TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan...

75
TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM BY 2050 FOR TURKEY Anil Kilickaplan, Onur Peker, Dmitrii Bogdanov, Arman Aghahosseini and Christian Breyer Lappeenranta University of Technology, Finland NEO-CARBON ENERGY 7 th RESEARCHERS’ SEMINAR Lappeenranta, January 24-25, 2017

Transcript of TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan...

Page 1: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

TRANSITION TOWARDS A 100% RENEWABLE

ENERGY SYSTEM BY 2050 FOR TURKEY

Anil Kilickaplan, Onur Peker, Dmitrii Bogdanov, Arman Aghahosseini and Christian Breyer Lappeenranta University of Technology, FinlandNEO-CARBON ENERGY 7th RESEARCHERS’ SEMINARLappeenranta, January 24-25, 2017

Page 2: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

2 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Highlights

A 100% renewable energy systems can providereliable, sustainable energy services before 2050

A 100% renewable energy system is lower in cost thanthe current system based on fossil fuels

A well-designed 100% renewable energy system withenergy storage solutions can provide power systemstability, baseload power, and peak following power in all 8760 hours of the year

Page 3: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

3 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Agenda

MotivationMethodology and DataResults for the Energy SystemResults for Hourly OperationAlternatives and OutlookSummary

Page 4: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

4 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Turkey’s RE potential

sources: DBFZ, 2009, Endbericht–Globale und regionale räumliche Verteilung von Biomassepotenzialen. Status Quo und Möglichkeiten der Präzisierung. LeipzigDemirba , A., 2002, Sustainable Developments of Hydropower Energy in Turkey. Energy Sources, 24, 27–40Akin, U., Ulugergerli, E. U., & Kutlu, S., 2014, Türkiye Jeotermal Potansiyelinin Isi Akisi Hesaplamasiyla De erlendirilmesi. Bulletin Of The Mineral Research and Exploration, 149(149).

Resource Type Potential

SustainableBiomass 61.7 TWhth,a (DBFZ, 2010)

Geothermal 2.7 GW (Akin et al., 2014)Hydro 35 GW (Demirbas, 2002)

Page 5: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

5 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Current status of the power plant mix

source: [TEIAS] - Turkish Electricity Transmission Company, 2016, Turkey Installed capacity of 2015, Ankara, Turkey www.teias.gov.tr/yukdagitim/2015YILSONUKURULUGÜÇ.xlsx

Key insights:• Current installations are dominated

by hydro, fossil gas and coal• Highly dependent on fossil fuels

decreases energy supply security• Enormous potential of RE• Still huge coal plant investment

plans and subsidies withoutstanding high stranded asset risk

• Turkey may turn into a water-stressed country by 2030

• There are pending nuclear plant agreements

• CO2 emissions should be decreased

Total Installed Capacity: 73.15 GW for 2015

Geothermal 0.62 GW 0.9%

Hydro/Run-of-River

6.79 GW 9.3%

Hydro Dam19.08 GW

26.1%

Biomass4.7 GW 6.4%

Wind4.5 GW

6.2%

Solar 0.31 GW 0.4%

Gas 21.22 GW 29%

Oil0.45 GW 0.6%

Coal 15.48 GW

21.2%

Geothermal

Hydro/Run-of-River

Hydro Dam

Biomass

Wind

Solar

Gas

Oil

Coal

Page 6: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

6 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Agenda

MotivationMethodology and DataResults for the Energy SystemResults for Hourly OperationAlternatives and OutlookSummary

Page 7: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

7 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Key Objectives

Definition of an optimally structured energy system based on 100% RE supply• optimal set of technologies, best adapted to the availability of the regions’ resources,• optimal mix of capacities for all technologies and seven sub-regions of Turkey,• optimal operation modes for every element of the energy system, • least cost energy supply for the given constraints.

LUT Energy model, key features• linear optimization model• hourly resolution• multi-node approach• flexibility and expandability • enables energy transition modeling

Input data• historical weather data for: solar irradiation, wind

speed and hydro precipitation• available sustainable resources for biomass and

geothermal energy• synthesized power load data• gas and water desalination demand• efficiency/ yield characteristics of RE plants• efficiency of energy conversion processes• capex, opex, lifetime for all energy resources• min and max capacity limits for all RE resources• nodes and interconnections configuration

Page 8: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

8 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Methodology OverviewEnergy transition pathway from 2015 fossil-based system to a 100% RE power system by 2050

Transition in 5 year time stepsNo new nuclear or fossil-based thermal power plants installed after 2015Least cost RE power plant mix replaces phased out fossil power plantsEnergy system modelled to meet increasing electricity demand for each time step

Research Objective: Find the least cost energy transition pathway for Turkey.

Total Electricity Consumption

(TWh)2015 2692020 3762025 4192030 4622035 5142040 5652045 6032050 641Left: Aggregated load profile for Turkey

Right: Estimated electricity consumption of Turkey from 2015 to 2050

Page 9: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

Transition towards a 100% RE system by 2050 for Turkey Christian Breyer [email protected]

MethodologyFull system

Renewable energy sources• PV rooftop• PV ground-mounted• PV single-axis tracking • Wind onshore/ offshore• Hydro run-of-river• Hydro dam• Geothermal energy• CSP• Waste-to-energy• Biogas• Biomass

Electricity transmission• node-internal AC transmission• interconnected by HVDC lines

Storage options• Batteries • Pumped hydro storage• Adiabatic compressed air storage• Thermal energy storage, Power-to-Heat• Gas storage based on Power-to-Gas

• Water electrolysis• Methanation• CO2 from air• Gas storage

Energy Demand• Electricity• Water Desalination• Industrial Gas

Page 10: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

10 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Scenarios assumptionsKey data

• 95.8 million population in 2050• 0.77 m km2

• ~641 TWh electricity demand (2050)• ~65.85 b m3/a water desalination demand (2050)• ~64.8 TWh non-energetic industrial gas demand (2030)• Turkey assumed as an island in the study• sub-regions are divided same as Turkey’s seven

geographical regions; Marmara, Mediterranean, Aegean, Black Sea, Middle, East and South East Anatolia

