Towards a Better Diversity-Multiplexing Tradeoff in MIMO ... › ~twhk05 › achieve › Lin...

28
Jan. 21, 2005 1 JWITC’05 Towards a Better Diversity-Multiplexing Tradeoff in MIMO Systems Lin DAI The Hong Kong University of Science and Technology Joint work with Prof. K. B. Letaief and Miss S. Sfar

Transcript of Towards a Better Diversity-Multiplexing Tradeoff in MIMO ... › ~twhk05 › achieve › Lin...

  • Jan. 21, 2005 1

    JWITC’05

    Towards a Better Diversity-Multiplexing Tradeoff in MIMO Systems

    Lin DAIThe Hong Kong University of Science and Technology

    Joint work with Prof. K. B. Letaief and Miss S. Sfar

  • Jan. 21, 2005 2

    JWITC’05

    MIMO Systems

    Tx Rx

    H

    Tx Rx

    H

    multiple replicasDiversityGain

    H: Only one dimension!

    Tx Rx

    MIMOChannel

    H

    ...

    ...

    ...

    • Diversity gain √

    • Multiplexing gain √

    Channel dimensions increase!

    Transmit diversity

    Receivediversity

  • Jan. 21, 2005 3

    JWITC’05

    Diversity Gain

    rN≤ Receive diversitydp SNR−∼Error probability

    tN≤ Transmit diversity

    t rN N≤ ⋅ MIMO systems

    How to achieve the maximum diversity gain?

    • Space-Time Trellis Codes (STTC)[Tarokh’98]

    • Space-Time Block Codes (STBC)[Alamouti’98]

    • ……

    STC

    Recb ....

    . .. .

    . .. .. .. .

    . .. .

    Diversity-based Schemes

  • Jan. 21, 2005 4

    JWITC’05

    Multiplexing Gain

    { }min , logt rC N N SNR∼Capacity

    number of degrees of freedom

    • Bell Lab Layered Space-Time(BLAST) [Foschini’98]

    • ……

    LST Recb2

    b1

    bm

    . . .

    Tx Rx......

    Spatial Multiplexing

    Multiplexing-based Schemes

    Data rate increases!

  • Jan. 21, 2005 5

    JWITC’05

    Diversity-Multiplexing Tradeoff

    (0, mn)

    (1, (m-1)(n-1))

    (2, (m-2)(n-2))

    (r, (m-r)(n-r))

    (min(m,n), 0)

    Spatial Multiplexing Gain: r=R/logSNR

    Div

    ersi

    ty G

    ain:

    d*(

    r)

    MIMO systems can provide both diversity gain and spatial multiplexing gain.

    For a system with m transmit and n receive antennas, the optimal diversity-multiplexing tradeoff curve is given by [Zheng&Tse’03]:

    *( ) ( )( )d r m r n r= − −

    V-BLAST

    STBC

    • Alamouti’s scheme (m=2, n=1)

    • D-BLAST (MMSE, ignoring the overhead)

  • Jan. 21, 2005 6

    JWITC’05

    How to Achieve the Optimal Tradeoff?

    • Explicit code construction– [Yao’03]: a structured coding scheme for two-transmit

    two-receive antenna systems with code duration two – [Ma’02]: full-rate-full-diversity codes based on LCF

    coding and ML decoding – [Gamal’04]: LAttice Space-Time (LAST) codes under

    generalized minimum Euclidean distance lattice decoding

  • Jan. 21, 2005 7

    JWITC’05

    How to Achieve the Optimal Tradeoff?

    • Signal Processing

    – [Tarokh’99]: combined array processing and space-time coding

    • [Prasad’01]: LSTBC

    • [Kim’03]: variable-rate STBC

    • [Tao’04]: optimized receiver designa good tradeoff

    between two gainsGroup Transmission and Detection

    low complexity

  • Jan. 21, 2005 8

    JWITC’05

    Group Transmission and Detection

    S/P

    STTC1

    STTC2

    STTCG

    1 2[ , ,...]b b=B

    1b

    2b

    Gb

    1ts

    2ts

    Gts

    1m

    2m

    Gm Tx

    Tx

    Tx............

    ......

    n Rx

    ... ...

