Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16:...

60
Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites & Rings

Transcript of Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16:...

Page 1: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Title Frame

Hu

bb

le S

pa

ce T

ele

sco

pe

ima

ge

of

Ura

nu

s, it

s rin

gs

an

d 8

inn

er

sate

llite

s

Module 16: Jovian Satellites & Rings

Activity 2: Minor Jovian Satellites & Rings

Page 2: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Summary:

In this Activity, we will investigate

(a) characteristics of satellites less than 1000 kmdiameter and ring systems of the Jovian planets

(b) detailed information from spacecraft

(c) possible formation, interaction and evolution of minor satellites and rings

A stunning view with small telescopes, Saturn rings were no longer unique after 1977 and all four Jovian planets are now known to have ring systems.

Page 3: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Are minor satellites of minor interest?

* Note: Some of this material (e.g. on origins and evolution) overlaps the material in the previous Activity on Major Jovian Satellites.

There is no doubt that the spectacular large Galilean satellites and Titan* are of great interest; visually and due to the presence of H2O and organic molecules which could be precursors to life. Hence they are taking the attention of the Galileo spacecraft and the unfolding Cassini mission.

Small satellites, if formed with the parent planet, give us information about the heavier elements of the dust and gas nebula from which they formed.

Page 4: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

4km

ast

ero

id T

ou

tatis

ca

me

with

in 3

.5 m

illio

n k

m o

f E

art

h in

19

92

.

.

If they were originally asteroids captured by the parent planet, small satellites give information about the ability of the large planets to deviate asteroids from their natural orbits.

This would of course be of special interest to us if a deviated asteroid adopted an Earth intersecting path . . .

Page 5: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The inner small satellites have a major effect on shaping the ring systems of all the Jovian planets, which, as we shall see, are themselves comprised of tiny satellites which never accreted into larger bodies, or of larger bodies which broke up in the parent planet’s gravitational field.

Page 6: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Reviewing the “old” Jupiter System(we’ll look at the new satellites in a moment)

Recall this scale diagram from the previous Activity:

The large Galilean satellites - Io, Europa, Ganymede and Callisto

4 small inner satellites

4 small (under 200km) satellites with orbits shown half size to fit on screen. Orbits are inclined and elliptical.

There are 4 more small (under 100km) satellites at around 22.5 million km from Jupiter, all with inclined, elliptical and retrograde orbits.

That the outer satellites are asteroids captured by Jupiter’s gravity is further supported by calculations which show that it is easier to capture an asteroid into a

retrograde orbit.

Jupiter

Around 11.5 million kmfrom Jupiter

All in near circular orbits orbiting in the same direction as, and in the plane of, Jupiter’s equator

Page 7: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Spherical or potato-shaped

Their shape indicates that they were never large enough to undergo differentiation, and so never formed a spherical shape.

Ida

Dactyl

Gaspra

En route to Jupiter, the Galileo spacecraft imaged the two asteroids, Ida (52 km in length and with its own satellite Dactyl) and Gaspra (15 km across).

Page 8: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

As we saw in the Activity on The Asteroid Belt, they are most likely bodies which never accumulated into a larger planet due to Jupiter’s gravitationally disruptive force which they experience every 10-12 years.

Ida

Dactyl

Gaspra

Or, less likely, they may be the remains of a larger body broken apart for similar or other reasons. In either case their subsequent shape has been moulded by bombardment of other small bodies as evidenced by their pitted surfaces.

The size, appearance and orbits of the Jovian minor satellites will help classify them as indigenous to their parent planet or as captured asteroids.

Page 9: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Jupiter’s inner minor satellites

Its reddish colour is attributed to sulphur ejected from Io’s volcanoes.

Tidal drag has made Amalthea’s rotation synchronous with its orbit period.

The largest of the inner group of four of Jupiter’s minor satellites is Amalthea, a remarkable discovery in 1892 considering its orbit is half the size of that of Io and its size is only 270 by 166 by 150 km. In this Voyager 1 image, impact craters can be glimpsed.

Page 10: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Smaller satellites Metis and Adrastea have even smaller orbits, and Thebe has a slightly larger orbit. Metis and Adrastea orbit in just 7 hours and would thus appear to an observer floating in Jupiter’s clouds to set in the opposite direction to the Sun.

