment propagates forward under the triangle zone. Lateral and longitudinal variations in thicknesses of the St Lawrence platform units imply thickening from the NW to the SE and from the NE to the SW that likely confirm progres- sive synsedimentary subsidence during the Late Ordovician in the foreland basin. Triangle zone occurs in the thicker part of the foreland basin above the deeper-seated ba- sement and it is pinched out towards the lateral basement ramp. Geological data support that pre-existing basement structures, syntectonic sedimentation, and erosion appear to be responsible for the development of triangle zone and deflection of frontal thrusts in the Quebec Appalachians. ORDOVICIAN 443 449 458 464 470 485 495 AGE (Ma) LOWER MIDDLE UPPER ASHGILL CARADOC LLANDEIL LLANVIRN ARENIG TREMAD. Pts PC Bm Chz BR Lr Tr Utica Shale Trenton Black River Chazy Beekmantown Potsdam Grenville basement Lorraine SAUK DISCORDANCE Ste Rosalie Queenston argillaceous limestones turbi- dites molasse dolomites sandstones FORELAND BASIN PASSIVE MARGIN St Lawrence Lowlands sequence 545 CAMBR. 5 cm a-a’ e-e’ 2 cm 4 cm 7 cm 8 cm 9 cm b-b’ c-c’ d-d’ The Taconian fold and thrust belt of the Quebec Ap- palachians displays typical structures such as inver- ted normal faults, ramp and flat structures, sub-hori- zontal detachments, triangle zones and backthrusts. The development of these structures is not, howe- ver, consistent along the belt and seems to be spa- tially related to variations in palaeotopography and stratigraphic architecture of the Middle-Late Ordovi- cian foreland basin, which developed in front of the Taconian tectonic wedge. Our modelling results and geological data support the hypothesis that pre–existing basement struc- ture, syntectonic sedimentation, and erosion appear to be responsible for the development of triangle zones and frontal thrust deflection in the Quebec Appalachians. Syntectonic sedimentation in the foreland of the fold-thrust belt changes the dynamics of accretionary wedges and favors the activation of weak décollement layers (glass microbeads) at the base or within the cover. This leads to forward propagation of a décollement that induces the de- velopment of a piggy-back basin. 0.6 cm 1.2 cm 2.2 cm Depth to basement: initial sand layers syn-orogenic sand layers basement On profiles: Syntectonic erosion in accretionary wedges retards forward propagation of the wedge, enhances material transport across the wedge, and focuses the inter- nal deformation and exhumation close to the backstop. The presence of a rigid basement escarpment and along-strike variations in ini- tial thickness of sand layers in models influence the development of backthrusts and triangle zones in thrust wedges. Triangle zones occur in the thicker parts of models above the deeper-seated basement and they are pin- ched out towards the basement escarpments. The geometry of a growing thrust wedge is very sensitive to variations in base- ment surface topography. Deflection of the deformation front in thrust wedges occurs above oblique ramps in basement. Deflection is pronounced as a gradual propagation of forward mate- rial translation along the fault strike and counter-clockwise rotation of the hanging wall around a vertical axis caused by the differential forward slip Triangle zones form above the deeper-seated basement and pinch out towards basement highs in model wedges (see plan-view maps of the models B and C). c-c’ syn-orogenic sand layers basal detachment TRIANGLE ZONE BACKTHRUSTS syntectonic erosion and exhumation 2 cm 2 cm b-b’ CROSS-SECTION OF MODEL C MODEL A MODEL B CROSS-SECTION OF MODEL B MODEL C MODEL D Triangle zones develop between the frontal forward thrusts of accretionary wedges and foreland basins due to combined effect of syntectonic erosion and sedi- mentation affecting the wedges. Konstantinovskaya E.A., D. Rodriguez, D. Kirkwood, L.B. Harris, and R. Thériault. 2009. Effects of basement structure, sedimentation and erosion on thrust wedge geometry: an example from the Quebec Appalachians and analogue models. Bulletin of Canadian Petroleum Geology, 57 (1): 34–62 REFERENCES: The triangle zone is pin- ched out (lines M2001, 78-821) to the NE to- wards the Quebec City area because a lateral ramp is present in the Precambrian basement. after Castonguay et al. (2006) initial sand layers syn-orogenic sand layers basement A 40º-50º deflection of frontal thrusts relative to the general SW-NE strike of the orogen occurs against an oblique, deep-seated basement escarpment. TRIANGLE ZONE CFS - Chambly-Fortierville syncline BTR - Backthrust 10 km 1 2 0 CFS Logan’s Line Aston Fault Neuville Fault Bacchus Nappe BTR Depth, km SW NE The triangle zone pinches out to the northeast as the basement shallows. Extension related to the opening of the Iapetus ocean Shortening related to the Taconian orogeny SHORTENING SHORTENING Each step from a to j correspond to 1 mm of shortening HF/DL LF HF - high basal friction, LF - low basal friction DL - décollement level LF LF LF HF/DL LF LF HF - high basal friction, LF - low basal friction DL - décollement level LF - low basal friction BTR b-b’ décollement level TRIANGLE ZONE syntectonic erosion and exhumation high basal friction

Transcript of TRIANGLE ZONES IN ACCRETIONARY WEDGES: EXAMPLES...