    GZF-Decoding

    Group Detectionduring Ti time slots

    STTC DecodingIU ˆ

    ib

    1,...,i G=For each group ,iG

    • MLD inside the group• interference cancellation among the groups

    Quasi-static, flat, Rayleigh

    combination of LST and STC

    better diversity gain

    better multiplexing gain Group Zero Forcing

    (GZF)Group Successive

    Interference Cancellation (GSIC)LST STC

    tradeoff

    a good tradeoff

  • Jan. 21, 2005 9

    JWITC’05

    Our Contributions

    • Derive the optimal diversity-multiplexing tradeoff of a group detector.

    • Propose two novel group-transmission-group-detection based schemes where much better diversity-multiplexing tradeoff can be achieved compared to the existent schemes.

  • Jan. 21, 2005 10

    JWITC’05

    Optimal Tradeoff Function of a Group Detector

    Theorem 1: When the block length , where , the diversity-multiplexing tradeoff of an m-transmit-n-receive system with GZF (GSIC) is given by

    where

    | | | | 1x xL n≥ − + −G G 1,...,arg max | |x ii G==G G

    { },1,... 1( ) min ( ) ;i i iG

    outi G id r d r r r

    ==

    ⎧ ⎫= =⎨ ⎬⎩ ⎭

    ∑G G G

    ( )( ), ( )i i i iout i id r n r r= − − −G G G GG G

    group size of the i-th group

    the number of groups

    allocated rate of the i-th group

    irG

    iG• The tradeoff function clearly depends on the multiplexing rate , as

    well as the particular partition which is specified by G and .• 3 rate allocation schemes are examined: equal rate allocation, size

    proportional rate allocation, optimal rate allocation.

    (3, 2, 2, 1)(2, 2, 2, 2)(4, 1, 2, 1)

    partition

  • Jan. 21, 2005 11

    JWITC’05

    Equal Rate Allocation

    /i

    r r G=G

    { },{ , }1

    ( ) min ( ) ( | | )(| | )i

    GZF p G GZFEqRate G Gi G

    r rd r d r n mG G=

    = = − + − −G G G

    ( , ) ( )( )GZFEqRatem r m rd G r n mG G G G⎢ ⎥ ⎢ ⎥= − + − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    Step 1: optimized over all possible partitions with G fixed

    Maximum achievable multiplexing rate is

    GG× G

    Step 2: optimized over all possible G

    G =2

  • Jan. 21, 2005 12

    JWITC’05

    Size Proportional Rate Allocation

    | | /i i

    r r m=G G

    ,{ , }( ) | | ( | | | |)(1 )GZF p GPropRate G G Gr rd r n mm m

    = − + − −G G G

    Step 1: optimized over all possible partitions with G fixed

    ,{ , }( ) ( )(1 )GZF p GPropRatem m r m rd r n mG G m G m⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    Maximum achievable multiplexing rate is m

    Step 2: optimized over all possible G

    G =2

  • Jan. 21, 2005 13

    JWITC’05

    Equal Rate Allocation & Size Proportional Rate Allocation

    m=n=8G=3

    Optimized over all possible partitions

    equal rate

    size proportional rate allocation

    equal rate

    size proportional rate allocation

    GZF

    GSIC

    GZF

    GSIC

  • Jan. 21, 2005 14

    JWITC’05

    Equal Rate Allocation & Size Proportional Rate Allocation

    Optimized over all possible partitions under a given G

  • Jan. 21, 2005 15

    JWITC’05

    Optimal Rate Allocation

    maximize

    { }1

    ( ) min ( )i i

    GZF GZF

    i Gd r d r

    == G G

    subject to

    1; [0,| |], 1,...,

    i i

    G

    ii

    r r r i G=

    ⎧ ⎫= ∈ ∀ =⎨ ⎬

    ⎩ ⎭∑ G G G

  • Jan. 21, 2005 16

    JWITC’05

    Optimal Rate Allocation

    m=n=8G=4

  • Jan. 21, 2005 17

    JWITC’05

    Optimal Rate Allocation

    m=n=8

  • Jan. 21, 2005 18

    JWITC’05

    Optimal Rate Allocation

    m=n=8

  • Jan. 21, 2005 19

    JWITC’05

    Remarks• Optimal rate allocation > Size proportional rate allocation

    > Equal rate allocation

    • With optimal rate allocation, GZF performs closely to GSIC and sometimes even outperforms it.

