Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s...

68
Today’s Outline - September 18, 2013 C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 1 / 11

Transcript of Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s...

Page 1: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Today’s Outline - September 18, 2013

• Models of Surfaces

• Reflectivity from the MRCAT mirror

APS Visits:10-BM: Friday, November 8, 201318-ID: TBD

Homework Assignment #02:Problems to be provideddue Monday, September 23, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 1 / 11

Page 2: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Today’s Outline - September 18, 2013

• Models of Surfaces

• Reflectivity from the MRCAT mirror

APS Visits:10-BM: Friday, November 8, 201318-ID: TBD

Homework Assignment #02:Problems to be provideddue Monday, September 23, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 1 / 11

Page 3: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Today’s Outline - September 18, 2013

• Models of Surfaces

• Reflectivity from the MRCAT mirror

APS Visits:10-BM: Friday, November 8, 201318-ID: TBD

Homework Assignment #02:Problems to be provideddue Monday, September 23, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 1 / 11

Page 4: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Today’s Outline - September 18, 2013

• Models of Surfaces

• Reflectivity from the MRCAT mirror

APS Visits:10-BM: Friday, November 8, 201318-ID: TBD

Homework Assignment #02:Problems to be provideddue Monday, September 23, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 1 / 11

Page 5: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Today’s Outline - September 18, 2013

• Models of Surfaces

• Reflectivity from the MRCAT mirror

APS Visits:10-BM: Friday, November 8, 201318-ID: TBD

Homework Assignment #02:Problems to be provideddue Monday, September 23, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 1 / 11

Page 6: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Today’s Outline - September 18, 2013

• Models of Surfaces

• Reflectivity from the MRCAT mirror

APS Visits:10-BM: Friday, November 8, 201318-ID: TBD

Homework Assignment #02:Problems to be provideddue Monday, September 23, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 1 / 11

Page 7: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Today’s Outline - September 18, 2013

• Models of Surfaces

• Reflectivity from the MRCAT mirror

APS Visits:10-BM: Friday, November 8, 201318-ID: TBD

Homework Assignment #02:Problems to be provideddue Monday, September 23, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 1 / 11

Page 8: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Today’s Outline - September 18, 2013

• Models of Surfaces

• Reflectivity from the MRCAT mirror

APS Visits:10-BM: Friday, November 8, 201318-ID: TBD

Homework Assignment #02:Problems to be provideddue Monday, September 23, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 1 / 11

Page 9: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Surface scattering cross-section

(dσ

)=

(roρ

Qz

)2 ∫S

∫S ′e iQz (h(x ,y)−h(x ′,y ′))e iQx (x−x ′)e iQy (y−y ′)dxdydx ′dy ′

=

(roρ

Qz

)2 ∫S ′dx ′dy ′

∫S

⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1

∫ ⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

where Ao/ sin θ1 is just the illuminated surface area and the term in theangled brackets is an ensemble average over all possible choices of theorigin within the illuminated area.Finally, it is assumed that the statistics of the height variation areGaussian and(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 2 / 11

Page 10: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Surface scattering cross-section

(dσ

)=

(roρ

Qz

)2 ∫S

∫S ′e iQz (h(x ,y)−h(x ′,y ′))e iQx (x−x ′)e iQy (y−y ′)dxdydx ′dy ′

=

(roρ

Qz

)2 ∫S ′dx ′dy ′

∫S

⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1

∫ ⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

where Ao/ sin θ1 is just the illuminated surface area and the term in theangled brackets is an ensemble average over all possible choices of theorigin within the illuminated area.Finally, it is assumed that the statistics of the height variation areGaussian and(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 2 / 11

Page 11: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Surface scattering cross-section

(dσ

)=

(roρ

Qz

)2 ∫S

∫S ′e iQz (h(x ,y)−h(x ′,y ′))e iQx (x−x ′)e iQy (y−y ′)dxdydx ′dy ′

=

(roρ

Qz

)2 ∫S ′dx ′dy ′

∫S

⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1

∫ ⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

where Ao/ sin θ1 is just the illuminated surface area and the term in theangled brackets is an ensemble average over all possible choices of theorigin within the illuminated area.Finally, it is assumed that the statistics of the height variation areGaussian and(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 2 / 11

Page 12: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Surface scattering cross-section