Chambly-Fortie

rville Syn

cline

GRENVILLE BASEMENT

47oN

46o

73o 71oW

20 km

Montreal

Joliette

Trois Rivières

PortneufNeuville

Quebec City

Drummondville

Saint-Dominique

Chaud

ière N

appe

Richard

son N

appe

N

Normal fault

Thrust fault

Grenville basement

Parautochthonousimbricate fault zone

+ + + +

+ ++

+ + +

+

+ +

Logan’s Line

Aston F

ault

St. Lawrence LowlandsAutochthonous domain

Appalachian thrustsAllochthonous domain

c-c’

TRIANGLE ZONES IN ACCRETIONARY WEDGES: EXAMPLES FROM THE QUÉBEC APPALACHIANS AND PHYSICAL MODELING

Elena Konstantinovskaya1, Diego Rodriguez2, Donna Kirkwood3, Lyal B. Harris1, Robert Theriault4

1 - INRS-ETE, Quebec City, QC, Canada ([email protected]); 2 - Ecopetrol S.A., Bogota, Colombia; 3 - GSC-Quebec, Quebec City, QC, Canada; 4- MRNF, Quebec City, QC, Canada

Research was funded by NSERC, CFI, MELS, and INRS-ETE

2 cmsyn-orogenic sand layers

décollement level

SE NW410 450 500 550TRACE

2.0

0.0

0.4

0.8

1.2

1.6

TIM

E (s

)

1km 5Q-33

?

JCFNeuville FaultBackthrust

GB

TZNi CFS Ni

Tr

Pts

LbUt

Bm

PCPC

PC

Tr

Lb

LbUt

0.0

0.4

0.8

1.2

1.6

2.0

TIM

E (s

)

SE 155 205 255 305 355 405 455TRACE105 NW

1km 78-824

Aston FaultLogan’s LineA168 A161

Neuville Fault

Neuville Fault

Backthrust

Ut-Tr

Pts

BmPC

LtUt-Tr

PC

CFSTZ

GB

Ni

Lb

Bt

LF

Bt

Lb LbNi

NiNi

BcPg Pg

Ni

SE NW20 15 10 05TRACE0.0

0.4

0.8

1.2

1.6

2.0

TIM

E (s

)

1km M2001

Aston Fault

Ct

Logan’s LineA192A167 A072Bt

GB

PC

PC

Tr Ut

LbLF

LF

PtsBmTr

Ut

Ut

LbLbUt

LbCFS

Ni

SE NW110 135 160 185 210TRACE

1km 78-821

Aston Fault

VQ0.0

0.4

0.8

1.2

1.6

TIM

E (s

)

GBPCPts

TrUt

Ut

Ni

LFLb

SE NW50 100 150 200 250 300 350 400 450TRACE0.0

0.4

0.8

1.2

1.6

2.0

TIM

E (s

)

1km 78-825

Aston Fault

UtTrPts Bm

PC

Backthrust

GB

Lb

Ni

Pg

Ni

LF TZ

Lb

Ni CFS

Ni

0.6 cm1.0-1.7 cm2.2 cm

Depth to basement:

initial sand layerssyn-orogenic sand layers

basement

On profiles:

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Max

. she

ar s

train

, %

a

b

c

d

e

f

g

h

i

j

a-a’

b-b’

c-c’

d-d’

e-e’

2 cm

syntectonic erosion

backthrust

5 cm

a-a’

7 cm

6 cm

3 cm

2 cm

f-f’

b-b’ d-d’

c-c’e-e’

2 cm

a-a’

b-b’

d-d’

c-c’

f-f’

e-e’

detachment

initial sand layerssyn-orogenic sand layers

post-orogenic sand layers

basement

On profiles:

0.5 cm2.0 cm

Depth to basement:

a-a’

5 cm

2 cm

b-b’

c-c’

a-a’

b-b’ c-c’

