Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin,...

33
Total cross-sections at the LHC. Total Cross-sections at the LHC. Introduction. BN Model: Eikonamlised minijet model with soft gluon resummation. Application to gap survival probabliity. Further validation of the model by its application to γp case. R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 1

Transcript of Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin,...

Page 1: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC.

Total Cross-sections at the LHC.

• Introduction.

• BN Model: Eikonamlised minijet model with soft

gluon resummation.

• Application to gap survival probabliity.

• Further validation of the model by its application

to γp case.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 1

Page 2: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Some references

Some references:

1)A. Corsetti, A. Grau, G. Pancheri,Y.Srivastava, PLB382 (1996)

2) A. Grau, G.Pancheri, Y. Srivasatava, PRD60 1999, hep-ph/9905228

3)Rohit Hegde, R.G., A. Grau, G. Pancheri and Y. Srivastava, Pramana 66, 657

4)A. Achilli, R. Hegde, R. M. Godbole, A. Grau, G. Pancheri and Y. Srivastava,arXiv:0708.3626, Phys. Lett. 659 (2007) 137.

5)R.G., A. Grau, G. Pancheri, Y. Srivastava : Total photoproduction cross-sections

at high energy (in preparation)

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 2

Page 3: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Introduction

All total cross-sections rise with energy.

20

40

60

80

100

120

140

160

180

200

10 102

103

104

√s ( GeV )

σ tot(m

b)

proton-proton

proton-proton from cosmic. M. Block et al.

proton-antiproton

Photoproduction data before HERA

ZEUS 96

H1 94

L3 γ γ 189, 192-202 GeV

OPAL γ γ 189 GeV

TPC γ γ

DESY 84 γ γ

DESY 86 γ γ

γ proton multiplied by 330

γ γ multiplied by (330)2

Solid line: Eikonal model improved with soft gluon resummation (Pancheri, GrauSrivastava, RG)

Charge to models:

Explain 1) The normalisation, 2) The rise and 3) the initial fall with energy.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 3

Page 4: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Questions to be answered

• Which mechanism drives the rise?

• Do they all rise with same slope?

• Do they satisfy the Froissart bound

σtot ≤ log2(s) as s → ∞.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 4

Page 5: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Questions to be answered

The tools:

• Bounds from Analyticity and Unitarity.

• Regge Pomeron exchange.

• The Eikonal Minijet Model: EMM.

• Bloch-Nordsieck Resummation for the EMM.

• Minijet model and gluon saturation

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 5

Page 6: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Difft. efforts

1]

Regge-Pomeron Exchange:

σtot = βR

(

s

s0

)αR(0)−1

+ βP

(

s

s0

)αP (0)−1

≡ Xs−η + Y sǫ

with η ≃ 0.45, ǫ ≃ 0.08.

DL Parameterisation: A. Donnachie, P. Landschoff, PLB 296 (1992) 227

The fit had to be extended to include a ’hard’ pomeron. DL (PLB 595

(2004) 393)

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 6

Page 7: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Difft. efforts

2] Fits using Unitarity

Block and Halzen: Phys. Rev. D72 (2005) 036006, PRD D73 (2006) 054022

The BH fit for σ± = σp̄p/σpp as a function of beam energy ν, is given

as

σ± = c0 + c1 ln(ν/m) + c2ln2(ν/m) + βP ′(ν/m)µ−1 ± δ(ν/m)α−1,

The Froissart bound is saturated. They make predictions for the LHC

cross-sections.

Igi and Ishida: obtain fits using Finite Energy sum rules Igi and M. Ishida,

Phys. Lett. B622 (2005) 286 Similar predictions.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 7

Page 8: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Difft. efforts

COMPETE Program: J. R. Cudell et. al. Phys. Rev. Lett. 89 (2002) 201801 J.-R.

Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel,

Phys. Lett. B 587 (2004) 78.