(dσ

)=

(roρ

Qz

)2 ∫S

∫S ′e iQz (h(x ,y)−h(x ′,y ′))e iQx (x−x ′)e iQy (y−y ′)dxdydx ′dy ′

=

(roρ

Qz

)2 ∫S ′dx ′dy ′

∫S

⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1

∫ ⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

where Ao/ sin θ1 is just the illuminated surface area

and the term in theangled brackets is an ensemble average over all possible choices of theorigin within the illuminated area.Finally, it is assumed that the statistics of the height variation areGaussian and(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 2 / 11

Page 13: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Surface scattering cross-section

(dσ

)=

(roρ

Qz

)2 ∫S

∫S ′e iQz (h(x ,y)−h(x ′,y ′))e iQx (x−x ′)e iQy (y−y ′)dxdydx ′dy ′

=

(roρ

Qz

)2 ∫S ′dx ′dy ′

∫S

⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1

∫ ⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

where Ao/ sin θ1 is just the illuminated surface area and the term in theangled brackets is an ensemble average over all possible choices of theorigin within the illuminated area.

Finally, it is assumed that the statistics of the height variation areGaussian and(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 2 / 11

Page 14: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Surface scattering cross-section

(dσ

)=

(roρ

Qz

)2 ∫S

∫S ′e iQz (h(x ,y)−h(x ′,y ′))e iQx (x−x ′)e iQy (y−y ′)dxdydx ′dy ′

=

(roρ

Qz

)2 ∫S ′dx ′dy ′

∫S

⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1

∫ ⟨e iQz (h(0,0)−h(x ,y))

⟩e iQx xe iQy ydxdy

where Ao/ sin θ1 is just the illuminated surface area and the term in theangled brackets is an ensemble average over all possible choices of theorigin within the illuminated area.Finally, it is assumed that the statistics of the height variation areGaussian and(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 2 / 11

Page 15: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Limiting Case - Flat Surface

Define a function g(x , y) =⟨

[h(0, 0)− h(x , y)]2⟩

which can be modeled

in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a deltafunction

2πδ(q) =

∫e iqxdx

the expression for the scat-tered intensity in terms ofthe momentum transfer wavevectors is

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1

∫e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1δ(Qx )δ(Qy )

Isc =

(IoAo

)(dσ

)∆Qx ∆Qy

k2 sin θ2

R(Qz ) =Isc

Io=

(Q2

c /8

Qz

)2(1

Qz/2

)2

=

(Qc

2Qz

)4

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 3 / 11

Page 16: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Limiting Case - Flat Surface

Define a function g(x , y) =⟨

[h(0, 0)− h(x , y)]2⟩

which can be modeled

in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a deltafunction

2πδ(q) =

∫e iqxdx

the expression for the scat-tered intensity in terms ofthe momentum transfer wavevectors is

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1

∫e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1δ(Qx )δ(Qy )

Isc =

(IoAo

)(dσ

)∆Qx ∆Qy

k2 sin θ2

R(Qz ) =Isc

Io=

(Q2

c /8

Qz

)2(1

Qz/2

)2

=

(Qc

2Qz

)4

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 3 / 11

Page 17: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Limiting Case - Flat Surface

Define a function g(x , y) =⟨

[h(0, 0)− h(x , y)]2⟩

which can be modeled

in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a deltafunction

2πδ(q) =

∫e iqxdx

the expression for the scat-tered intensity in terms ofthe momentum transfer wavevectors is

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1

∫e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1δ(Qx )δ(Qy )

Isc =

(IoAo

)(dσ

)∆Qx ∆Qy

k2 sin θ2

R(Qz ) =Isc

Io=

(Q2

c /8

Qz

)2(1

Qz/2

)2

=

(Qc

2Qz

)4

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 3 / 11

Page 18: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Limiting Case - Flat Surface

Define a function g(x , y) =⟨

[h(0, 0)− h(x , y)]2⟩

which can be modeled

in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a deltafunction

2πδ(q) =

∫e iqxdx

the expression for the scat-tered intensity in terms ofthe momentum transfer wavevectors is

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1

∫e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1δ(Qx )δ(Qy )

Isc =

(IoAo

)(dσ

)∆Qx ∆Qy

k2 sin θ2

R(Qz ) =Isc

Io=

(Q2

c /8

Qz

)2(1

Qz/2

)2

=

(Qc

2Qz

)4

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 3 / 11

Page 19: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Limiting Case - Flat Surface

Define a function g(x , y) =⟨

[h(0, 0)− h(x , y)]2⟩

which can be modeled

in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a deltafunction

2πδ(q) =

∫e iqxdx

the expression for the scat-tered intensity in terms ofthe momentum transfer wavevectors is