Galileo spacecraft images of the four inner satellites, to scale

Metis Adrastea Amalthea Thebe

100km

That their orbits are circular, in Jupiter’s equatorial plane and in Jupiter’s direction of rotation suggests these bodies may have condensed out of the same material as Jupiter, but were too small to retain lighter elements or to differentiate and take up spherical shapes.

Page 11: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Jupiter’s outer minor satellites

Between 11 million and 11.8 million km from Jupiter orbit Leda, Himalia, Lysithea and Elara, all under 80km except 186 km Himalia. Their orbit eccentricities are between 0.11 and 0.21 and orbits are tilted at 24.8° to 27.6° to Jupiter’s equatorial plane.

There seems little doubt that these satellites are asteroids captured by Jupiter’s gravity, perhaps as a group.

Page 12: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

A further group of four - Anake, Carme, Pasiphane and Sinope - orbit between 21 and 23.7 million km. Orbit eccentricities range from 0.17 to 0.38 and orbits are tilted at 16° to 34° to Jupiter’s equatorial plane - but the satellites orbit retrograde to the direction of Jupiter and the other satellites.

Mars 1.9 years

Not to scale: Jupiter captures an asteroid into a retrograde elliptical orbit

Asteroid belt

Jupiter 12 years

All are under 50 km in size and again there seems little doubt they are captured asteroids.

Page 13: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Jupiter’s 17th satellite, initially named S/1999J1, was discovered in July 2000 by the Spacewatch Project and the Minor Planets Center from images taken in 1999*. VLT observations confirmed the satellite detection in that same month.

Jupiter’s new satellites

* S/1999J1 - the first new satellite found around Jupiter in the year 1999.

The satellite orbits Jupiter at a distance of about 24 million km and probably belongs to Jupiter’s group of outer retrograde satellites and is undoubtedly also a captured asteroid.

Read the discovery press release:http://cfa-www.harvard.edu/cfa/ps/pressinfo/S1999J1.html

Its size is not well determined, but is probably between 10 and 15 km in diameter. Its orbital period has been calculated to be 774 days.

S/1999J1discovery images

Page 14: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

And another 11 satellites!

For further details, see the discovery website at University of Hawaii:http://www.ifa.hawaii.edu/faculty/jewitt/jmoons/jmoons.html

Again, their sizes are not yet well determined, but all are probably under 10 km in size, and all are most likely captured asteroids.

All 11 satellites (along with S/1999J1) belong to Jupiter’s outer irregular satellites, with either highly inclined or retrograde orbits.

In 2000, observers at the University of Hawaii have found another 11 satellites orbiting Jupiter, initially named S/2000J1 through to S/2000J11.

Page 15: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

And yet another 11 satellites!

For further details of these latest satellites, see:http://www.ifa.hawaii.edu/~sheppard/satellites/jup.html

All 11 satellites are again small, between 2 km and 4 km, and all irregular (eccentric, inclined retrograde orbits). As yet, nothing is known about their composition.

The satellites were actually discovered in late 2001, but announced to the International Astronomical Union in May 2002.

Then in May 2002, yet another 11 satellites of Jupiter were announced by the Hawaiian group, lead by Scott Sheppard and David Jewitt. This brought Jupiter’s satellite count up to 39.

Page 16: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The Working Group on Planetary System Nomenclature of the IAU (International Astronomical Union) announced the names of the first 11 new satellites of Jupiter in October 2002:

Temp name Roman New Name S/1975 J 1 XVIII Themisto S/2000 J 3 XXIV IocasteS/2000 J 5 XXII HarpalykeS/2000 J 7 XXVII PraxidikeS/2000 J 9 XX Taygete S/2000 J 10 XXI ChaldeneS/2000 J 2 XXIII KalykeS/1999 J 1 XVII CallirrhoeS/2000 J 8 XIX Megaclite S/2000 J 6 XXVI IsonoeS/2000 J 4 XXV Erinome

Satellites are listed in order of increasing distance from Jupiter. The Roman numerals indicate the order of recovery announcement.

These 11 names are the entourage of Zeus (or Jupiter) in Greco-Roman mythology. Satellites in direct orbits have (Latin) names ending in ‘a’, while retrograde satellites have (Greek) names ending in ‘e’.

ends in ‘o’ because it is closer to Callisto!