• fossil fuel plants are phased out after their lifetimes

Studied Scenarios• Power sector• Integrated: power sector plus water desalination and

non-energetic industrial gas

Page 11: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

Scenarios assumptionsFull load hours

Data: Based on NASA (Stackhouse P.W., Whitlock C.H., (eds.), 2009. SSE release 6.0)reprocessed by DLR (Stetter D., 2012. Dissertation, Stuttgart)

FLH of region computed as weighed average of regional sub-areas (about 50 km x 50 km each):

0%-20% best “sub-areas” of region – 0.320%-30% best “sub-areas” of region – 0.230%-50% best “sub-areas” of region – 0.1

Region PV fixed-tiltedFLH

PV single-axisFLH

CSP FLH

Wind FLH

NO 882 1112 980 3637DK 1070 1346 1241 4641SE 985 1229 1164 2714FI 986 1288 1261 2725BLT 1063 1352 1250 3567PL 1065 1269 1046 3136IBE 1624 2095 2071 2703FR 1302 1573 1380 3269BNL 1030 1230 990 4016BRI 956 1124 864 4769DE 1053 1226 978 3460CRS 1098 1292 1165 2631AUH 1174 1379 1165 2121BKN-W 1319 1582 1374 1780BKN-E 1380 1680 1474 2015IT 1439 1772 1625 2068CH 1250 1488 1211 1828TR 1593 2022 1901 2517UA 1219 1484 1252 2742IS 819 1093 913 5019

Wind offshore full load hours

Page 12: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

12 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Scenarios assumptionsSolar and Wind LCOE (weather year 2005, cost year 2050)

Page 13: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

13 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Scenarios assumptionsGeneration profile

Wind generation profile Aggregated area profile computed using earlier presented weighed average rule.

PV generation profileAggregated area profile computed using earlier presented weighed average rule.

Winds somewhat stronger when solar resource is weakerSolar resource very good across entire country in all but winter monthsSolar and wind energy complement each other

Page 14: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

14 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Scenarios assumptionsGrid configurations

Assumption

Scenarios

PowerSector

Integrated with Desalination and Industrial Gas demand

PV self-consumption X X

Water Desalination X

Non-energetic Industrial Gas X

Page 15: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

15 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Agenda

MotivationMethodology and DataResults for the Energy SystemResults for Hourly OperationAlternatives and OutlookSummary

Page 16: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

16 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Results

Integrated Scenario:LCOW: 0.46 €/m3

LCOG: 0.120 €/kWhth,gas

* additional demand to the system13.2% by gas and 15% bydesalination

** LCOS does not include the costfor the industrial gas (LCOG)

2050 ScenarioTotal LCOE

PrimaryLCOE LCOC LCOS LCOT Total ann.

costTotal

CAPEXRE

capacitiesGenerated electricity

[€/kWh] [€/kWh] [€/kWh] [€/kWh] [€/kWh] [b€] [b€] [GW] [TWh]Power Sector 56.7 33.3 2.7 18.0 2.7 37.6 346.5 514.2 766.4Integrated *,** 50.9 32.4 2.1 13.1 3.3 48.2 464.3 338.0 1014.6

Total LCOE

prosumer

LCOE primary

prosumer

LCOSprosumer

Total ann. Cost

prosumer

Total CAPEX

prosumer

PV capacitiesprosumer

Generated electricityprosumer

LCOW LCOG

[€/kWh] [€/kWh] [€/kWh] [b€] [b€] [GW] [TWh] [€/m3] [€/MWhth]0.060 0.053 0.022 9.2 88.0 149.0 222.3 0.5 120.2

Page 17: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

17 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsLCOE - capex, opex, grid, fuel, CO2

IntegratedPower Sector

• After 2020, capex has the major share with at least65% of total LCOE

• Fuel cost and CO2 nearly disappear after 2040

• After 2020, capex share is increasing continously• Fuel cost and CO2 nearly disappear after 2045• Capex is nearly constant after 2030

Page 18: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

18 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsInstalled capacities and generation – Power Sector

100% renewable energy system is reachable for Turkey by 2050RE share can reach 90% at 2025 in Power scenarioFossil fuel share in the system is 9.4% in 2025 (65% in 2015) and coal is 7.2% (39% in 2015).

By 2050, PV is the major source of energy with 71% (50% in 2030) and wind second with 16%Synthetic natural gas is started to be utilised from 2030 onwards for the Power sector scenario and from 2035 onwards for the Integrated scenarioFor both scenarios, wind generation is almost the same to solar PV until 2030 but after then PV grows faster

Page 19: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

19 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsInstalled capacities and generation – Integrated

100% renewable energy system is reachable by 2050 (incl. desalination and non-energetic industrial gas demand)RE share of 90% can be reached in 2035 - 2040 period for integrated scenarioFossil fuel share in the system is 11.8% in 2035 (73% in 2015) and coal is 3%.

By 2050, PV is the major source of energy with 72% and wind second with 17%

Page 20: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

20 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsRegions Electricity Capacities - (year 2050)

Power Sector Integrated

Page 21: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

21 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsStorage - (year 2050)

Storage capacities Throughput of storage

Scenario Battery* PHS Gas A-CAES TES Battery* PHS Gas A-CAES TES

[GWhel] [GWhel] [GWhth] [GWhel] [GWhe] [TWhel] [TWhel] [TWhth] [TWhel] [TWhel]

Power 0.56 0.15 41545 421.2 111.4 147.9 0.10 45.6 7.4 6.2

Integration 0.77 0.17 45225 59.9 3.0 211.7 0.03 30.2 0.6 0.2

Full cycles per year

Scenario Battery* PHS Gas A-CAES TES

[-] [-] [-] [-] [-]

Power 263 688 1.1 17.5 55.5

Integration 274 196 0.7 10.5 57.6

* Total

Page 22: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

22 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsStorage Mix

IntegratedPower Sector

Page 23: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

23 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsRegions Storage Mix (year 2050)