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1

∫e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1δ(Qx )δ(Qy )

Isc =

(IoAo

)(dσ

)∆Qx ∆Qy

k2 sin θ2

R(Qz ) =Isc

Io=

(Q2

c /8

Qz

)2(1

Qz/2

)2

=

(Qc

2Qz

)4

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 3 / 11

Page 20: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Limiting Case - Flat Surface

Define a function g(x , y) =⟨

[h(0, 0)− h(x , y)]2⟩

which can be modeled

in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a deltafunction

2πδ(q) =

∫e iqxdx

the expression for the scat-tered intensity in terms ofthe momentum transfer wavevectors is

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1

∫e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1δ(Qx )δ(Qy )

Isc =

(IoAo

)(dσ

)∆Qx ∆Qy

k2 sin θ2

R(Qz ) =Isc

Io=

(Q2

c /8

Qz

)2(1

Qz/2

)2

=

(Qc

2Qz

)4

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 3 / 11

Page 21: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Limiting Case - Flat Surface

Define a function g(x , y) =⟨

[h(0, 0)− h(x , y)]2⟩

which can be modeled

in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a deltafunction

2πδ(q) =

∫e iqxdx

the expression for the scat-tered intensity in terms ofthe momentum transfer wavevectors is

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1

∫e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1δ(Qx )δ(Qy )

Isc =

(IoAo

)(dσ

)∆Qx ∆Qy

k2 sin θ2

R(Qz ) =Isc

Io=

(Q2

c /8

Qz

)2(1

Qz/2

)2

=

(Qc

2Qz

)4

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 3 / 11

Page 22: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Limiting Case - Flat Surface

Define a function g(x , y) =⟨

[h(0, 0)− h(x , y)]2⟩

which can be modeled

in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a deltafunction

2πδ(q) =

∫e iqxdx

the expression for the scat-tered intensity in terms ofthe momentum transfer wavevectors is

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1

∫e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1δ(Qx )δ(Qy )

Isc =

(IoAo

)(dσ

)∆Qx ∆Qy

k2 sin θ2

R(Qz ) =Isc

Io=

(Q2

c /8

Qz

)2(1

Qz/2

)2

=

(Qc

2Qz

)4

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 3 / 11

Page 23: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Uncorrelated Surfaces

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and

⟨[h(0, 0)− h(x , y)]2

⟩= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2

= 2⟨h2⟩

This quantity is simply related to the rms roughness, σ by σ2 =⟨h2⟩

andthe cross-section is given by(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈h2〉2/2e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnelcross-section for a flat surface(

)=

(dσ

)Fresnel

e−Q2z σ

2

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 4 / 11

Page 24: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Uncorrelated Surfaces

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and⟨[h(0, 0)− h(x , y)]2

⟩= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2

= 2⟨h2⟩

This quantity is simply related to the rms roughness, σ by σ2 =⟨h2⟩

andthe cross-section is given by(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈h2〉2/2e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnelcross-section for a flat surface(

)=

(dσ

)Fresnel

e−Q2z σ

2

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 4 / 11

Page 25: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Uncorrelated Surfaces

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and⟨[h(0, 0)− h(x , y)]2

⟩= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2

= 2⟨h2⟩

This quantity is simply related to the rms roughness, σ by σ2 =⟨h2⟩

andthe cross-section is given by(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈h2〉2/2e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnelcross-section for a flat surface(

)=

(dσ

)Fresnel

e−Q2z σ

2

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 4 / 11

Page 26: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Uncorrelated Surfaces

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and⟨[h(0, 0)− h(x , y)]2

⟩= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2

= 2⟨h2⟩

This quantity is simply related to the rms roughness, σ by σ2 =⟨h2⟩

andthe cross-section is given by(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈h2〉2/2e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnelcross-section for a flat surface(

)=

(dσ

)Fresnel

e−Q2z σ

2

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 4 / 11

Page 27: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Uncorrelated Surfaces

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and⟨[h(0, 0)− h(x , y)]2

⟩= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2

= 2⟨h2⟩

This quantity is simply related to the rms roughness, σ by σ2 =⟨h2⟩

andthe cross-section is given by(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈h2〉2/2e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnelcross-section for a flat surface(

)=

(dσ

)Fresnel

e−Q2z σ

2

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 4 / 11

Page 28: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Uncorrelated Surfaces