Page 17: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Regular and Irregular SatellitesContinual improvements in detection technology are producing an ever increasing list of satellites. To date, 63 satellites have been detected around Jupiter*.

* for the latest count, see http://www.ifa.hawaii.edu/~sheppard/satellites/

These satellites can be classified as regular and irregular. The regular satellites consist of the Galilean satellites (blue) plus the 4 inner satellites (green). Their circular orbits suggest they were formed in the disc of gas and dust that surrounded the early Jupiter.

Page 18: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The irregular satellites have larger orbits, eccentricities and inclinations compared to regular satellites. Most of the irregulars move in a retrograde orbit around Jupiter.

It is not understood how the irregulars were formed. A plausible hypothesis suggests that most of the irregulars were captured by Jupiter, possibly by an extended Jovian atmosphere and/or the remnants of disk of gas and dust that surrounded the early Jupiter. It is anticipated that there are hundreds more irregulars to be found.

Page 19: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Saturn’s smaller satellites

We now test our conjectures about Jupiter’s satellites with those of Saturn.

At nearly double the distance from the Sun and away from the (current) asteroid belt we might expect Saturn to have fewer captured asteroids. . .

Page 20: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Inside the orbit of Tethys (diameter 1050 km) we find eight smaller satellites, almost consistently increasing in size from tiny Pan (diameter 20 km) closest to Saturn, (orbiting within its bright outer ring,) to Enceladus at around 500 km diameter.

Beautiful Enceladus, bright and icy, is spherical (differentiated) and is the most reflective body in the Solar System, albedo almost one. Although partly cratered, it also has smooth areas which indicate recent resurfacing, perhaps by fresh ice from volcanic activity by water geysers rather than lava flows.

Its internal activity is presumably tidal in origin, but exactly how and whyis not understood.

Page 21: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Just inside Enceladus’ orbit is Mimas, the “Death Star” satellite - about 400 km in diameter and sporting a huge crater (crater Herschel, 130 km in diameter) with a central peak.

The impact which created Herschel must have almost destroyed Mimas completely, and its crater has been preserved in an old, strong ice layer.

Although roughly spherical, there are indications that a significantly smaller satellite probably would not have managed to differentiate.

Page 22: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

In amongst the larger satellites Tethys (diameter 1050 km) at 295,000 km from Saturn and Iapetus (1440 km) at 3.6 million km from Saturn, as well as four large satellites (greater than 1000km in diameter), there are also four irregularly shaped satellites less than 40km in size, except for the last - Hyperion - which is 405 by 260 by 220 km.

Hyperion, the largest known irregular natural satellite in the Solar System, rotates chaotically due to the combined gravitational effects of Saturn plus its neighbouring satellites. Its rotation follows patterns which can be described by chaos theory in mathematics, and it probably has no set rotation period.

Page 23: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

All of the 16 satellites inside Iapetus have near circular orbits, within 2° of the plane of Saturn’s equator and rings, and all orbiting in the same direction. We can therefore suggest that they formed along with Saturn. Some of the tiny ones (see later) may have been prevented from accreting to larger ones by the disturbing influence of the over-1000 km diameter satellites.

Iapetus itself has a near circular orbit inclined at 14.7°.

Outside of Iapetus is Phoebe, an irregularly shaped satellite around 220 km in size with an eccentricity of 0.16. Phoebe is in a retrograde orbit around Saturn - inclined at 5° to the general plane of all the others. We can almost certainly class Phoebe as a captured satellite.

But in fact, it turns out that Phoebe is not alone . . .

Page 24: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Jupiter is not the only planet to have newly discovered satellites. In early January 2001, 12 new satellites around Saturn were announced.

The satellites were discovered by a team lead by Brett Gladman of the Observatoire de la Côte d’Azur, France.

They are all irregular, with either inclined, eccentric or retrograde orbits - and sometimes a combination of all three!

Preliminary independent estimates of their orbits indicates that the new satellites can be divided into a group of retrograde satellites (grouped with Phoebe) as well as two prograde groups.