IntegratedPower Sector

Page 24: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

24 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsStorage Mix - Integrated scenario (year 2050)

Battery Storage PHS Storage Hydro Dam Storage

SC Battery Storage A-CAES Storage Gas Storage

Page 25: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

25 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsImport / Export (year 2050) – Power Sector and Integrated Trades

Integrated

Key insights:• Storage usage is widespread, 29% and 26% of

total demand of both scenarios are provided bystorage

• Electricity trade is limited, maximum 19% traded among regions

• Net Importers: Marmara but all the regions are self-sufficient

• Net Exporters: Aegean, Middle Anatolia and East Anatolia

Power Sector

Page 26: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

26 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Power Sector

Integrated

ResultsTotal LCOE (year 2050)

Page 27: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

27 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsTotal LCOE (year 2050) – prosumers

Page 28: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

28 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Power Sector Integrated

ResultsTotal LCOE component contributions (year 2050)

Page 29: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

29 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsTotal LCOE – generation, curtailment, storage and transmission (year 2050)

Power Sector Integrated

Page 30: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

30 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsTotal LCOS – Storage costs and throughput by regions (year 2050)

Power Sector IntegratedAverage LCOS 18.2 €/MWh Average LCOS 13.2 €/MWh

Page 31: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

31 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsTotal LCOS – Storage capacities (year 2050)

Power Sector IntegratedAverage LCOS 18.2 €/MWh Average LCOS 13.2 €/MWh

Page 32: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

32 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsResource utilisation - Solar PV and Wind

IntegratedPower Sector

PV total capacity 287 GW PV total capacity 387 GW (+34 %)

Wind total capacity 63.3 GW Wind total capacity 92.2 GW (+46%)

Page 33: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

33 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsSeawater Desalination – Amount of produced water and water cost

Key insights:• The regions with longer

distances to the sea have higher desalinated water costs.

• LCOW decreases while electricity costs decline.

• Desalination capacity meets 28.3% of Turkey’s water demand

Page 34: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

34 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsGas sector

Key insights:Gas demand in decline, almost no demand for powerNet zero emissions imply switch to power-to-gasPower-to-gas cost higher than todayGas storage seasonal (max: autumn, min: winter)Power-to-gas units are mainly based on solar PV electricity and partly on wind, mainly in the summer

Page 35: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

35 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsDesalination sector

Key insights:Desalination required for fulfilling increasing clean water demandSeawater reverse osmosis based on electricity and least cost deslination optionDesalination cost decline from today to 2050 steadilyRequired capex for the desalination sector rise continuously, but more due to the supply in remote areas at high altitudes than due to the desalination plants

Page 36: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

36 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsGreenhouse gas emissions

Key insights:GHG emissions fall between 2020-2025 when the RE share is risingThe reason for the emission rise in 2030 is an increase of 1.5% in fossil gas consumptionWhile increasing the RE share in the energy system, Turkey’s energy system is getting increasingly sustainable and supporting COP21 responsibilities.

Power Sector Integrated

Page 37: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

37 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Agenda

MotivationMethodology and DataResults for the Energy SystemResults for Hourly OperationAlternatives and OutlookSummary

Page 38: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

38 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Hourly – Power Sector: Mediterranean

Key insights:• Main electricity sources are solar PV, hydropower and wind energy• Excess solar PV electricity is stored in batteries during daytime and discharged during nighttime• Hours of shortage are covered by import via grids and gas turbines

Page 39: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

39 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Hourly – Power Sector: Mediterranean

Key insights:• Main electricity sources are solar PV, hydropower and wind energy• Excess solar PV electricity is stored in batteries during daytime and discharged during nighttime• Hours of shortage are covered by import via grids and gas turbines• Desalination (baseload) demand is covered by PV plus battery

Page 40: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

40 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Hourly – Integrated Sector: Mediterranean

Key insights:• Dominating electricity source in the summer is solar PV (prosumer and utility-scale)• Excess solar PV electricity is stored in batteries during daytime and discharged during nighttime• Some further excess electricity seasonally stored by power-to-gas and exported• Peak production partly curtailed

Page 41: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

Transition towards a 100% RE system by 2050 for Turkey Christian Breyer [email protected]

ResultsEnergy flow of the System of the Integrated scenario (2050)

Key insights:• Dominating electricity source isolar PV, complemented by wind energy and hydropower• Most electricity is used directly and partly redirected to nieghbouring regions by grids• Some electricity is stored, most in batteries• Gas is mainly used for non-energetic industrial demand, some gas for balancing the power sector• Energy system is highly efficient due to low losses (losses 10%, maybe useable heat loss 8%)

Page 42: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

42 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Agenda

MotivationMethodology and DataResults for the Energy SystemResults for Hourly OperationAlternatives and OutlookSummary

Page 43: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

43 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost comparison of ’cleantech’ solutions

source: Agora Energiewende, 2014. Comparing the Cost of Low-Carbon Technologies: What is the Cheapest option; Grubler A., 2010. The costs of the French nuclear scale-up: A case of negative learning by doing, Energy Policy, 38, 5174

Key insights:PV-Wind-Gas is the least cost optionnuclear and coal-CCS is too expensivenuclear and coal-CCS are high risk technologies100% RE systems are highly cost competitive

Preliminary NCE resultsclearly indicate 100% RE systems cost about50-70 €/MWh for 2030 cost assumptions on comparable basis

source: Breyer Ch., et al., 2016. On the Role of Solar Photovoltaics in Global Energy Transition Scenarios, 32nd EU PVSEC, Munich, June 20-24

Page 44: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

Transition towards a 100% RE system by 2050 for Turkey Christian Breyer [email protected]

Results VisualisationGlobal Internet of Energy: http://neocarbonenergy.fi/internetofenergy/#

Page 45: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

Transition towards a 100% RE system by 2050 for Turkey Christian Breyer [email protected]