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and⟨[h(0, 0)− h(x , y)]2

⟩= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2

= 2⟨h2⟩

This quantity is simply related to the rms roughness, σ by σ2 =⟨h2⟩

andthe cross-section is given by(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈h2〉2/2e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnelcross-section for a flat surface(

)=

(dσ

)Fresnel

e−Q2z σ

2

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 4 / 11

Page 29: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Uncorrelated Surfaces

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and⟨[h(0, 0)− h(x , y)]2

⟩= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2

= 2⟨h2⟩

This quantity is simply related to the rms roughness, σ by σ2 =⟨h2⟩

andthe cross-section is given by(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈h2〉2/2e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnelcross-section for a flat surface

(dσ

)=

(dσ

)Fresnel

e−Q2z σ

2

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 4 / 11

Page 30: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Uncorrelated Surfaces

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and⟨[h(0, 0)− h(x , y)]2

⟩= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2

= 2⟨h2⟩

This quantity is simply related to the rms roughness, σ by σ2 =⟨h2⟩

andthe cross-section is given by(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−Q2

z 〈h2〉2/2e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnelcross-section for a flat surface(

)=

(dσ

)Fresnel

e−Q2z σ

2

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 4 / 11

Page 31: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Surface Roughness Effect

(dσ

)=

(dσ

)Fresnel

e−Q2z σ

2

for a perfectly flat surface,we get the Fresnel reflectivityderived for a thin slab

for an uncorrelated roughsurface, the reflectivity isreduced by an exponentialfactor controlled by the rmssurface roughness σ 0 0.2 0.4 0.6 0.8 1

Q (Å-1

)

10-16

10-12

10-8

10-4

100

RS

lab

σ=0 Å

∆=68 Å

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 5 / 11

Page 32: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Surface Roughness Effect

(dσ

)=

(dσ

)Fresnel

e−Q2z σ

2

for a perfectly flat surface,we get the Fresnel reflectivityderived for a thin slab

for an uncorrelated roughsurface, the reflectivity isreduced by an exponentialfactor controlled by the rmssurface roughness σ

0 0.2 0.4 0.6 0.8 1

Q (Å-1

)

10-16

10-12

10-8

10-4

100

RS

lab

σ=0 Å

∆=68 Å

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 5 / 11

Page 33: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Surface Roughness Effect

(dσ

)=

(dσ

)Fresnel

e−Q2z σ

2

for a perfectly flat surface,we get the Fresnel reflectivityderived for a thin slab

for an uncorrelated roughsurface, the reflectivity isreduced by an exponentialfactor controlled by the rmssurface roughness σ 0 0.2 0.4 0.6 0.8 1

Q (Å-1

)

10-16

10-12

10-8

10-4

100

RS

lab

σ=0 Å

σ=3 Å

∆=68 Å

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 5 / 11

Page 34: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Surface Roughness Effect

(dσ

)=

(dσ

)Fresnel

e−Q2z σ

2

for a perfectly flat surface,we get the Fresnel reflectivityderived for a thin slab

for an uncorrelated roughsurface, the reflectivity isreduced by an exponentialfactor controlled by the rmssurface roughness σ 0 0.2 0.4 0.6 0.8 1

Q (Å-1

)

10-16

10-12

10-8

10-4

100

RS

lab

σ=0 Å

σ=3 Å

∆=68 Å

σ=3 Å

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 5 / 11

Page 35: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Correlated Surfaces

Assume that height fluctuations are isotropically correlated in the x-yplane. Therefore, g(x , y) = g(r) = g(

√x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) isgiven by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),we can eliminate the y-integral and have(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−AQ2

z |x |2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 6 / 11

Page 36: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Correlated Surfaces

Assume that height fluctuations are isotropically correlated in the x-yplane. Therefore, g(x , y) = g(r) = g(

√x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) isgiven by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),we can eliminate the y-integral and have(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−AQ2

z |x |2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 6 / 11

Page 37: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Correlated Surfaces

Assume that height fluctuations are isotropically correlated in the x-yplane. Therefore, g(x , y) = g(r) = g(

√x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) isgiven by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h 1

smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),we can eliminate the y-integral and have(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−AQ2

z |x |2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 6 / 11

Page 38: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Correlated Surfaces

Assume that height fluctuations are isotropically correlated in the x-yplane. Therefore, g(x , y) = g(r) = g(

√x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) isgiven by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),we can eliminate the y-integral and have(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−AQ2

z |x |2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 6 / 11

Page 39: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Correlated Surfaces

Assume that height fluctuations are isotropically correlated in the x-yplane. Therefore, g(x , y) = g(r) = g(