New satellites of Saturn

For further details and latest results, see the Saturn Irregular Satellites website

http://www.obs-azur.fr/saturn

Page 25: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The orbital parameters of the new satellites are still very preliminary and further observations are needed to constrain to satellite orbits. The diameter of the new satellites assumes that their albedo (which have not yet been measured) are 0.05, similar to Phoebe.

satellite retro? inc(°) ecc a (AU) diameter(km)Phoebe yes 173 0.175 0.086 240S/2000 S 1 yes 173 0.385 0.156 20S/2000 S 2 no 48 0.462 0.100 25S/2000 S 3 no 48 0.310 0.111 45S/2000 S 4 no 34 0.636 0.120 16S/2000 S 5 no 49 0.164 0.076 17S/2000 S 6 no 47 0.366 0.076 14S/2000 S 7 yes 171 0.510 0.136 7S/2000 S 8 yes 118 0.211 0.103 8S/2000 S 9 yes 169 0.270 0.123 7S/2000 S 10 no 33 0.620 0.121 10S/2000 S 11 no 34 0.381 0.119 30 S/2000 S 12 yes 174 0.093 0.119 7

Page 26: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The complicated orbits of the 12 new satellite of Saturn, along with Phoebe, previously the furthest known satellite from Saturn. For updates of the this image and other projections, see http://www.projectpluto.com/ssats.htm

Page 27: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The Growing List of Saturnian SatellitesAt the time of writing, there are currently 31 satellites of Saturn. The latest, S/2003 S1, was discovered on 5 February 2003. Two of the discovery images are shown below.

The circled region highlights the motion of S/2003 S1 against the background stars and galaxies. The image is approximately 40 arcseconds wide and Saturn is about 1 degree to the right. S/2003 S1 has a retrograde, eccentric orbit and is one of the 14 known irregular Saturnian satellites. For more information see http://www.ifa.hawaii.edu/~sheppard/satellites/sat2003.html

Page 28: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

As we saw in the Activity on The Asteroid Belt, Lagrange in 1772 suggested that there should be stable points 60° in front of and behind an orbiting body, where another body could stably orbit under the combined gravitational effect of the middle satellite and the central planet.

Tethys, Calypso and Telesto are examples of such co-orbiting bodies.

Avoiding collisionsOf special interest amongst Saturn’s satellites are Tethys (size 1050 km), Calypso and Telesto (both about 30 km in size), all of which orbit 294,660 km from Saturn every 1.9 days. Do they ever catch up with each other?

Dione (1120 km) has a co-orbital partner Helene (33 km); both are 377,400 km from Saturn.

Page 29: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Do they collide? Click here to see an animation.

Sun

60o

60o

The same principle applies to planetary orbits about the Sun, and ‘Trojan’ asteroids are found (and there may be around 1000) sharing Jupiter’s orbit but 60° ahead of and behind it.

But now consider Epimetheus (~100 km wide) and Janus (~200 km wide) which must pass each other by 50km in their slightly different 16.5 hour orbits of Saturn (radii 151,422 km and 151,472 km respectively).

Page 30: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The Uranian SystemWithin the orbits of Uranus’ four satellites over 1000 km diameter (discussed in the previous Activity) are 14 regular satellites (include 3 new moons).

Puck (154 km)

Of these 14 small satellites, 11 are less than 100 km is size. There are also 3 ‘larger’ satellites - Portia (108 km),

and Miranda (472 km) .

The inner 14 satellites have orbits between 50,000 km and 98,000 km from Saturn, followed by Miranda with a semi-major axis of 130,000 km.

For orbital details of the Uranian satellites, seehttp://www.ifa.hawaii.edu/~sheppard/satellites/urasatdata.html

Page 31: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Miranda is cratered with parallel networks of ridges and valleys, including a cleft some 20 km deep, the longest straight drop inthe Solar System!

Miranda

Various theories attempt to explain Miranda’s strange surface. The most exotic suggestion is that Miranda was once broken apart by a huge impact, only to fall togetheragain under gravity, with some of the original mantle ending up on the surface, forming the ovoid shapes seen there.

Page 32: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The four large and 14 smaller regular Uranian satellites mentioned all have very near circular obits, with inclinations within 0.5° of Uranus’ equator (except for Miranda at 4°), with none being retrograde. All therefore appear to have been formed with Uranus.

Despite its high 98° inclination to its orbital plane, the Uranian system of satellites is thus the most regular of all the Jovian planets.

Other theories suggest that convection currents in a once-molten interior caused some dense surface rocks to settletowards the interior and blocks of less dense ice to push up towards the surface, forming the ovoids and restructured surface.