Regions LCOE region-

wide

LCOE area-wide

Integration

benefit **

storages*

gridsregions’ trade*

Curtailment

PVprosum

ers*

PV system

*

Wind * Biomass * Hydro*

[€/MWh] [€/MWh] [%] [%] [%] [%] [%] [%] [%] [%] [%]

Northeast Asia 63 56 6.0% 7% 10% 5% 16.4% 35.4% 40.9% 2.9% 11.6%

Southeast Asia 67 64 9.5% 8% 3% 3% 7.2% 36.8% 22.0% 22.9% 7.6%

India/ SAARC 72 67 5.9% 22% 23% 3% 6.2% 43.5% 32.1% 10.9% 5.4%

Eurasia 63 53 23.2% <1% 13% 3% 3.8% 9.9% 58.1% 13.0% 15.4%

Europe 57 51 8.7% 6% 17% 2% 12.3% 14.9% 55.0% 6.6% 9.3%

MENA 61 55 10.8% <1% 10% 5% 1.8% 46.4% 48.4% 1.3% 1.1%

Sub-Saharan Africa 58 55 16.2% 4% 8% 4% 16.2% 34.1% 31.1% 7.8% 8.2%

North America 63 53 10.1% 1% 24% 4% 11.0% 19.8% 58.4% 3.7% 6.8%

South America 62 55 7.8% 5% 12% 5% 12.1% 28.0% 10.8% 28.0% 21.1%

Overview on World’s Regions

Key insights:• 100% RE is highly competitive• least cost for high match of seasonal supply and demand• PV share typically around 40% (range 15-51%)• hydro and biomass limited the more sectors are integrated• flexibility options limit storage to 10% and it will further

decrease with heat and mobility sector integration• most generation locally within sub-regions (grids 3-24%) sources: see www.researchgate.net/profile/Christian_Breyer

* Integrated scenario, supply share** annualised costs

Page 46: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

46 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Agenda

MotivationMethodology and DataResults for the Energy SystemResults for Hourly OperationAlternatives and OutlookSummary

Page 47: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

Energy Transition Modeling: Turkey

Key insights:• energy system transition model for Turkey• LCOE stays roughly stable and declines after 2040• beyond 2030 solar PV becomes more competitive than wind energy• solar PV + battery the most important system components• solar PV supply share in 2050 at about 60% as least cost• PV prosumers will play a very important role in Turkey

Page 48: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

48 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Review of annualized costs - Integrated

Key insights:Increasing opex due to phasing out of fossilfuels, also leading to related jobsContinuous capex for energy transitionneeded in the entire transition period

Page 49: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

49 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Breakdown of LCOE - Integrated

Key insights:LCOE comprisedmostly of capex of renewablesIncreasing relevanceof storage costs after2030Fuel and carbonemission costssignificantlydecreased up to 2030

Page 50: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

50 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

SummaryTurkey can reach 100% RE by 2050 and zero CO2eq emissions from power plants

LCOE is about 51 €/MWh for Integrated and 57 €/MWh for Power scenarioAfter 2025 solar PV and wind energy form the majority in the energy mixMost favorable energy source for Turkey is solar PV which is balanced bybatteries and using complementary wind energyTransition for decreasing fossil fuel consumption in the system for 2015 – 2045Coal and fossil gas consumption is completely phased out by 2045Power-to-Gas plants are starting to become relevant in the scenarios by 2035 Increasing water demand makes it necessary to connect seawater desalination systems to the grid requiring an extra of 15% electricity demandBattery storage becomes crucial for system flexibilityThe presented scenarios show a possible pathway for Turkey’s sustainable 100% RE energy transition based on estimated future power demands

Page 51: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

NEO-CARBON Energy project is one of the Tekes strategy research openingsand the project is carried out in cooperation with Technical Research Centre of Finland VTT Ltd, Lappeenranta University of Technology (LUT) and University

of Turku, Finland Futures Research Centre.

Please check next slides for an overview of all data, assumptions and references.

Thank you for your attention!

Page 52: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

52 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsResource utilisation – Hydro

IntegratedPower Sector

Hydro Dam capacity 21.2 GW Hydro Dam capacity 23.4 GW (+10%)

Hydro RoR capacity 7.6 GW (±0%)Hydro RoR capacity 7.6 GW

Page 53: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

53 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

ResultsResource utilisation – geothermal and solid biomass

IntegratedPower Sector

Geothermal capacity 0.65 GW (±0%)

Solid biomass capacity 2.74 GW (-2.5%)

Geothermal capacity 0.65 GW

Solid biomass capacity 2.81 GW

Page 54: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

54 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

DataPower Plant Capacities – Technical and Financial Assumptions

Capex variation based on learning curves Least cost power plant capacities based on

CostEfficiency of generation and storagePower to energy ratio of storage Available resource

WACC is set to 7% for all years.

Variation in capex from 2015 – 2050 for all power plant componentsutilised by model. Capex, fixed opex, efficiency and power to energy rationumbers are presented at next slides by subregion and years details.

Page 55: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

55 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Scenarios assumptionsFull load hours – Solar and Wind Regional

FLH PV 0-axis

FLH PV 1-axis

FLH CSP

FLH Wind onshore

FLH Wind offshore

FLH Wind Total

FLH PV 0-axis

FLH PV 1-axis

FLH CSP

FLH Wind onshore

FLH Wind offshore

FLH Wind Total

Region Year [h] [h] [h] [h] [h] [h] Region Year [h] [h] [h] [h] [h] [h]

Mediterranean

2015 1644 0 0 2108 0 2108

Marmara

2015 1399 0 0 2997 0 2997

2020 1644 2098 2003 2108 0 2108 2020 1399 0 1521 2997 0 2997

2025 1644 2098 4469 2108 0 2108 2025 1399 1739 4374 2997 0 2997

2030 1644 2098 2003 2108 0 2108 2030 1399 1739 1521 2997 0 2997

2035 1644 2098 2003 2108 0 2108 2035 1399 1739 1521 2997 0 2997

2040 1644 2098 2003 2108 0 2108 2040 1399 1739 1521 2997 0 2997

2045 1644 2098 2003 2108 0 2108 2045 1399 1739 1521 2997 0 2997

2050 1644 2098 2003 2108 0 2108 2050 1399 1739 1521 2997 0 2997

Page 56: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

56 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Scenarios assumptionsFull load hours – Solar and Wind Regional