√x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) isgiven by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),we can eliminate the y-integral and have

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−AQ2

z |x |2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 6 / 11

Page 40: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Correlated Surfaces

Assume that height fluctuations are isotropically correlated in the x-yplane. Therefore, g(x , y) = g(r) = g(

√x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) isgiven by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),we can eliminate the y-integral and have(

)=

(roρ

Qz

)2 Ao

sin θ1

∫e−AQ2

z |x |2h/2 cos(Qxx)dx

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 6 / 11

Page 41: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, bothhaving a broad diffuse scattering and no specular peak.

h = 1/2(dσ

)=

(Aor

2oρ

2

2 sin θ1

)A

(Q2x + (A/2)2Q4

z )

Lorentzian with half-width AQ2z /2

h = 1(dσ

)=

(2√πAor

2oρ

2

2 sin θ1

)1

Q4z

e− 1

2

(Q2

xAQ2

z

)

Gaussian with variance AQ2z

-0.01 -0.005 0 0.005 0.01

Qx

0

0.02

0.04

0.06

0.08

0.1

Qz

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

-0.04 -0.02 0 0.02 0.04

Qx

0

0.002

0.004

0.006

0.008

0.01

Qz

1e-300

1e-250

1e-200

1e-150

1e-100

1e-50

1

1e+50

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 7 / 11

Page 42: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, bothhaving a broad diffuse scattering and no specular peak.

h = 1/2(dσ

)=

(Aor

2oρ

2

2 sin θ1

)A

(Q2x + (A/2)2Q4

z )

Lorentzian with half-width AQ2z /2

h = 1(dσ

)=

(2√πAor

2oρ

2

2 sin θ1

)1

Q4z

e− 1

2

(Q2

xAQ2

z

)

Gaussian with variance AQ2z

-0.01 -0.005 0 0.005 0.01

Qx

0

0.02

0.04

0.06

0.08

0.1

Qz

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

-0.04 -0.02 0 0.02 0.04

Qx

0

0.002

0.004

0.006

0.008

0.01

Qz

1e-300

1e-250

1e-200

1e-150

1e-100

1e-50

1

1e+50

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 7 / 11

Page 43: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, bothhaving a broad diffuse scattering and no specular peak.

h = 1/2(dσ

)=

(Aor

2oρ

2

2 sin θ1

)A

(Q2x + (A/2)2Q4

z )

Lorentzian with half-width AQ2z /2

h = 1(dσ

)=

(2√πAor

2oρ

2

2 sin θ1

)1

Q4z

e− 1

2

(Q2

xAQ2

z

)

Gaussian with variance AQ2z

-0.01 -0.005 0 0.005 0.01

Qx

0

0.02

0.04

0.06

0.08

0.1

Qz

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

-0.04 -0.02 0 0.02 0.04

Qx

0

0.002

0.004

0.006

0.008

0.01

Qz

1e-300

1e-250

1e-200

1e-150

1e-100

1e-50

1

1e+50

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 7 / 11

Page 44: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, bothhaving a broad diffuse scattering and no specular peak.

h = 1/2(dσ

)=

(Aor

2oρ

2

2 sin θ1

)A

(Q2x + (A/2)2Q4

z )

Lorentzian with half-width AQ2z /2

h = 1(dσ

)=

(2√πAor

2oρ

2

2 sin θ1

)1

Q4z

e− 1

2

(Q2

xAQ2

z

)

Gaussian with variance AQ2z

-0.01 -0.005 0 0.005 0.01

Qx

0

0.02

0.04

0.06

0.08

0.1

Qz

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

-0.04 -0.02 0 0.02 0.04

Qx

0

0.002

0.004

0.006

0.008

0.01

Qz

1e-300

1e-250

1e-200

1e-150

1e-100

1e-50

1

1e+50

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 7 / 11

Page 45: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, bothhaving a broad diffuse scattering and no specular peak.

h = 1/2(dσ

)=

(Aor

2oρ

2

2 sin θ1

)A

(Q2x + (A/2)2Q4

z )

Lorentzian with half-width AQ2z /2

h = 1(dσ

)=

(2√πAor

2oρ

2

2 sin θ1

)1

Q4z

e− 1

2

(Q2

xAQ2

z

)