2 cm

3 cm

6 cm

7 cmsyntectonic erosion

backthrusts

BTR

basal detachment

SERIES NW-SE

SERIES SW-NE

I II III

IV V

GEOLOGY OF THE APPALACHIAN FRONT IN THE QUEBEC CITY AREA

GENERAL GEOLOGY OF THE SOUTHERN QUEBEC APPALACHIANS TIME STRUCTURE MAP OF THE PRECAMBRIAN BASEMENT

46o30'

46o45'

71o30'

71o00'

0 5 10 km

St. Flavien

Two-way time (s)

NLight angle 300o

0.10.51.0

2.0

3.03.5

1.5

2.5

GRENVILLE BASEMENT

Montmorency Fault

Neuvill

e Fau

lt

Jacques Cartier Fault

Deschambault Fault

Saint P

rospe

r Fau

lt

Quebec

+ + + +

+ +

+ + + ++

+

Syncline axial planeCFS Chambly-Fortierville Syncline

Aston Fault

Backthrust

CFS

78-824

78-825

M2001

78-821

5Q-33

72o00'

Declination 25o

Vertical exageration 10x

SEISMIC LINES ACROSS THE APPALACHIAN FRONT

STRATIGRAPHIC CORRELATIONS BASED ON WELL LOG DATA

MAP OF ELEVATIONS OF BASEMENT AND WELL LOCATIONS

CONCEPTUAL MODEL OF BASEMENT GEOMETRY AND REGIONAL GEOLOGY

RESULTS OF SANDBOX MODELING

TRIANGLE ZONES IN MODEL THRUST WEDGES

SYNTECTONIC SEDIMENTATION, EROSION, AND OBLIQUE RAMP IN BASEMENT

SYNTECTONIC SEDIMENTATION SYNTECTONIC SEDIMENTATION, EROSION, AND ORTHOGONAL RAMP IN BASEMENT

SYNTECTONIC SEDIMENTATION AND OBLIQUE RAMP IN BASEMENT: FRONTAL THRUST DEFLECTION

PIV imaging of step-by-step frontal thrust deflection

Geometry of deflected detachment

TZ - triangle zone

Lr

Tr

Lr

Tr

TrTr

Lr

Tr

Pts

Pts

Lr

Tr

Lr

Tr

Lr

Tr

Lr

Tr

Lr

Tr

Pts

Lr

Tr

Pts

Lr

Tr

Pts

Lr

Tr

Lr

TrLr

Tr

Pts

Lr

Tr

Lr

Tr

A187

CA

D E

SW NE

NW SE NW SE

SW NE

PC

BmChz

Ut

BR

A175A176A167A161A010A009A072A069

A167A192A016A015 A069 A161

UtPts

Ut Ut

Ut

BR

Ut

BR

PC

UtLr

Ut

B

NW SEA072 A192 A167

PC

BmChz

Ut

Ut

Ut

PCBR

PtsBm

UtBm

Ut

BR

Ut

PC

BRChz

Bm

Ut

Chz

PC

Ut

PC

Ut

PC

Ut

BR

PC

PC

PC

BR

BR

305

610

914

1219

1524

1829

890

244

015

549

m

m

595

942

1525

1862

2427

2845m

005

596

018

890

1667

2026

2661

3106m

305

610

914

1219

1524

1829m

Lr

Tr

Pts

Ct

46o30'

46o45'

71o30'

71o00'

72o00'

Logan's Line

St. Lawrence River

Parautochthonous zone

Queenston Group (Bécancour Fm)

Lorraine Group

Sainte-Rosalie Gr. (Lotbinière Fm)

Utica Shale

Pontgravé Fm.

Nicolet Fm.

Black River and Trenton groups

GRENVILLE BASEMENTNNormal fault

Thrust fault

Syncline axial plane

Anticline axial plane

Sainte-Rosalie Gr. (Les Fonds Fm)

Slope, rise siliclastics

Reversely reactivated normal fault

0 5 10 km

Chaudière Nappe

Boyer Rive

r Nappe

Bacchus N

appeNeu

ville F

ault

Jacques Cartier Fault

Deschambault FaultCFS Chambly-Fortierville Syncline

Montmorency Fault

Saint P

rospe

r Fau

lt

Aston Fault

+ + + +

+ +

+ + + ++

+

?