FLH PV 0-axis

FLH PV 1-axis

FLH CSP

FLH Wind onshore

FLH Wind offshore

FLH Wind Total

FLH PV 0-axis

FLH PV 1-axis

FLH CSP

FLH Wind onshore

FLH Wind offshore

FLH Wind Total

Region Year [h] [h] [h] [h] [h] [h] Region Year [h] [h] [h] [h] [h] [h]

Aegean

2015 1591 2058 2011 2797 0 2797

Black Sea

2015 1408 0 1512 1748 0 1748

2020 1591 2058 2011 2797 0 2797 2020 1408 0 4427 1748 0 1748

2025 1591 2058 2011 2797 0 2797 2025 1408 1722 1512 1748 0 1748

2030 1591 2058 2011 2797 0 2797 2030 1408 1722 1512 1748 0 1748

2035 1591 2058 2011 2797 0 2797 2035 1408 1722 1512 1748 0 1748

2040 1591 2058 2011 2797 0 2797 2040 1408 1722 1512 1748 0 1748

2045 1591 2058 2011 2797 0 2797 2045 1408 1722 1512 1748 0 1748

2050 1591 2058 2011 2797 0 2797 2050 1408 0 1512 1748 0 1748

Page 57: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

57 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Scenarios assumptionsFull load hours - Solar and Wind Regional

FLH PV 0-axis

FLH PV 1-axis

FLH CSP

FLH Wind onshore

FLH Wind offshore

FLH Wind Total

FLH PV 0-axis

FLH PV 1-axis

FLH CSP

FLH Wind onshore

FLH Wind

offshore

FLH Wind Total

Region Year [h] [h] [h] [h] [h] [h] Region Year [h] [h] [h] [h] [h] [h]

Central Anatolia

2015 1540 0 1711 2388 0 2388

South East

Anatolia

2015 1614 2058 2008 2352 0 2352

2020 1540 1937 4418 2388 0 2388 2020 1614 2058 4391 2352 0 2352

2025 1540 1937 1711 2388 0 2388 2025 1614 2058 2008 2352 0 2352

2030 1540 1937 1711 2388 0 2388 2030 1614 2058 2008 2352 0 2352

2035 1540 1937 1711 2388 0 2388 2035 1614 2058 2008 2352 0 2352

2040 1540 1937 1711 2388 0 2388 2040 1614 2058 2008 2352 0 2352

2045 1540 1937 1711 2388 0 2388 2045 1614 2058 2008 2352 0 2352

2050 1540 0 1711 2388 0 2388 2050 1614 2058 2008 2352 0 2352

Page 58: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

58 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Scenarios assumptionsFull load hours – The others for Turkey average

Technology 2015 2020 2025 2030 2035 2040 2045 2050Flh Geothermal [h] 504 507 507 519 519 524 524 531Flh Bat SC Res [h] 0 1658 1623 1546 1467 1413 1364 1311Flh Bat SC Com [h] 0 1618 1619 1568 1507 1445 1400 1368Flh Bat SC Ind [h] 0 1589 1618 1572 1514 1449 1403 1370Flh Bat SC total [h] 0 1643 1620 1564 1500 1438 1391 1353Flh Bat system [h] 153 1303 1781 1666 1706 1756 1785 1797Flh Bat total [h] 153 1594 1627 1586 1576 1596 1630 1646Flh PHS [h] 347 1188 1820 1727 1762 1735 1707 1567Flh TES [h] 3261 1293 2023 2291 2424 2404 2690 2421Flh CAES [h] 1518 289 898 1142 1285 1198 1072 1053Flh PtSNG [h] 0 801 1318 2014 2443 2700 2734 2897Flh CCGT [h] 6954 4560 2406 2721 2755 2081 1410 1315Flh OCGT [h] 3562 532 180 260 350 242 90 324Flh GT [h] 4266 1619 813 1000 1081 976 831 1028Flh ST [h] 3910 5707 4287 3966 3997 3899 2171 2420

Page 59: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

59 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Scenarios assumptionsFull load hours – The rest of technologies for Turkey’s average

Technology 2015 2020 2025 2030 2035 2040 2045 2050Flh Biomass PP [h] 7255 8322 7561 6499 5883 5527 5854 5871Flh Waste PP [h] 0 8322 8322 8322 8322 8322 8322 8322Flh Biogas PP [h] 7008 6147 3428 3111 2703 1555 1687 1388Flh Biogas Upgr [h] 0 8322 8322 8322 8322 8318 8322 8221Flh Biogas Dig [h] 8322 8322 8322 8322 8322 8322 8322 8322Flh Hard coal PP [h] 8260 7622 4243 3851 3320 2848 1522 0Flh Internal combustion generator [h] 0 0 0 0 0 0 0 0Flh Nuclear PP [h] 0 0 0 0 0 0 0 0

Page 60: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

60 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Installed Capacity (GW) – Power Sector Technology 2015 2020 2025 2030 2035 2040 2045 2050Hard coal PP 13.5 12.6 12.4 9.4 7.6 6.8 6.8 4.7

CCGT 0 4.5 5.3 6 6 6.4 8.4 11.6OCGT 19.8 19.7 18.3 17.4 17.2 13.5 7.5 4.1

ST 0 0 0.1 3.5 3.4 3.3 2.7 1.6PV prosumers RES 0 12.3 17.5 22.7 28 34.8 40.3 44.3

PV prosumers COM 0 4.2 9.4 12.3 15.7 19.3 22 24.3PV prosumers IND 0 13.3 30.8 40.3 51.3 63.6 72.8 80.5PV 0-axis system 0.3 0.3 0.3 1.0 1.0 6.0 33.5 64.1PV 1-axis system 0 9.9 26.8 39.1 50 62.5 73.3 73.9