Constraints from analyticity, unitarity, factorisation and the fact that

cross-sections grows at most as log2(s), but they also obtain fits

assuming the cross-section goes as a constant.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 8

Page 9: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Difft. efforts

3] Eikonalised Minijet models : there is a whole class of them.

Basic philosophy:

3

42

1P

P P

P

A + B jet + jet + X

A B

A

B

Try to explain the rise and the initial fall in terms of partons in the colliding hadronsusing experimentally determined parton densities and basic QCD interactions amongpartons.

Increasing beam energy ⇒ increase in # and energy of collding partons.

σjet = σ(A + B → jet + jet + X)

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 9

Page 10: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Difft. efforts

calculated in pQCD rises with increasing√

s.

Energy rise in σtot driven by the rise of σjet.

Minijet Model Halzen and Cline (1985)

σjet =

ptmin

d2σjet

d2~ptd2~pt =

partons

ptmin

d2~pt

f(x1)dx1

f(x2)dx2d2σpartons

d2~pt

Dominated by gluons

Depends strongly on the transverse momentum cutoff ptmin.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 10

Page 11: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Unitarisation

•σjet rises with s as a power in violation Frossiart Bound too fast

towards σtot.

• Unitarization essential. Done using eikonal formalism

• The steep rise of σjet with s is NOT reflected in the energy rise of

σtot, σinel.

With increasing energy the probability of multiple parton scattering

(MPS) in a given hard scatter increases

σjetAB(s) =< n

jetpair > (s)σinel

AB (s)

Rising MPS ⇒ rising jet pair multiplicity

Need to calculate the s dependence of < njetpair >.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 11

Page 12: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Multiparton scattering

AB

Transverse Overlap of the hadrons

b 1

βb2

b1’

b 2’

s dependence related to that of the MPS probability. This in turn

decided by the overlap of the partons in the transverse plane.

AAB(β) =∫

d2b1ρA(~b1)ρB(~β − ~b1)

The different models differ in how one models this overlap.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 12

Page 13: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Bulding the Cross-section

Number of collisions:

n(b, s) = AAB(b, s)σ(s) = 2χI(b, s)

χ(b, s) (EIKONAL function.)

• σinelpp(p̄)

= 2∫

d2~b[1 − e−n(b,s)]

• Build n(b,s) for σinel and use it for

• σtotpp(p̄)

= 2∫

d2~b[1 − e−n(b,s)/2cos(χR)], χR = 0 in EMM

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 13

Page 14: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Bulding the Cross-section

Approximations normally used:

n(b, s) = nNP(b, s) + nP(b, s)

Further factorisation:

n(b, s) = A(b)[σsoft + σjet]

• Model for A(b).

• σsoft parametrized

• σjet LO QCD jet x-sections

• Eikonal model not restricted to calculate ONLY c.sections also used to calculateproperties of hadronic events. pioneering: T. Sjostrand , More recent : M.Seymore + Borozan JHEP (2002), J. Butterworth, Mike Seymour, 0806.2949.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 14

Page 15: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Bulding the Cross-section

At low energies and small σjet

σinelAB = 2

d2~b[1 − e−n(b,s)] ≃ σsoftAB + σ

jetAB

At high energies, the eikonalisation softens the energy rise of σinel

compared to that of σjet.

• Eikonal χ(b, s) contains information on the energy and the transverse

space distribution of the partons in the hadrons.

• simplest formulation with minijets to drive the rise and eikonalization

to ensure unitarity :

2χI(b, s) ≡ n(b, s) = A(b)[σsoft + σjet]

• The normalization depends both on σsoft and on the b-distribution.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 15

Page 16: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Bulding the Cross-section

How to calculate the transverse overlap function in terms of ’mea-

sured’ quantities?