TZ

Backthrust

CFS

LT

PQT

St Lawrence platform, Autochthonous domain

Appalachian thrustsAllochthonous domain

Saint Alban Fault

Grondines

Portneuf

Neuville

Chateau Richer

Quebec City

Neuvill

e Fau

lt

Jacques Cartier Fault

Deschambault Fault

Montmorency Fault

Saint P

rospe

r Fau

lt

N

46o30'

46o45'

71o30'

71o00'

72o00'

0 5 10 km

GRENVILLE BASEMENTNormal fault at surface

Lineament at depth

Stratigraphic contact

A069

A190A187

A015

A194

A160

A051

+ + + +

+ +

++ + + +

+

A168

A173St. Flavien

Two-way time (s)

0.51.0

2.01.5

2.5

I

II

III

IV

VA016427

A072549

A1671862

A1612845

A176 945

A175 942

A1921050

A010 244

A1671862

well numberelevations of basement, m

A009290

OBL

IQUE

RAM

P

LATERAL RAMP

Oblique basement escarpment

Forward propagated detachment (glass microbeads)

SHORTENING

Deflection and rotation of detachment surface

FIXED WALL

MOVING WALL

Well No. Well Name Latitude Latitude Longitude Longitude A009 Bald Mountain, Cap-Santé No 1 46° 40' 42,1" 46,6784 -71° 47' 01,4" -71,7837 A010 Bald Mountain, Cap-Santé No 2 46° 41' 48,1" 46,6967 -71° 47' 15,4" -71,7876 A015 Bald Mountain, Portneuf No 1 46° 40' 59,1" 46,6831 -71° 55' 17,4" -71,9215 A016 Bald Mountain, Portneuf No 2 46° 40' 58,1" 46,6828 -71° 55' 16,4" -71,9212 A069 Impérial Lowlands No 1 46° 32' 57,1" 46,5492 -71° 59' 55,4" -71,9987 A072 Impérial Lowlands No 4, Lotbinière 46° 36' 59,1" 46,6164 -71° 52' 02,4" -71,8673 A160 CPOG SOQUIP Sisque, Île d'Orléans No 1 46° 58' 29,1" 46,9748 -70° 55' 23,3" -70,9231 A161 Shell, Sainte-Françoise-Romaine No 1 46° 28' 25,1" 46,4736 -71° 54' 55,4" -71,9154 A167 SOQUIP Shell, Sainte-Croix No 1 46° 37' 17,6" 46,6216 -71° 42' 14,5" -71,704 A168 SOQUIP Shell, Villeroy No 1 46° 27' 55,1" 46,4653 -71° 54' 04,4" -71,9012 A173 SOQUIP et al., Villeroy No 2 46° 29' 47,0" 46,4964 -71° 51' 22,2" -71,8562 A175 SOQUIP et al., Les Saules No 1 46° 49' 05,1" 46,8181 -71° 20' 07,3" -71,3354 A176 SOQUIP et al., Ancienne-Lorette No 1 46° 46' 58,7" 46,783 -71° 23' 50,5" -71,3974 A187 SOQUIP et al., Du Chêne No 1 (Villeroy) 46° 25' 23,1" 46,4231 -71° 50' 26,4" -71,8407 A190 SOQUIP, Sainte-Françoise-Romaine No 1 46° 27' 04,1" 46,4511 -71° 54' 52,4" -71,9146 A192 SOQUIP, Sainte-Croix No 1 Lotbinière 46° 37' 38,1" 46,6272 -71° 46' 01,4" -71,7671 A194 SOQUIP, Pintendre No 1 Lévis 46° 46' 48,9" 46,7803 -71° 06' 29,1" -71,1081

WELL NAMES AND COORDINATES (NAD83) FROM THE PRESENT STUDY

A triangle zone (lines 78-825, 78-824, 5Q-33) is bounded by backthrusts at the SE limb of the Chambly-Fortierville syncline and by imbricate faults of the Appala-chian thrust wedge and parau-tochthonous units. The basal de-tachment propagates forward under the triangle zone.

Lateral and longitudinal variations in thicknesses of the St Lawrence platform units imply thickening from the NW to the SE and from the NE to the SW that likely confirm progres-sive synsedimentary subsidence during the Late Ordovician in the foreland basin.

Triangle zone occurs in the thicker part of the foreland basin above the deeper-seated ba-sement and it is pinched out towards the lateral basement ramp. Geological data support that pre-existing basement structures, syntectonic sedimentation, and erosion appear to be responsible for the development of triangle zone and deflection of frontal thrusts in the Quebec Appalachians.

OR

DO

VIC

IAN

443

449

458

464

470

485

495

AGE (Ma)

LOW

ERM

IDD

LEU

PPER

ASH

GIL

LC

ARAD

OC

LLAN

DEI

LLL

ANVI

RN

AREN

IGTR

EMAD

.