Gaussian with variance AQ2z

-0.01 -0.005 0 0.005 0.01

Qx

0

0.02

0.04

0.06

0.08

0.1

Qz

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

-0.04 -0.02 0 0.02 0.04

Qx

0

0.002

0.004

0.006

0.008

0.01

Qz

1e-300

1e-250

1e-200

1e-150

1e-100

1e-50

1

1e+50

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 7 / 11

Page 46: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, bothhaving a broad diffuse scattering and no specular peak.

h = 1/2(dσ

)=

(Aor

2oρ

2

2 sin θ1

)A

(Q2x + (A/2)2Q4

z )

Lorentzian with half-width AQ2z /2

h = 1(dσ

)=

(2√πAor

2oρ

2

2 sin θ1

)1

Q4z

e− 1

2

(Q2

xAQ2

z

)

Gaussian with variance AQ2z

-0.01 -0.005 0 0.005 0.01

Qx

0

0.02

0.04

0.06

0.08

0.1

Qz

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

-0.04 -0.02 0 0.02 0.04

Qx

0

0.002

0.004

0.006

0.008

0.01

Qz

1e-300

1e-250

1e-200

1e-150

1e-100

1e-50

1

1e+50

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 7 / 11

Page 47: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Bounded Correlations

If the correlations remain bounded as r →∞

g(x , y) = 2⟨h2⟩− 2 〈h(0, 0)h(x .y)〉 = 2σ2 − 2C (x , y)

whereC (x , y) = σ2e−(r/ξ)

2h

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

eQ2z C(x ,y)e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫ [

eQ2z C(x ,y) − 1 + 1

]e iQx xe iQy ydxdy

=

(dσ

)Fresnel

e−Q2z σ

2+

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2Fdiffuse(~Q)

And the scattering exhibits both a specular peak, reduced by uncorrelatedroughness, and diffuse scattering from the correlated portion of the surface

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 8 / 11

Page 48: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Bounded Correlations

If the correlations remain bounded as r →∞

g(x , y) = 2⟨h2⟩− 2 〈h(0, 0)h(x .y)〉 = 2σ2 − 2C (x , y)

whereC (x , y) = σ2e−(r/ξ)

2h

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

eQ2z C(x ,y)e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫ [

eQ2z C(x ,y) − 1 + 1

]e iQx xe iQy ydxdy

=

(dσ

)Fresnel

e−Q2z σ

2+

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2Fdiffuse(~Q)

And the scattering exhibits both a specular peak, reduced by uncorrelatedroughness, and diffuse scattering from the correlated portion of the surface

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 8 / 11

Page 49: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Bounded Correlations

If the correlations remain bounded as r →∞

g(x , y) = 2⟨h2⟩− 2 〈h(0, 0)h(x .y)〉 = 2σ2 − 2C (x , y)

whereC (x , y) = σ2e−(r/ξ)

2h

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

eQ2z C(x ,y)e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫ [

eQ2z C(x ,y) − 1 + 1

]e iQx xe iQy ydxdy

=

(dσ

)Fresnel

e−Q2z σ

2+

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2Fdiffuse(~Q)

And the scattering exhibits both a specular peak, reduced by uncorrelatedroughness, and diffuse scattering from the correlated portion of the surface

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 8 / 11

Page 50: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Bounded Correlations

If the correlations remain bounded as r →∞

g(x , y) = 2⟨h2⟩− 2 〈h(0, 0)h(x .y)〉 = 2σ2 − 2C (x , y)

whereC (x , y) = σ2e−(r/ξ)

2h

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

eQ2z C(x ,y)e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫ [

eQ2z C(x ,y) − 1 + 1

]e iQx xe iQy ydxdy

=

(dσ

)Fresnel

e−Q2z σ

2+

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2Fdiffuse(~Q)

And the scattering exhibits both a specular peak, reduced by uncorrelatedroughness, and diffuse scattering from the correlated portion of the surface

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 8 / 11

Page 51: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Bounded Correlations

If the correlations remain bounded as r →∞

g(x , y) = 2⟨h2⟩− 2 〈h(0, 0)h(x .y)〉 = 2σ2 − 2C (x , y)

whereC (x , y) = σ2e−(r/ξ)

2h

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

eQ2z C(x ,y)e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫ [

eQ2z C(x ,y) − 1 + 1

]e iQx xe iQy ydxdy

=

(dσ

)Fresnel

e−Q2z σ

2+

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2Fdiffuse(~Q)

And the scattering exhibits both a specular peak, reduced by uncorrelatedroughness, and diffuse scattering from the correlated portion of the surface