• σjet depends on the parton densities fq/A(x1), fq/B(x2) xi the lon-

gitudinal mmtm fraction

• Overlap function on the transverse space (momentum) distribu-

tion.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 16

Page 17: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Different approaches

Calculate the overlap functions using Fourier Transforms of form fac-

tors.

One can also calculate it using Fourier Transform of the transverse

momentum distribution of the partons inside the proton.

Even the eikonalised minijet model predicts too strong a growth DIf-

ficult to get the initial fall and the rise both at the right energies.

BN model is a QCD based model to calculate the overlap function

A(b, s).

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 17

Page 18: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Improvement on EMM philosophy

EMM model does O.K. qualitatively but is certainly not the whole story. Improvethe model by removing the approximations used.

Recall assumed n(b, s) = A(b)[σsoft + σjet].

• The separation between s and b dependence only an approximation.

• Writing the overlap function as a F .T . of measured distributions does not allowfor a s dependence of A

Pancheri, Grau, Srivatava had developed a model based on semi-classical method

to calculate the impact parameter space distribution of partons in a hadron using

resummation of soft gluon emissions.

valence quark

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 18

Page 19: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Improvement on EMM philosophy

BN model uses this computation.

• It is like EMM model with σQCDjet driving the rise

and in addition

Soft Gluon Emission from Initial State Valence Quarks in kt-space to

give impact parameter space distribution of colliding partons

• introduces energy dependence in the b-distribution of partons in

the hadrons =⇒ which depends on

1. ptmin

2. parton densities

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 19

Page 20: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Improvement on EMM philosophy

Net effect is the energy rise is toned down.

The softening effect happens

• as√

s ⇑ the phase space available for soft gluon emission also ⇑

• the transverse momentum of the initial colliding pair due to soft gluon emission⇑

• more straggling of initial partons ⇒ less probability for the collision

• The soft gluons in the eikonal in fact restore the Froissart bound.

Important issue how to handle αs for this very soft gluon emissions how to compute

A(b, s) for hard and soft contribution and how Frossiart bound is restored (Achille’s

talk)

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 20

Page 21: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Some formulae

AABBN(b, s) = N

d2K⊥

d2P(K⊥)

d2K⊥e−iK⊥·b =

e−h(b,qmax)

d2be−h(b,qmax)≡ AAB

BN(b, qmax(s))

h(b, qmax(s)) =16

3

∫ qmax(s)

0

dkt

kt

αs(k2t )

π

(

log2qmax(s)

kt

)

[1 − J0(ktb)]

p is a parameter controlling αs(k2t ) at small k2

t .

qmax is a the maximum momentum allowed for gluon emission. For

hard part it is calculated in terms of the parton densities. For soft

part it is parmaterised and fitted.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 21

Page 22: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. more details

σtot ≃∫ ∞

o

d2b[

1 − e−nhard(b,s)/2]

nhard(b, s) = σhard(s)Ahard(b, s)

σhard ≃(

ss0

)ǫσ1

A(b, s) ∼ e−(bq)2p

Thus the quenching is controlled by p a parameter which is motivated by Rinchard-son potential. p has to be less than 1 for the singularity in αs to be integrable.

σtot ≃ (ǫ ln s)1/p

1/2 < p < 1.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 22

Page 23: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Variants of EMM models

Aspen Model (BGHP model): QCD inspired model. Use analyticity,

unitarity, factorisation etc. Fit the eikonal functions. Overlap function

calculated using form factors. M. M. Block, E. M. Gregores, F. Halzen and G. Pancheri,

Phys. Rev. D D60 (1999) 054024,

Luna-Menon Model: Dynamical gluon mass used. A further variant

of the BGHP model E. G. S. Luna, A. F. Martini, M. J. Menon, A. Mihara and A. A. Natale,

Phys. Rev. D72 (2005) 034019.

Based on Colour Glass condensate Model F. Carvallo et al, 0705.1842 also try

to use the gluon saturation phenomena to tone down fast rise!