Wind onshore 4.5 33.1 33.1 44.1 54.2 60.2 63.7 63.3Wind offshore 0 0 0 0 0 0 0 0

Hydro ROR 7.7 7.7 7.6 7.6 7.7 7.7 7.7 7.7Hydro dams 15.6 18.1 19.9 21 21.2 21.2 21.2 21.2Biogas PP 0.2 0.2 0.2 1.7 2 2.9 2.8 2.8

Geothermal 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7Waste PP 0 0.5 0.5 0.6 0.6 0.6 0.6 0.6

Total 62.1 136.9 182.9 227.5 266.6 309.4 363.9 405.3

Page 61: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

61 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Installed Capacity (GW) – IntegratedTechnology 2015 2020 2025 2030 2035 2040 2045 2050Hard coal PP 13.5 12.6 12.4 9.4 7.6 6.8 6.8 4.7

CCGT 5.3 7.4 7.4 7.4 7.4 8.8 9.3 11.8OCGT 20.1 20 18.6 17.2 16.9 13.3 7.3 4.8

ST 1.7 0.2 0.4 0.5 0.5 0.5 1 0.3PV prosumers RES 0 12.3 17.5 22.7 28 34.8 40.3 44.3

PV prosumers COM 0 4.2 9.4 12.3 15.7 19.3 22 24.3PV prosumers IND 0 13.3 30.8 40.3 51.3 63.6 72.8 80.5

PV 0-axis system 0.3 0.3 0.3 0.3 0.3 21.8 69 126.6

PV 1-axis system 0 15.9 36.2 47.7 68.4 89.3 111.4 111.4Wind onshore 4.5 36.7 54.9 68.2 77.9 86.3 92.2 92.2Wind offshore 0 0 0 0 0 0 0 0

Hydro ROR 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7Hydro dams 15.6 19.8 23.4 23.4 23.4 23.4 23.4 23.4Biogas PP 0.2 0.2 0.6 1.9 2.7 2.9 2.8 2.7

Geothermal 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7Waste PP 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Total 69.4 151.7 220.7 259.9 308.9 379.7 467.1 535.7

Page 62: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

62 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptions

95 %

Technology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050Steam turbine(CSP)

Capex €/kWe 760 740 720 700 670 640 615 600Opex fixed €/kWe 15.2 14.8 14.4 14 13.4 12.8 12.3 12

Lifetime Years 25 25 25 25 30 30 30 30Efficiency % 42 % 42 % 42 % 43 % 44 % 44 % 45 % 45 %

Waterelectrolysis

Capex €/kWe 800 685 500 380 340 310 280 260Opex fixed €/kWe 32 27 20 15 14 12 11 10

Opex variable €/kWhe 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012Lifetime Years 30 30 30 30 30 30 30 30

Efficiency % 84 % 84 % 84 % 84 % 84 % 84 % 84 % 84 %District HeatBurner

Capex €/kWe 20 20 20 20 20 20 20 20Opex fixed €/kWe 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Lifetime Years 30 30 30 30 30 30 30 30Efficiency % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

Hot Heat Burner

Capex €/kWe 100 100 100 100 100 100 100 100Opex fixed €/kWe 2 2 2 2 2 2 2 2

Lifetime Years 30 30 30 30 30 30 30 30Efficiency % 95 % 95 % 95 % 95 % 95 % 95 % 95 % 95 %

Page 63: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

63 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptionsTechnology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050Gas CAES Capex €/kWe 900 900 900 900 900 900 900 900

Opex fixed €/kWe 18 18 18 18 18 18 18 18Lifetime Years 25 25 25 25 25 25 25 25

Efficiency % 70 % 70 % 70 % 70 % 70 % 70 % 70 % 70 %CCGT PP Capex €/kWe 775 775 775 775 775 775 775 775

Opex fixed €/kWe 19.375 19.375 19.375 19.375 19.375 19.375 19.375 19.375Opex variable €/kWhe 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Lifetime Years 35 35 35 35 35 35 35 35Efficiency % 58 % 58 % 58 % 58 % 59 % 60 % 60 % 60 %

OCGT PP Capex €/kWe 475 475 475 475 475 475 475 475Opex fixed €/kWe 9.5 9.5 9.5 14.25 14.25 14.25 14.25 14.25

Opex variable €/kWhe 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004Lifetime Years 35 35 35 35 35 35 35 35

Efficiency % 43 % 43 % 43 % 43 % 43 % 43 % 43 % 43 %

Page 64: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

64 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptionsTechnology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050

Oil PP Capex €/kWe 1500 1500 1500 1500 1500 1500 1500 1500Opex fixed €/kWe 30 30 30 30 30 30 30 30

Lifetime Years 30 30 30 30 30 30 30 30Efficiency % 38 % 38 % 38 % 38 % 38 % 38 % 38 % 38 %

Coal PP Capex €/kWe 1500 1500 1500 1500 1500 1500 1500 1500Opex fixed €/kWe 20 20 20 20 20 20 20 20

Opex variable €/kWhe 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001Lifetime Years 40 40 40 40 40 40 40 40

Efficiency % 39 % 39 % 39 % 39 % 39 % 39 % 39 % 39 %Nuclear PP Capex €/kWe 6210 6003 6003 5658 5658 5244 5244 5175

Opex fixed €/kWe 162 157 157 137 137 116 116 109Opex variable €/kWhe 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

Lifetime Years 40 40 40 40 40 40 40 40Efficiency % 37 % 37 % 37 % 38 % 38 % 38 % 38 % 38 %

MSW PP Capex €/kWe 5940 5630 5440 5240 5030 4870 4690 4540Opex fixed €/kWe 267.3 253.35 244.8 235.8 226.35 219.15 211.05 204.3

Opex variable €/kWhe 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069Lifetime Years 30 30 30 30 30 30 30 30

Efficiency % 34 % 34 % 34 % 34 % 34 % 34 % 34 % 34 %

Page 65: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

65 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptionsTechnology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050Biomass PP Capex €/kWe 3400 2900 2700 2500 2300 2200 2100 2000

