Transistor nMOS Q channel = CV C = C g = ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2)...

11
Transistor nMOS Q channel = CV C = C g = ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v = E (mobility) E = V ds /L Time for carrier to cross channel: t = L / v n+ n+ p-type body W L t ox SiO 2 gate oxide (good insulator, ox = 3.9) polysilicon gate C ox = ox / t ox

Transcript of Transistor nMOS Q channel = CV C = C g = ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2)...

Page 1: Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.

Transistor nMOSQchannel = CV

C = Cg = oxWLtox = CoxWL

V = Vgc ndash Vt = (Vgs ndash Vds2) ndash Vt

v = E (mobility)

E = VdsL

Time for carrier

to cross channel

t = L vn+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator ox = 39)

polysilicongate

Cox = ox tox

nMOS Linear I-V

bull Now we knowndash How much charge Qchannel is in the channel

ndash How much time t each carrier takes to cross

channel

ox 2

2

ds

dsgs t ds

dsgs t ds

QI

tW VC V V VL

VV V V

ox = W

CL

nMOS Operation

Cutoff Linear Saturated

Vgs lt Vt Vgs gt Vt

Vds lt VgsndashVt

Vgs gt Vt

Vds gt Vgs ndashVt

Ids 0 Ids = (VgsndashVtndashVds2)Vds Ids = (VgsndashVt)2

Esempiobull 180 nm process

bull WL= 42 nmnmbull tox=40Aring

bull cm2(Vs)

bull Vt = 04V

= Cox WL = 180 (39885 10-14 Fcm)(4010-8)

=155 V

1) Idsmax (Vgs=1V) = 155 VV)

2) Ids(Vgs=2V Vds=1V) = 155 V

I-V CharacteristicsVgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

CMOS Inverter

OutIn

VDD

PMOS

NMOS

n-well

n-well contact (n+)

p+ diffusions

polysilicon

n+ diffusions

substrate contact (p+)

polysilicon contacts

diffusion contacts

DC Transfer Curvebull For a given Vin

ndash Plot Idsn Idsp vs Vout

ndash Vout must be where |currents| are equal in

bull Transcribe points onto Vin vs Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Operating Regions C

Vout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Region nMOS pMOSA Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Beta Ratio

bull If p n 1 switching point will move from VDD2

Vout

0

Vin

VDD

VDD

051

2

10p

n

01p

n

Inverter a Carico Resistivo

Vout

I

Inverter a Carico Attivo

Vout

I

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
Page 2: Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.

nMOS Linear I-V

bull Now we knowndash How much charge Qchannel is in the channel

ndash How much time t each carrier takes to cross

channel

ox 2

2

ds

dsgs t ds

dsgs t ds

QI

tW VC V V VL

VV V V

ox = W

CL

nMOS Operation

Cutoff Linear Saturated

Vgs lt Vt Vgs gt Vt

Vds lt VgsndashVt

Vgs gt Vt

Vds gt Vgs ndashVt

Ids 0 Ids = (VgsndashVtndashVds2)Vds Ids = (VgsndashVt)2

Esempiobull 180 nm process

bull WL= 42 nmnmbull tox=40Aring

bull cm2(Vs)

bull Vt = 04V

= Cox WL = 180 (39885 10-14 Fcm)(4010-8)

=155 V

1) Idsmax (Vgs=1V) = 155 VV)

2) Ids(Vgs=2V Vds=1V) = 155 V

I-V CharacteristicsVgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

CMOS Inverter

OutIn

VDD

PMOS

NMOS

n-well

n-well contact (n+)

p+ diffusions

polysilicon

n+ diffusions

substrate contact (p+)

polysilicon contacts

diffusion contacts

DC Transfer Curvebull For a given Vin

ndash Plot Idsn Idsp vs Vout

ndash Vout must be where |currents| are equal in

bull Transcribe points onto Vin vs Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Operating Regions C

Vout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Region nMOS pMOSA Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Beta Ratio

bull If p n 1 switching point will move from VDD2

Vout

0

Vin

VDD

VDD

051

2

10p

n

01p

n

Inverter a Carico Resistivo

Vout

I

Inverter a Carico Attivo

Vout

I

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
Page 3: Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.

nMOS Operation

Cutoff Linear Saturated

Vgs lt Vt Vgs gt Vt

Vds lt VgsndashVt

Vgs gt Vt

Vds gt Vgs ndashVt

Ids 0 Ids = (VgsndashVtndashVds2)Vds Ids = (VgsndashVt)2

Esempiobull 180 nm process

bull WL= 42 nmnmbull tox=40Aring

bull cm2(Vs)

bull Vt = 04V

= Cox WL = 180 (39885 10-14 Fcm)(4010-8)

=155 V

1) Idsmax (Vgs=1V) = 155 VV)