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 23

Page 24: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Variants of EMM models

30

40

50

60

70

80

90

100

10 102

103

104

√s ( GeV )

σ tot(m

b)

GRV densities

ptmin=2.0 GeV

ptmin=1.6 GeV

ptmin=1.2 GeV

proton-antiprotonUA5UA1UA4CDFE710E811

proton-proton

40

60

80

100

120

140

10 102

103

104

√s ( GeV )

σ tot(m

b)

G.G.P.S. model, PRD 72, 076001 (2005) using GRV and MRST P.D.F. G.G.P.S. model, using GRV P.D.F.σ0=48.0 mb p=0.75 ptmin=1.15

Cudell et. al. hep-ph/0612046aLuna-Menon, hep-ph/0105076b

c Block-Halzen PRD 73 054022 (2006)

Donnachie-Landshoff, PRL B296 227 (1992)d

Donnachie-Landshoff, PLB 595 393 (2004)DLhp

b

a

cd

DLhp

proton-antiproton

UA5UA1UA4CDFE710E811

proton-proton

σLHCtot = 102 + 12 − 13mb

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 24

Page 25: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. DIstance between scattering centres

0.3

0.4

0.5

0.6

0.7

0.80.9

1

2

3

4

1 10 102

103

104

√s ( GeV )

√(b2 )

( fm

) Average rms distance between partons

in proton-proton scattering

GRV ptmin=1.15 GeV, soft from pp, BNSoft Gluons induced decrease

hard processes

soft scattering processes

Form factor model

• Indeed the rms distance between the centres of two hadrons de-

creases with energy causing more shadowing and taming the rise

• Similar observation by M. Seymore and collab. from a study of

properties of the events in pp̄ data from CDF in an eikonal picture.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 25

Page 26: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Effect of ’underlying event’

Consider Higgs production via WW fu-

sion processes.

Usually one demands that the the

two jets ’forward’ jets have very little

hadronic activity among them.

These are called ’large rapidity gap’

events.

Question: How do we decide that

the the underlying event does not

fill the fap?

This depends on the models for multi-

parton interactions in a given collision.

H1

H2

q q′

q q′W

Wh

H1

H2

q q

q q

Z

Zh

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 26

Page 27: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Multiparton scattering

3

42

1P

P P

P

A + B jet + jet + X

A B

A

B

AB

Transverse Overlap of the hadrons

b 1

βb2

b1’

b 2’

Bjorken pointed out that the gap survival probablity could be computed if one knewthis overlap.

The same overlap function is also needed to calculate the total cross section as afunction of energy in QCD based models using eikonal picture.

Eikonal picture per se was pioneered by Tjostrand is tested at Tevatron/HERA.

The description and the overlap integral depends on parametrisation of nonpertur-bative physics and the models used.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 27

Page 28: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Gap Survival probability

Gap Survivial probability:

< |S|2 >=

d2~bAAB(~b, s)|S(~b)|2σ(b, s)∫

d2~bAAB(~b, s)σ(b, s).

Here |S(~b)|2 is the probability that the two hadrons A,B go through each otherwithout an inelastic interactioni, which will also be different in different models ofcalculation of total cross-section.

σABtot = 2

d2~b[1 − e−n(b,s)]

n(b, s) is the average number of multiple collisions at an impact parameter b andenergy

√s.

In our model:

n(b, s) = ABN(b, qsoftmax)σ

pp,p̄soft + ABN(b, qjet

max)σjet(s; ptmin)

Parameters fixed by fits to total c.section, make prediction for GSP.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 28

Page 29: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Predictions

40

60

80

100

120

140

10 102

103

104

√s ( GeV )

σ tot(m

b)

G.G.P.S. model, PRD 72, 076001 (2005) using GRV and MRST P.D.F. G.G.P.S. model, using GRV P.D.F.σ0=48.0 mb p=0.75 ptmin=1.15