Opex fixed €/kWe 238 203 189 175 161 154 147 140Opex variable €/kWhe 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Lifetime Years 30 30 30 30 30 30 30 30Efficiency % 36 % 37 % 40 % 43 % 45 % 47 % 48 % 48 %

Methanation Capex €/kWe 492 421 310 234 208 190 172 160Opex fixed €/kWe 10 8 6 5 4 4 3 3

Opex variable €/kWhe 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015Lifetime Years 30 30 30 30 30 30 30 30

Efficiency % 77 % 77 % 77 % 77 % 77 % 77 % 77 % 77 %

Page 66: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

66 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptionsTechnology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050

BHKW Wood Gasifier

Capex €/kWe 1500 1500 1500 1500 1500 1500 1500 1500Opex fixed €/kWe 20 20 20 20 20 20 20 20

Opex variable €/kWhe 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001Lifetime Years 40 40 40 40 40 40 40 40

Efficiency % 43 % 43 % 43 % 43 % 43 % 43 % 43 % 43 %BHKW Biogas Capex €/kWe 503 429 400 370 340 326 311 296

Opex fixed €/kWe 20.1 17.2 16.0 14.8 13.6 13.0 12.4 11.8Opex variable €/kWhe 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Lifetime Years 30 30 30 30 30 30 30 30Efficiency % 33 % 34 % 37 % 40 % 42 % 44 % 44 % 45 %

CO2 Scrubbing Capex €/kWe 749 641 470 356 314 286 258 240Opex fixed €/kWe 29.9 25.6 18.8 14.2 12.6 11.4 10.3 9.6

Opex variable €/kWhe 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013Lifetime Years 30 30 30 30 30 30 30 30

Efficiency % 78 % 78 % 78 % 78 % 78 % 78 % 78 % 78 %Concentrated Solar Receiver

Capex €/kWe 279.4 218.44 187.55 167.04 153.9 134.4 122.1 104.5Opex fixed €/kWe 6.4262 5.02412 4.31365 3.84192 3.5397 3.0912 2.8083 2.4035

Lifetime Years 25 25 25 25 25 25 25 25Efficiency % 51 % 51 % 51 % 51 % 51 % 51 % 51 % 51 %

Page 67: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

67 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptionsTechnology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050

Electricity to Heat Capex €/kWe 20 20 20 20 20 20 20 20Opex fixed €/kWe 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Opex variable €/kWhe 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001Lifetime Years 50 50 50 50 50 50 50 50

Efficiency % 99 % 99 % 99 % 99 % 99 % 99 % 99 % 99 %Biogas Digester Capex €/kWe 771 731 706 680 653 632 609 589

Opex fixed €/kWe 30.8 29.2 28.2 27.2 26.1 25.3 24.3 23.6Lifetime Years 20 20 20 20 25 25 25 25

Efficiency % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %Biogas Upgrade Capex €/kWe 340 290 270 250 230 220 210 200

Opex fixed €/kWe 27.2 23.2 21.6 20 18.4 17.6 16.8 16Lifetime Years 20 20 20 20 20 20 20 20

Efficiency % 98 % 98 % 98 % 98 % 98 % 98 % 98 % 98 %Geothermal PP Capex €/kWe 5250 4970 4720 4470 4245 4020 3815 3610

Opex fixed €/kWe 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0Lifetime Years 40 40 40 40 40 40 40 40

Efficiency % 24 % 24 % 24 % 24 % 24 % 24 % 24 % 24 %

Page 68: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

68 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptionsTechnology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050

Wind Onshore Capex €/kWe 1250 1150 1060 1000 965 940 915 900Opex fixed €/kWe 25 23 21 20 19 19 18 18

Lifetime Years 25 25 25 25 25 25 25 25Wind Offshore Capex €/kWe 3220 2880 2700 2580 2460 2380 2320 2280

Opex fixed €/kWe 113 92 84 77 71 67 58 52Lifetime Years 20 25 25 25 25 25 25 25

Hydropower –Dam water influx

Capex €/kWe 1650 1650 1650 1650 1650 1650 1650 1650Opex fixed €/kWe 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5

Opex variable €/kWhe 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003Lifetime Years 50 50 50 50 50 50 50 50

Efficiency % 90 % 90 % 90 % 90 % 90 % 90 % 90 % 90 %Hydropower –run-of-the-river

Capex €/kWe 2560 2560 2560 2560 2560 2560 2560 2560Opex fixed €/kWe 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8

Opex variable €/kWhe 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005Lifetime Years 50 50 50 50 50 50 50 50

Page 69: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

69 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptionsTechnology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050

Solar PV – 0-axis Capex €/kWe 1000 800 650 550 490 440 400 370Opex fixed €/kWe 15 12.0 10 8 7 7 6 6

Lifetime Years 30 30 35 35 35 40 40 40Solar PV – 1-axis

trackingCapex €/kWe 1150 920 720 620 535 480 435 400

Opex fixed €/kWe 17.3 13.8 10.8 9.3 8.025 7.2 6.525 6Lifetime Years 30 30 35 35 35 40 40 40

Solar PV - Rooftop Capex €/kWe 1360 1090 890 760 680 610 550 500Opex fixed €/kWe 20 16 13 11 10 9 8 8

Lifetime Years 30 30 35 35 35 40 40 40

Page 70: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

70 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptions - StorageTechnology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050

Li-ion stationarybatteries

Capex €/kWhe 600 300 200 150 120 100 85 75Opex fixed €/kWhe 24 9 5 3.75 3 2.5 2.125 1.875

Opex variable €/kWhe 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002Lifetime Years 15 20 20 20 20 20 20 20

Efficiency in % 96 % 96 % 96 % 96 % 96 % 96 % 96 % 96 %Efficiency out % 96 % 96 % 96 % 96 % 96 % 96 % 96 % 96 %Energy/Power h 6 6 6 6 6 6 6 6

Pumped Hydro storage

Capex €/kWhe 70 70 70 70 70 70 70 70Opex fixed €/kWhe 11 11 11 11 11 11 11 11

Opex variable €/kWhe 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002Lifetime Years 50 50 50 50 50 50 50 50