2) Ids(Vgs=2V Vds=1V) = 155 V

I-V CharacteristicsVgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

CMOS Inverter

OutIn

VDD

PMOS

NMOS

n-well

n-well contact (n+)

p+ diffusions

polysilicon

n+ diffusions

substrate contact (p+)

polysilicon contacts

diffusion contacts

DC Transfer Curvebull For a given Vin

ndash Plot Idsn Idsp vs Vout

ndash Vout must be where |currents| are equal in

bull Transcribe points onto Vin vs Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Operating Regions C

Vout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Region nMOS pMOSA Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Beta Ratio

bull If p n 1 switching point will move from VDD2

Vout

0

Vin

VDD

VDD

051

2

10p

n

01p

n

Inverter a Carico Resistivo

Vout

I

Inverter a Carico Attivo

Vout

I

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
Page 4: Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.

Esempiobull 180 nm process

bull WL= 42 nmnmbull tox=40Aring

bull cm2(Vs)

bull Vt = 04V

= Cox WL = 180 (39885 10-14 Fcm)(4010-8)

=155 V

1) Idsmax (Vgs=1V) = 155 VV)

2) Ids(Vgs=2V Vds=1V) = 155 V

I-V CharacteristicsVgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

CMOS Inverter

OutIn

VDD

PMOS

NMOS

n-well

n-well contact (n+)

p+ diffusions

polysilicon

n+ diffusions

substrate contact (p+)

polysilicon contacts

diffusion contacts

DC Transfer Curvebull For a given Vin

ndash Plot Idsn Idsp vs Vout

ndash Vout must be where |currents| are equal in

bull Transcribe points onto Vin vs Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Operating Regions C

Vout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Region nMOS pMOSA Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Beta Ratio

bull If p n 1 switching point will move from VDD2

Vout

0

Vin

VDD

VDD

051

2

10p

n

01p

n

Inverter a Carico Resistivo

Vout

I

Inverter a Carico Attivo

Vout

I

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
Page 5: Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.

I-V CharacteristicsVgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

CMOS Inverter

OutIn

VDD

PMOS

NMOS

n-well

n-well contact (n+)

p+ diffusions

polysilicon

n+ diffusions

substrate contact (p+)

polysilicon contacts

diffusion contacts

DC Transfer Curvebull For a given Vin

ndash Plot Idsn Idsp vs Vout

ndash Vout must be where |currents| are equal in

bull Transcribe points onto Vin vs Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Operating Regions C

Vout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Region nMOS pMOSA Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Beta Ratio

bull If p n 1 switching point will move from VDD2

Vout

0

Vin

VDD

VDD

051

2

10p

n

01p

n

Inverter a Carico Resistivo

Vout

I

Inverter a Carico Attivo

Vout

I

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
Page 6: Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.

CMOS Inverter

OutIn

VDD

PMOS

NMOS

n-well

n-well contact (n+)

p+ diffusions

polysilicon

n+ diffusions

substrate contact (p+)

polysilicon contacts

diffusion contacts

DC Transfer Curvebull For a given Vin

ndash Plot Idsn Idsp vs Vout

ndash Vout must be where |currents| are equal in

bull Transcribe points onto Vin vs Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Operating Regions C

Vout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Region nMOS pMOSA Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Beta Ratio

bull If p n 1 switching point will move from VDD2

Vout

0

Vin

VDD

VDD

051

2

10p

n

01p

n

Inverter a Carico Resistivo

Vout

I

Inverter a Carico Attivo

Vout

I

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
Page 7: Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.

DC Transfer Curvebull For a given Vin

ndash Plot Idsn Idsp vs Vout

ndash Vout must be where |currents| are equal in

bull Transcribe points onto Vin vs Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Operating Regions C

Vout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Region nMOS pMOSA Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Beta Ratio

bull If p n 1 switching point will move from VDD2

Vout

0

Vin

VDD

VDD

051

2

10p

n

01p

n

Inverter a Carico Resistivo

Vout

I

Inverter a Carico Attivo

Vout

I

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
Page 8: Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.

Operating Regions C

Vout

0

Vin

VDD

VDD

A B

DE

Vtn VDD2 VDD+Vtp

Region nMOS pMOSA Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

Beta Ratio

bull If p n 1 switching point will move from VDD2

Vout

0

Vin

VDD

VDD

051

2

10p

n

01p

n

Inverter a Carico Resistivo

Vout

I

Inverter a Carico Attivo

Vout

I

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
Page 9: Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.

Beta Ratio

bull If p n 1 switching point will move from VDD2

Vout

0

Vin

VDD

VDD

051

2

10p

n

01p

n

Inverter a Carico Resistivo

Vout

I

Inverter a Carico Attivo

Vout

I

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
Page 10: Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.

Inverter a Carico Resistivo

Vout

I

Inverter a Carico Attivo

Vout

I

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
Page 11: Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.

Inverter a Carico Attivo

Vout

I

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11