Page 33: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Uranus also has several groups of newly discovered satellites, which includes a new group of irregular satellites:• Caliban and Sycorax (or S/1997 U1 and S/1997 U2) were discovered in 1997, also by Brett Gladman’s group. They orbit Uranus at 7.2 and 12.2 million km, way past the orbit of Oberon, on highly inclined retrograde orbits, making them Uranus’ first retrograde satellites. They are about 70 and 150 km in diameter respectively. Both satellites are unusually red in colour, and probably linked to the Kuiper Belt objects, past the orbit of Pluto. It is unlikely that they were formed with Uranus, but instead captured at a later time.• Next to be detected were Prospero, Setebos and Stephano (or S/1999 U1, S/1999 U2 and S/1999 U3) in July 1999, again by Gladman’s group. Their orbits are still uncertain, but lie between 10 and 25 million km from Uranus. All three are on inclined retrograde orbits and are all less than 50 km in diameter.

The New Satellites of Uranus

Page 34: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

As with the newly found satellites of Jupiter and Saturn, their orbits are as yet not well determined and their sizes are estimated from their brightness, assuming an albedo of 0.07.

satellite retro? inc(°) ecc a(AU) diam(km)S/1997 U 1 yes 140.9 0.159 0.048 72S/1997 U 2 yes 159.4 0.522 0.081 150S/1999 U 1 yes 158.2 0.591 0.116 47S/1999 U 2 yes 144.1 0.229 0.054 32S/1999 U 3 yes 152.0 0.445 0.109 50

Orbit of the 5 new moon:

Page 35: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Three more satellites were discovered in 2001 – all of which were irregular satellites on highly inclined retrograde orbits past Oberon – and another 3 in 2003, which included two inner regular satellites and one outer irregular satellites.

Thus the current count is 27 satellites for Uranus – 9 irregular and 18 regular.

Page 36: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Neptune’s satellites

Before Voyager 2’s visit, the only other known satellite was Nereid (diameter ~340 km), at a mean distance of 5.5 million km from Neptune and with the most elliptical satellite orbit in the solar system (e=0.75), inclined at 27°. Though not retrograde it would appear to be a captured body.

The previous Activity showed that Triton (2700 km) orbits 355,000 km from Neptune in a circular but retrograde orbit inclined at 23° to Neptune’s equator.

In 1989 Voyager 2 revealed 6 inner satellites, with sizes between about 60 km and 420 km, and with orbital radii of 48,000 km to 118,000 km, all circular and within 1° of the plane of Neptune’s equator (except innermost Naiad at 4.7°). They would thus appear to have been formed along with the parent planet.

Page 37: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Four new minor satellites of Neptune were discovered in 2002 (S/2002 N1, S/2002 N2, S/2002 N3 and S/2002 N4) and one more in 2003 (S/2003 N1). All five are small (40-60 km) irregular satellites with eccentric inclined orbits.

Matt Holman’s discovery image of one of Neptune’s new satellites, S/2002 N1

Holman of the Harvard-Smithsonian CfA and Kavelaars of the National Research Council of Canada took images of the sky around Neptune with both the 4 m Blanco telescope in Chile and the 3.6 m CFHT telescope in Hawaii. Combining the images allowed them to detect the tiny 25th magnitude satellites.

The current tally is 13 satellites for Neptune – 6 regular and 7 irregular.

Page 38: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

This Voyager 2 image shows two tiny satellites

Introduced by this image, we now move on to the true innermost satellites of the Jovian planets - - their ring systems . . .

either side of two of Neptune’s faint and thin rings.

Page 39: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The most famous Ring System - Saturn’s

This stunning view of Saturn is also a good test for small telescopes - to detect the Cassini division between the A and B rings, for example.

But did anything prepare us for the Voyager views of Saturn’s rings . . .

A B C rings

Voyager image from 2.5 million km away

Page 40: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Saturn’s Rings - detail

A Ring B Ring C ring

Cas

sin

i Div

isio

n

300km wide Encke gap sighted in 1838

A B C rings

Not empty

Dark ‘spokes’ float below rings due to a magnetic field effect

Page 41: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Natural colour image of Saturn’s rings taken by Cassini on 21 June 2004 at a distance of

6.4 million km. The image scale is 38

km per pixel.