Efficiency in % 92 % 92 % 92 % 92 % 92 % 92 % 92 % 92 %Efficiency out % 92 % 92 % 92 % 92 % 92 % 92 % 92 % 92 %Energy/Power h 8 8 8 8 8 8 8 8

Adiabatic Compressed Air Energy Storage

Capex €/kWhe 35.0 35.0 33.0 31.1 30.4 29.8 28.0 26.3Opex fixed €/kWhe 0.46 0.46 0.43 0.40 0.40 0.39 0.36 0.34

Opex variable €/kWhe 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012Lifetime Years 40 55 55 55 55 55 55 55

Efficiency in % 84 % 84 % 84 % 84 % 84 % 84 % 84 % 84 %Efficiency out % 84 % 84 % 84 % 84 % 84 % 84 % 84 % 84 %Self-discharge % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.1 %Energy/Power h 100 100 100 100 100 100 100 100

Page 71: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

71 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptions - StorageTechnology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050

Hydrogen Storage Capex €/kWhgas 1 1 1 1 1 1 1 1Opex fixed €/kWhgas 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Lifetime Years 50 50 50 50 50 50 50 50Methane Storage Capex €/kWhgas 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Opex fixed €/kWhgas 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001Lifetime Years 50 50 50 50 50 50 50 50

Liquid Fuel Storage

Capex €/kWhth 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1Opex fixed €/kWhth 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Lifetime Years 30 30 30 30 30 30 30 30Solid Fuel Storage Capex €/kWhth 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Opex fixed €/kWhth 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002Lifetime Years 30 30 30 30 30 30 30 30

Page 72: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

72 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptions - StorageTechnology Cost category Unit 2015 2020 2025 2030 2035 2040 2045 2050

Hydro Dam WaterBasin

Energy/Power OUT h 1000 1000 1000 1000 1000 1000 1000 1000

Compressed Air Storage

Capex €/kWhe 5 5 5 5 5 5 5 5Opex fixed €/kWhe 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Lifetime Years 50 50 50 50 50 50 50 50Energy/Power h 24 24 24 24 24 24 24 24

Biogas Storage Capex €/kWhgas 1 1 1 1 1 1 1 1Opex fixed €/kWhgas 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Lifetime Years 20 20 20 20 20 20 20 20

Page 73: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

73 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost assumptions - Fuels

Fuel Unit 2015 2020 2025 2030 2035 2040 2045 2050Crude oil USD/bbl 97 77 87 97 96 95 95 95Crude oil €/MWh 52.5 35.2 39.8 44.4 43.9 43.5 43.5 43.5

Natural Gas €/MWh 21.8 22.2 30 32.7 36.1 40.2 40.2 40.2Biomethane €/MWh 72 72 72 72 72 72 72 72Coal - Hard €/MWh 7.7 7.7 8.4 9.2 10.2 11.1 11.1 11.1

Coal - Lignite €/MWh 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5Uranium €/MWh 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Wood €/MWh 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3Biogas €/MWh 0 0 0 0 0 0 0 0

Municipal Solid Waste €/MWh -26.2 -26.2 -26.2 -26.2 -26.2 -26.2 -26.2 -26.2CO2 €/ton 9 28 52 61 68 75 100 150

Page 74: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

74 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost Assumption – Sea water desalinationTechnology 2015 2020 2025 2030 2035 2040 2045 2050

Sea Water Reverse Osmosis

Multi Stage Flash

Capex €/(m3 day) 1150 960 835 725 630 550 480 415Opex fix €/(m3 day) 46 38 33 29 25 22 19 17

Energy consumption kWh/m3 4.1 3.6 3.35 3.15 3 2.85 2.7 2.6Lifetime years 25 25 30 30 30 30 30 30Capex €/(m3 day) 2000 2000 2000 2000 2000 2000 2000 2000

for cogenerationGain Output

Ratio: 8Power to Water: 2.25 kW/(m3 day)Multi Stage Flash

Opex fix €/(m3 day) 100 100 100 100 100 100 100 100Thermal energy consumption

(Total gas input required for water and electricity)

kWhth/m3 202.5 202.5 202.5 202.5 202.5 202.5 202.5 202.5

Electrical energy consumption kWhel/m3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5Lifetime years 25 25 25 25 25 25 25 25

Capex €/(m3 day) 2000 2000 2000 2000 2000 2000 2000 2000for stand alone

Gain Output Ratio: 8

Opex fix €/(m3 day) 100 100 100 100 100 100 100 100Thermal energy consumption kWhth/m3 85 85 85 85 85 85 85 85Electrical energy consumption kWhel/m3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

Lifetime years 25 25 25 25 25 25 25 25

Page 75: TRANSITION TOWARDS A 100% RENEWABLE ENERGY SYSTEM … · Anil Kilickaplan yanil.kilickaplan@student.lut.fi Methodology Overview ¾Energy transition pathway from 2015 fossil-based

75 Transition towards a 100% RE system by 2050 for Turkey Anil Kilickaplan [email protected]

Cost Assumption – Sea water desalinationWater

Transportation2015 2020 2025 2030 2035 2040 2045 2050

Piping Capex €/(m3 km) 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053Fixed Opex €/(m3 100 km) 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023

Lifetime years 30 30 30 30 30 30 30 30Vertical

PumpingCapex

€/(m3 m) 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4Fixed Opex €/(m3 m) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Energy consumption

kWh/(m3 100 m) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36

Lifetime years 30 30 30 30 30 30 30 30Horizontal Pumping

Capex€/(m3 km) 19.26 19.26 19.26 19.26 19.26 19.26 19.26 19.26

Fixed Opex €/(m3 km) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4Energy

consumptionkWh/(m3 100k

m) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04Lifetime years 30 30 30 30 30 30 30 30

Water Storage

Capex €/m3 65 65 65 65 65 65 65 65Fixed Opex €/m3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

Lifetime years 30 30 30 30 30 30 30 30