    • Both GZF and GSIC can efficiently bridge the gap between the optimal performance and BLAST via decreasing G.

  • Jan. 21, 2005 20

    JWITC’05

    Proposed Scheme 1: GLST (Group Layered Space-Time)

    S/P

    STBC1

    STBC2

    STBCG

    1 2[ , ,...]b b=B

    1b

    2b

    Gb

    1ts

    2ts

    Gts

    1m

    2m

    Gm Tx

    Tx

    Tx............

    ......

    n Rx... ...

    GZF-Decoding

    Group Detectionduring Ti time slots

    STBC DecodingIU ˆ

    ib

    1,...,i G=For each group ,iG

    Decoding-GZF

    n Rx... ...

    Collectthe

    receivesignalsover T

    time slots

    Linearspace-timeprocessing

    IIu GroupDetection

    IIr

    ... ...

    1b̂

    2b̂

    ˆGb

    The equivalent channel becomes Tnxm.

    For each time slot, group detector is applied to an nxm channel.

    Better performance can be achieved by group detection since the receive dimensions increase from n to Tn. GLST should have a better

    tradeoff than LSTBC.

  • Jan. 21, 2005 21

    JWITC’05

    Proposed Scheme 2: QoGST (Quasi-Orthogonal Group Space-time)

    S/P

    STBC1

    STBC2

    STBCG

    1 2[ , ,...]b b=B

    1b

    2b

    Gb

    1ts

    2ts

    Gts

    1m

    2m

    Gm Tx

    Tx

    Tx............

    ......

    Decoding-GZF

    n Rx... ...

    Collectthe

    receivesignalsover T

    time slots

    Linearspace-timeprocessing

    IIu GroupDetection

    IIr

    ... ...

    1b̂

    2b̂

    ˆGb

    * *1 1,..., ,...,T T⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎣ ⎦X A b A b B b B b

    independent to each other

    S/Pinter-groupSTBC

    1 2[ , ,...]b b=B

    1b

    2b

    bGb

    1ts

    2ts

    mGts

    1m

    2m

    mGm Tx

    Tx

    Tx............

    ......

    inter-groupSTBC

    • inter-group interference can be better suppressed thanks to the orthogonal nature of STBC• interleaving gain can be achieved

    • without suppressing the inter-group interference• no interleaving gain

  • Jan. 21, 2005 22

    JWITC’05

    Design Example of Inter-group STBCConsider a case that the bit stream is divided into G=2 groups and transmitted by m=4 transmit antennas over T=2 time slots.

    *1,1 1,2

    *1,2 1,1

    *2,1 2,2

    *2,2 2,1

    GLST

    b bb bb bb b

    ⎡ ⎤−⎢ ⎥⎢ ⎥= ⎢ ⎥−⎢ ⎥⎢ ⎥⎣ ⎦

    X

    m

    t

    *1,1 2,1

    *1,2 2,2

    *2,1 1,1

    *2,2 1,2

    QoGST

    b bb bb bb b

    ⎡ ⎤−⎢ ⎥−⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

    X

  • Jan. 21, 2005 23

    JWITC’05

    Tradeoff Comparison: LSTBC, GLST & QoGST• LSTBC

    • GLST

    • QoGST

    ( ) ( )(1 / )LSTBC m md r g n m g Tr K= − + −

    _ _( ) ( ) ( )lower GLST GLST upper GLSTd r d r d r≤ ≤

    ( )1 /mg n Tr K−( )( )/ /bx Tr G g Tr G− −

    _ _( ) ( ) ( )lower QoGST QoGST upper QoGSTd r d r d r≤ ≤

    ( / )( / )m b bG n Tr G g Tr G− −( )( )/ /m b bG n m g Tr G g Tr G− + − −

  • Jan. 21, 2005 24

    JWITC’05

    Tradeoff Comparison: LSTBC, GLST & QoGSTm=K=6, n=4, 2 groups

    0 0.5 1 1.5 2 2.5 3 3.5 40

    5

    10

    15

    20

    25

    Spatial Multiplexing Gain: r

    Div

    ersi

    ty G

    ain:

    d

    dLSTBC(r)lower bound of GLST, dlow er-GLST(r)upper bound of GLST, dupper-GLST(r)lower bound of QoGST, dlow er-QoGST(r)upper bound of QoGST, dupper-QoGST(r)