Cudell et. al. hep-ph/0612046aLuna-Menon, hep-ph/0105076b

c Block-Halzen PRD 73 054022 (2006)

Donnachie-Landshoff, PRL B296 227 (1992)d

Donnachie-Landshoff, PLB 595 393 (2004)DLhp

b

a

cd

DLhp

proton-antiproton

UA5UA1UA4CDFE710E811

proton-proton

0

0.1

0.2

0.3

0.4

0.5

0.6

102

103

104

√s in GeV

|s2 | (

GA

P S

UR

VIV

AL

PR

OB

AB

ILIT

Y)

Soft b-distributionGRV and MRST densities, ptmin=1.15

MRST

proton-proton scattering

GRV

Bjorken 1993

Luna model

Block-Halzen

Khoze et al. 2000

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 29

Page 30: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Extension to γp

σγptot = 2Phad

d2~b[1 − e−nγp(b,s)/2]

WHile now calculating nγp one has to be careful. Involves now an

additional parameter Phad

nγp(b, s) = nγpsoft(b, s) + n

γphard(b, s) = n

γpsoft(b, s) + A(b, s)σ

γpjet(s)/Phad

We now use

nhard(b, s) =AAB

BN(b, s)σjet

Phad

AABBN(b, s) = N

d2K⊥

d2P(K⊥)

d2K⊥e−iK⊥·b =

e−h(b,qmax)

d2be−h(b,qmax)≡ AAB

BN(b, qmax(s))

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 30

Page 31: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Extension to γp

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

10 102

√s ( GeV )

σ totγp

(mb)

ZEUS BPC 95

Photoproduction data before HERA

ZEUS 96

H1 94

Vereshkov 03

GRS(γ) GRV98(p) with BN resummation

Soft from pp soft eikonal times 2/3

p=3/4 and ptmin=1.2,1.3,1.4 GeV

p=0.8 and ptmin=1.2,1.3 GeV

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

10 102

√s ( GeV )

σ totγp

(mb)

ZEUS BPC 95

Photoproduction data before HERA

ZEUS 96

H1 94

Vereshkov 03

CJKL(γ) GRV98(p) with BN resummation

Soft from pp soft eikonal times 2/3

p=3/4 and ptmin=1.6,1.7,1.8 GeV

p=0.8 and ptmin=1.6,1.7,1.8 GeV

Predictions obtained using the photonic parton densities and param-

etes p, ptmin and σsoft similar to the proton case.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 31

Page 32: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Extension to γp

0.1

0.2

0.3

0.4

0.5

0.6

10 102

103

104

√s ( GeV )

σ totγp

(mb)

Our model

Top: GRS, ptmin=1.2 GeV,p=0.75Lower: CJKL, ptmin=1.8 GeV, p=0.8

Photoproduction data before HERA

ZEUS 96

H1 94

Vereshkov 03

(σpp from BN)/330

GRS ptmin=1.3 GeV, p=0.75

Aspen Model

FF model GRS ptmin=1.5 GeV

Block-Halzen log2(ν/m) fit

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 32

Page 33: Total Cross-sections at the LHC. Introduction. BN Model ... · Cudell and O.V. Selyugin, hep-ph/061246; J.R. Cudell, E. Martynov, O.V. Selyugin and A. Lengyel, Phys. Lett. B 587 (2004)

Total cross-sections at the LHC. Conclusions

• Soft gluon resummation effects tame the high energy rise of uni-

tarised minijet cross-sections and restore the Froissart bound.

• The BN Eikonalised model predicts LHC cross-sections consistent

with other fits which were done requiring analticity and unitarity prop-

erties.

• In particular the predicitons of our model for both the pp and γp case

agree with those of Block Halzen fits where they argue saturation of

Froissart bound.

• This in fact means a violation of simple factorisation in going from

p to γp and further γγ.

R.M. Godbole, MPI@LHC’08, Oct. 27, 2008. page 33