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 8 / 11

Page 52: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Bounded Correlations

If the correlations remain bounded as r →∞

g(x , y) = 2⟨h2⟩− 2 〈h(0, 0)h(x .y)〉 = 2σ2 − 2C (x , y)

whereC (x , y) = σ2e−(r/ξ)

2h

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

eQ2z C(x ,y)e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫ [

eQ2z C(x ,y) − 1 + 1

]e iQx xe iQy ydxdy

=

(dσ

)Fresnel

e−Q2z σ

2+

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2Fdiffuse(~Q)

And the scattering exhibits both a specular peak, reduced by uncorrelatedroughness, and diffuse scattering from the correlated portion of the surface

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 8 / 11

Page 53: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Bounded Correlations

If the correlations remain bounded as r →∞

g(x , y) = 2⟨h2⟩− 2 〈h(0, 0)h(x .y)〉 = 2σ2 − 2C (x , y)

whereC (x , y) = σ2e−(r/ξ)

2h

(dσ

)=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫

eQ2z C(x ,y)e iQx xe iQy ydxdy

=

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2∫ [

eQ2z C(x ,y) − 1 + 1

]e iQx xe iQy ydxdy

=

(dσ

)Fresnel

e−Q2z σ

2+

(roρ

Qz

)2 Ao

sin θ1e−Q2

z σ2Fdiffuse(~Q)

And the scattering exhibits both a specular peak, reduced by uncorrelatedroughness, and diffuse scattering from the correlated portion of the surface

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 8 / 11

Page 54: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

The MRCAT Mirror

50 cm

x-rays

Rh Pt

glass

Ultra low expansion glass polished to afew A roughness

One platinum stripe and one rhodiumstripe deposited along the length of themirror on top of a chromium buffer layer

A mounting system which permits angu-lar positioning to less than 1/100 of adegree as well as horizontal and verticalmotions

A bending mechanism to permit verticalfocusing of the beam to ∼ 60 µm

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 9 / 11

Page 55: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

The MRCAT Mirror

50 cm

x-rays

Rh Pt

glass

Ultra low expansion glass polished to afew A roughness

One platinum stripe and one rhodiumstripe deposited along the length of themirror on top of a chromium buffer layer

A mounting system which permits angu-lar positioning to less than 1/100 of adegree as well as horizontal and verticalmotions

A bending mechanism to permit verticalfocusing of the beam to ∼ 60 µm

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 9 / 11

Page 56: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

The MRCAT Mirror

50 cm

x-rays

Rh Pt

glass

Ultra low expansion glass polished to afew A roughness

One platinum stripe and one rhodiumstripe deposited along the length of themirror on top of a chromium buffer layer

A mounting system which permits angu-lar positioning to less than 1/100 of adegree as well as horizontal and verticalmotions

A bending mechanism to permit verticalfocusing of the beam to ∼ 60 µm

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 9 / 11

Page 57: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

The MRCAT Mirror

50 cm

x-rays

Rh Pt

glass

Ultra low expansion glass polished to afew A roughness

One platinum stripe and one rhodiumstripe deposited along the length of themirror on top of a chromium buffer layer

A mounting system which permits angu-lar positioning to less than 1/100 of adegree as well as horizontal and verticalmotions

A bending mechanism to permit verticalfocusing of the beam to ∼ 60 µm

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 9 / 11

Page 58: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

The MRCAT Mirror

50 cm

x-rays

Rh Pt

glass

Ultra low expansion glass polished to afew A roughness

One platinum stripe and one rhodiumstripe deposited along the length of themirror on top of a chromium buffer layer

A mounting system which permits angu-lar positioning to less than 1/100 of adegree as well as horizontal and verticalmotions

A bending mechanism to permit verticalfocusing of the beam to ∼ 60 µm

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 9 / 11

Page 59: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Mirror Performance I

When illuminated with 12 keVx-rays on the glass “stripe”, thereflectivity is measured as:

With the Rh stripe, the thinslab reflection is evident andthe critical angle is significantlyhigher.

The Pt stripe gives a higher crit-ical angle still but a lower reflec-tivity and it looks like an infiniteslab. Why?

0.1 0.2 0.3 0.4 0.5

α (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

Reflectivity

12 keV

glass

Rh

Pt

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 10 / 11

Page 60: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Mirror Performance I

When illuminated with 12 keVx-rays on the glass “stripe”, thereflectivity is measured as:

With the Rh stripe, the thinslab reflection is evident andthe critical angle is significantlyhigher.