Pts

PC

Bm

Chz

BR

Lr

TrUtica ShaleTrentonBlack River

Chazy

Beekmantown

Potsdam

Grenville basement

Lorraine

SAUK DISCORDANCE

Ste Rosalie

Queenston

argi

llace

ous

limes

tone

stu

rbi-

dite

s

molasse

dolomites

sandstones

FOR

ELAN

D B

ASIN

PASS

IVE

MAR

GIN

St Lawrence Lowlands sequence

545 CAMBR.

5 cm

a-a’ e-e’

2 cm

4 cm

7 cm

8 cm

9 cm

b-b’c-c’

d-d’

The Taconian fold and thrust belt of the Quebec Ap-palachians displays typical structures such as inver-ted normal faults, ramp and flat structures, sub-hori-zontal detachments, triangle zones and backthrusts.

The development of these structures is not, howe-ver, consistent along the belt and seems to be spa-tially related to variations in palaeotopography and stratigraphic architecture of the Middle-Late Ordovi-cian foreland basin, which developed in front of the Taconian tectonic wedge.

Our modelling results and geological data support the hypothesis that pre–existing basement struc-ture, syntectonic sedimentation, and erosion appear to be responsible for the development of triangle zones and frontal thrust deflection in the Quebec Appalachians.

Syntectonic sedimentation in the foreland of the fold-thrust belt changes the dynamics of accretionary wedges and favors the activation of weak décollement layers (glass microbeads) at the base or within the cover. This leads to forward propagation of a décollement that induces the de-velopment of a piggy-back basin. 0.6 cm

1.2 cm2.2 cm

Depth to basement:

initial sand layerssyn-orogenic sand layers

basement

On profiles:

Syntectonic erosion in accretionary wedges retards forward propagation of the wedge, enhances material transport across the wedge, and focuses the inter-nal deformation and exhumation close to the backstop.

The presence of a rigid basement escarpment and along-strike variations in ini-tial thickness of sand layers in models influence the development of backthrusts and triangle zones in thrust wedges. Triangle zones occur in the thicker parts of models above the deeper-seated basement and they are pin-ched out towards the basement escarpments.

The geometry of a growing thrust wedge is very sensitive to variations in base-ment surface topography. Deflection of the deformation front in thrust wedges occurs above oblique ramps in basement.

Deflection is pronounced as a gradual propagation of forward mate-rial translation along the fault strike and counter-clockwise rotation of the hanging wall around a vertical axis caused by the differential forward slip

Triangle zones form above the deeper-seated basement and pinch out towards basement highs in model wedges (see plan-view maps of the models B and C).

c-c’syn-orogenic sand layers

basal detachment

TRIANGLE ZONE

BACKTHRUSTS

syntectonic erosion and exhumation

2 cm 2 cm

b-b’CROSS-SECTION OF MODEL C

MODEL A MODEL B

CROSS-SECTION OF MODEL B

MODEL C MODEL D

Triangle zones develop between the frontal forward thrusts of accretionary wedges and foreland basins due to combined effect of syntectonic erosion and sedi-mentation affecting the wedges.

Konstantinovskaya E.A., D. Rodriguez, D. Kirkwood, L.B. Harris, and R. Thériault. 2009. Effects of basement structure, sedimentation and erosion on thrust wedge geometry: an example from the Quebec Appalachians and analogue models. Bulletin of Canadian Petroleum Geology, 57 (1): 34–62

REFERENCES:

The triangle zone is pin-ched out (lines M2001, 78-821) to the NE to-wards the Quebec City area because a lateral ramp is present in the Precambrian basement.

after Castonguay et al. (2006)

initial sand layerssyn-orogenic sand layers basement

A 40º-50º deflection of frontal thrusts relative to the general SW-NE strike of the orogen occurs against an oblique, deep-seated basement escarpment.

TRIANGLE ZONE

CFS - Chambly-Fortierville synclineBTR - Backthrust

10 km

1

2

0

CFS

Loga

n’s

Line

Aston Fault

Neuville Fault

Bacchus Nappe

BTR

Dep

th, k

m

SW

NE

The triangle zone pinches out to the northeast as the basement shallows.

Extension related to the opening of the Iapetus oceanShortening related to the Taconian orogeny

SHORTENING SHORTENING

Each step from a to j correspond to 1 mm of shortening

HF/DL LF

HF - high basal friction, LF - low basal frictionDL - décollement level

LF

LF

LF

HF/DL LF

LF

HF - high basal friction, LF - low basal friction DL - décollement level

LF - low basal friction

BTR

b-b’

décollement level

TRIANGLE ZONE

syntectonic erosion and exhumation

high basal friction