    (m, n) optimal, d*(r)

    QoGST: g=3, Gm=Gb=2, T=2

    GLST: G=2, gm=gb=3, T=4

    LSTBC: G=2, gm=gb=3, T=4

  • Jan. 21, 2005 25

    JWITC’05

    Tradeoff Comparison: LSTBC, GLST & QoGSTm=K=6, n=4

    QoGST: g=2, Gm=Gb=3, T=4

    GLST: G=3, gm=gb=2, T=2

    , 3 groups

    LSTBC cannot work in this case!

    • LSTBC requires

    • GLST (QoGST) requires 1mTn m g≥ − +

    1mn m g≥ − +

    0 0.5 1 1.5 2 2.5 30

    5

    10

    15

    20

    25

    Spatial Multiplexing Gain: r

    Div

    ersi

    ty G

    ain:

    d

    GLST

    GLST

    QoGST

    QoGST

    GLST: G=2, gm=gb=3, T=4

    QoGST: g=3, Gm=Gb=2, T=2

    GLST: G=3, gm=gb=2, T=2

  • Jan. 21, 2005 26

    JWITC’05

    FER Comparison: LSTBC, GLST & QoGST

    5 10 15 20 2510

    -4

    10-3

    10-2

    10-1

    100

    SNR (dB)

    FER

    GLST

    QoGST

    LSTBC

    K=m=6, n=4QoGST: Gm=Gb =3, g=2GLST: gm=gb=3, G=2

    K=m=6, n=4LSTBC: gm=gb=3, G=2

    K=m=6, n=4QoGST: Gm=Gb =2, g=3GLST: gm=gb=2, G=3

    K=m=4, n=2QoGST: Gm=Gb =2, g=2GLST: gm=gb =2, G=2

    3dB1 dB 4dB

  • Jan. 21, 2005 27

    JWITC’05

    FER Comparison: LSTBC, GLST & QoGST

    5 10 15 20 2510

    -4

    10-3

    10-2

    10-1

    100

    SNR (dB)

    FER

    GLST

    QoGST

    LSTBC

    K=m=6, n=4QoGST: Gm=Gb =3, g=2GLST: gm=gb=3, G=2

    K=m=6, n=4LSTBC: gm=gb=3, G=2

    K=m=6, n=4QoGST: Gm=Gb =2, g=3GLST: gm=gb=2, G=3

    K=m=4, n=2QoGST: Gm=Gb =2, g=2GLST: gm=gb =2, G=2

    3dB1 dB 4dB

    LSTBC cannot work in these cases!

    12dB

    11dB

    QoGST and GLST have better diversity-multiplexing tradeoff than LSTBC!

  • Jan. 21, 2005 28

    JWITC’05

    Thank you!

    Towards a Better Diversity-Multiplexing Tradeoff in MIMO SystemsMIMO SystemsDiversity GainMultiplexing GainDiversity-Multiplexing TradeoffHow to Achieve the Optimal Tradeoff?How to Achieve the Optimal Tradeoff?Group Transmission and DetectionOur ContributionsOptimal Tradeoff Function of a Group DetectorEqual Rate AllocationSize Proportional Rate AllocationEqual Rate Allocation & Size Proportional Rate AllocationEqual Rate Allocation & Size Proportional Rate AllocationOptimal Rate AllocationOptimal Rate AllocationOptimal Rate AllocationOptimal Rate AllocationRemarksProposed Scheme 1: GLST (Group Layered Space-Time)Proposed Scheme 2: QoGST (Quasi-Orthogonal Group Space-time)Design Example of Inter-group STBCTradeoff Comparison: LSTBC, GLST & QoGSTTradeoff Comparison: LSTBC, GLST & QoGSTTradeoff Comparison: LSTBC, GLST & QoGSTFER Comparison: LSTBC, GLST & QoGSTFER Comparison: LSTBC, GLST & QoGSTThank you!