Page 42: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The Nature of Saturn’s RingsSince Maxwell’s calculations in 1857 we have known that Saturn’s rings could not be a rotating solid sheet - tidal forces would tear it apart. Instead it had to be independently orbiting particles and rocks (or a rock/ice mixture as we now know).

Today we can even analyse reflected light from the rings to establish the speed of the ring particles at different distances from Saturn.

(Arrow lengths indicate speed of motion away from us).

If the rings were solid, speed would increase outwards.

For individual particles following Kepler’s Laws, larger orbits involve slower velocities and this is what is observed.

Transparency limits particle size

Page 43: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

At times during its tilted passage around the Sun, we see Saturn’s rings edge-on (as in this Hubble Space Telescope image in 1995). That they almost disappear is evidence of the small size of the component particles.

Further evidence from the Voyager missions indicates that the particle sizes range from 1cm to 5m, averaging ~10cm.

Page 44: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Recent data from Cassini shows that the grains sizes within Saturn’s rings are sorted by size:

The grains are predominately made of water ice, with the ices being more pure with increasing distance from Saturn.

Page 45: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Formation of Ring Systems

They haven’t, because disruptive tidal forces due to Saturn outweigh the gravitational forces between the particles tending to clump them together, over the typical distances between ring particles.

So rings are probably original material which failed to form a satellite, or possibly a loosely-bound together satellite whose orbit decayed to within the distance limit where tidal forces would disrupt its structure.

Although they reflect (80%) light as dramatically as the planet they orbit, all Saturn’s ring particles, if they coalesced, would form a body only about 100 km diameter.

Page 46: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

For a body with no tensile strength (like a pile of independent particles or a loose snowball) this distance was calculated by Roche to be about 2.45 times the radius of the central body (e.g. Saturn) and is called the Roche Limit. For Saturn it is ~147,000 km.

Bodies with tensile strength, such as rocks in the rings, satellites such as Pan which orbits within the rings (see next frame) and even our own human bodies, can exist within the Roche Limit of their planets.

Page 47: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

B

AEncke

Satellites shape Saturn’s ring systemWhy aren’t Saturn’s rings a uniform sheet of particles?It has long been suspected that a resonance between Mimas (period 22.6 hours) and material in the Cassini division (period 11.3 hours) might (like Jupiter’s Io:Europa:Ganymede 4:2:1 resonance) deviate material in the division, leaving it (almost) clear, as observed.If this is the case, then the entire structure of the rings could be due to subtle interactions with Saturn’s inner satellites and, indeed, to interactions between larger rock fragments within a ring area such as the B ring. This is now generally accepted.

Page 48: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The passing inner satellite accelerates F ring particles to higher orbits. The slower outer satellite

drags them to lower orbits; the combined effect being to braid and focus the

particles to the ring. Prometheus and Pandora are therefore called

shepherd satellites.

This Voyager image shows well the Encke gap in the A ring and a thin F ring outside it.

R D C B A F

2.45R

The satellite Pan (20 km) actually orbits within the Encke division (300 km).

Even more subtle effects are evident with the thin F ring, found by Voyager to consist of particles almost as fine as smoke. Satellites Prometheus (~120 km) and Pandora (~100 km) orbit just inside and outside the F ring respectively.

Page 49: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The Rings of Uranus[Jupiter’s rings, the most recently studied by the Galileo spacecraft, have been left to last. This is also because they indicate an additional method of ring formation.]

The existence of Uranus’ rings was established in 1977 when, from our viewpoint on a moving Earth, Uranus’ motion in front of a background star showed the existence of rings as the star’s light fluctuated.

This Voyager 2 image confirmed the ring system. They are very dark and thin - most less than 10 km wide. Unlike Saturn’s icy particles, Uranus’ ring rocks are about 1 metre in size and may be surfaced by (solar) radiation darkened methane ice.

Page 50: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The Rings of Uranus

Two further satellites orbit a little closer than Bianca.

The rings (out to twice the planet radius) are within the Roche limit.

Contrast-enhanced Hubble space telescope image

Page 51: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Neptune’s Rings

As with Uranus’ rings, they are very thin and very dark.

Again, they are entirely within Neptune’s Roche limit.

Neptune’s rings were discovered as Voyager 2 passed Neptune in 1989. Two bright rings and an inner fainter one are visible in this image, with overexposed Neptune blocked out.

Page 52: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

This image includes two small satellites which may have a shepherding effect on the rings between them.