The Pt stripe gives a higher crit-ical angle still but a lower reflec-tivity and it looks like an infiniteslab. Why?

0.1 0.2 0.3 0.4 0.5

α (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

Reflectivity

12 keV

glass

Rh

Pt

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 10 / 11

Page 61: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Mirror Performance I

When illuminated with 12 keVx-rays on the glass “stripe”, thereflectivity is measured as:

With the Rh stripe, the thinslab reflection is evident andthe critical angle is significantlyhigher.

The Pt stripe gives a higher crit-ical angle still but a lower reflec-tivity and it looks like an infiniteslab. Why?

0.1 0.2 0.3 0.4 0.5

α (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

Reflectivity

12 keV

glass

Rh

Pt

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 10 / 11

Page 62: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Mirror Performance I

When illuminated with 12 keVx-rays on the glass “stripe”, thereflectivity is measured as:

With the Rh stripe, the thinslab reflection is evident andthe critical angle is significantlyhigher.

The Pt stripe gives a higher crit-ical angle still but a lower reflec-tivity and it looks like an infiniteslab.

Why?

0.1 0.2 0.3 0.4 0.5

α (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

Reflectivity

12 keV

glass

Rh

Pt

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 10 / 11

Page 63: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Mirror Performance I

When illuminated with 12 keVx-rays on the glass “stripe”, thereflectivity is measured as:

With the Rh stripe, the thinslab reflection is evident andthe critical angle is significantlyhigher.

The Pt stripe gives a higher crit-ical angle still but a lower reflec-tivity and it looks like an infiniteslab.

Why?

0.1 0.2 0.3 0.4 0.5

α (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

Reflectivity

12 keV

glass

Rh

Pt

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 10 / 11

Page 64: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Mirror Performance I

When illuminated with 12 keVx-rays on the glass “stripe”, thereflectivity is measured as:

With the Rh stripe, the thinslab reflection is evident andthe critical angle is significantlyhigher.

The Pt stripe gives a higher crit-ical angle still but a lower reflec-tivity and it looks like an infiniteslab. Why? 0.1 0.2 0.3 0.4 0.5

α (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

Reflectivity

12 keV

glass

Rh

Pt

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 10 / 11

Page 65: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Mirror Performance II

0.1 0.2 0.3 0.4 0.5

α (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

Reflectivity

Pt stripe

12 keV

20 keV

30 keV

As we move up in energy thecritical angle for the Pt stripedrops.

The reflectivity at low anglesimproves as we are well awayfrom the Pt absorption edgesat 11,565 eV, 13,273 eV, and13,880 eV.

As energy rises, the Pt layer be-gins to show the reflectivity of athin slab.

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 11 / 11

Page 66: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Mirror Performance II

0.1 0.2 0.3 0.4 0.5

α (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

Reflectivity

Pt stripe

12 keV

20 keV

30 keV

As we move up in energy thecritical angle for the Pt stripedrops.

The reflectivity at low anglesimproves as we are well awayfrom the Pt absorption edgesat 11,565 eV, 13,273 eV, and13,880 eV.

As energy rises, the Pt layer be-gins to show the reflectivity of athin slab.

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 11 / 11

Page 67: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Mirror Performance II

0.1 0.2 0.3 0.4 0.5

α (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

Reflectivity

Pt stripe

12 keV

20 keV

30 keV

As we move up in energy thecritical angle for the Pt stripedrops.

The reflectivity at low anglesimproves as we are well awayfrom the Pt absorption edgesat 11,565 eV, 13,273 eV, and13,880 eV.

As energy rises, the Pt layer be-gins to show the reflectivity of athin slab.

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 11 / 11

Page 68: Today’s Outline - September 18, 2013csrri.iit.edu/~segre/phys570/13F/lecture_09.pdf · Today’s Outline - September 18, 2013 Models of Surfaces Re ectivity from the MRCAT mirror

Mirror Performance II

0.1 0.2 0.3 0.4 0.5

α (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

Reflectivity

Pt stripe

12 keV

20 keV

30 keV

As we move up in energy thecritical angle for the Pt stripedrops.

The reflectivity at low anglesimproves as we are well awayfrom the Pt absorption edgesat 11,565 eV, 13,273 eV, and13,880 eV.

As energy rises, the Pt layer be-gins to show the reflectivity of athin slab.

C. Segre (IIT) PHYS 570 - Fall 2013 September 18, 2013 11 / 11