Since Voyager 2’s brief encounter, no additional information is available.

For the Jupiter system however, the Galileo spacecraft greatly improved our understanding of the jovian ring system, sending detailed images and information . . .

Page 53: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Jupiter’s RingsFirst discovered as Voyager 1 passed inside the orbit of Amalthea in 1979, Jupiter’s rings appear edge-on in this Galileo image with the Sun directly behind Jupiter.

3. a faint ‘gossamer’ ring extending outward from the main ring.Metis and Adrastea orbit in the main ring. Ring particles are fine, “like reddish soot”.

Jupiter was then known to have three dark, thin rings: 1. the main ring,2. a halo ring thought to be vertically perturbed by Jupiter’s magnetic field, and

Page 54: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

The Galileo spacecraft found that the gossamer ring has inner and outer components and is composed of fine material observed coming off the reddish surfaces of Amalthea and Thebe by the impact of incoming small asteroidal bodies. The main ring is similarly produced from Adrastea and Metis.

JPL Press Release Information September 15, 1998

“These images provide one of the most significant discoveries of the entire Galileo imaging experiment”.

Page 55: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Conclusions“Rings are important dynamical laboratories to look at the processes that probably went on billions of years ago when the Solar System was forming from a flattened disk of dust and gas”. - Dr. J. Burns, Cornell University, in NASA/JPL Press Release, Sept 15, 1998

At first uninteresting, small misshapen lumps of rock and ice orbiting the gas giants, the minor satellites and rings turn out to be of great interest through their orbit patterns, synchronous rotations for inner satellites, appearance and composition. Puzzling at first, multiple satellites in the same orbit and orbit-swapping satellites are new examples of the variations with which the law of gravity can present us.

Page 56: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Not only Saturn’s spectacular ring system, but also those of the other three gas giants provide a range of evidence on how ring systems form and interact with the inner satellites. New mysteries such as the ‘spokes’ in Saturn’s rings, the braided ‘F’ ring and the gossamer red dust of one of Jupiter’s rings, though unexpected, can be fully explained by the known laws of physics and dynamics which have served us since the time of Newton.

This is probably the smallest body imaged by the Galileo spacecraft - Dactyl, the 1 km diameter satellite of asteroid Ida, complete with the inevitable craters. We should remain vigilant to bodies which may come Earth’s way as Jupiter continues to influence asteroid orbits.

Page 57: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

This ends our consideration of the wonders of the minor satellites and ring systems of the Jovian planets, and indeed the gas giants themselves.

Before you leave this section on the Jovian planets, their satellites and rings, be sure to investigate the Animations & Videos section of the Universe textbook CD-ROM. It contains a number of animations relevant to this section, including ones on rings and spectacular simulated fly pasts of Io, Enceladus, Triton and Miranda.

Page 58: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Indexed status of all NASA spacecrafthttp://www.hq.nasa.gov/office/oss/missions/index.htm

Galileo Spacecrafthttp://www.jpl.nasa.gov/galileo/

Jupiter’s satellite S/1999J1, Dave Jewitt, IfA Hawaii (used with kind permission)http://www.ifa.hawaii.edu/faculty/jewitt/2000J1/jovs.gif

Jupiter’s 12 new satellite, Dave Jewitt, IfA Hawaii (used with kind permission)http://www.ifa.hawaii.edu/~jewitt/jmoons/NewOrbits_www.jpg

Saturn’s 12 new satellites, Bill Gray, Projectpluto (used with kind permission)http://www.projectpluto.com/ssats1.gif

Uranus’ 5 new satellites, Bill Gray, Projectpluto (used with kind permission)http://www.projectpluto.com/usats1.gif

Neptune’s satellite S/2002 N1, Matt Holman, Harvard-Smithsonian CfA http://cfa-www.harvard.edu/press/pr0303lores_image.jpg

Cassini images of Saturn’s rings, NASA & JPL

http://saturn.jpl.nasa.gov/

Image Credits

Page 59: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.

Now return to the Module 16 home page, and read more about the minor Jovian satellites & rings in the Textbook Readings.

Hit the Esc key (escape) to return to the Module 16 Home Page

Page 60: Title Frame Hubble Space Telescope image of Uranus, its rings and 8 inner satellites Module 16: Jovian Satellites & Rings Activity 2: Minor Jovian Satellites.