Titan Science wi e James Webb Space Telescope

22
Titan Science wi e James Webb Space Telescope Titan Science Focus Group: Conor A. Nixon (Lead), NASA GSFC, Richard K. Achterberg, Univ. of Maryland, Mate Adamkovics, UCB, Bruno Bezard, Observatoire de Paris, Gordon L. Bjoraker, NASA GSFC, Thomas Cornet, ESA ESAC, Alexander G. Hayes, Cornell University, Emmanuel Lellouch, Observatoire de Paris, Manuel LopesPuertas, IAACSIC, Mark T. Lemmon UofA, SebasLen Rodriguez, Univ. de Paris Diderot, Christophe SoLn, JPL, Nicholas A. Teanby, Univerity of Bristol, Elizabeth P. Turtle, JHU APL, Robert A. West, Caltech/JPL. Exploring The Universe with JWST October 13 th 2015, ESAESTEC, Noordvijk, NL

Transcript of Titan Science wi e James Webb Space Telescope

Titan Science with the ���James Webb Space Telescope

Titan  Science  Focus  Group:  Conor  A.  Nixon  (Lead),  NASA  GSFC,    Richard  K.  Achterberg,  Univ.  of  Maryland,    Mate  Adamkovics,  UCB,    Bruno  Bezard,  Observatoire  de  Paris,    Gordon  L.  Bjoraker,  NASA  GSFC,    Thomas  Cornet,  ESA  ESAC,    Alexander  G.  Hayes,  Cornell  University,    Emmanuel  Lellouch,  Observatoire  de  Paris,    Manuel  Lopes-­‐Puertas,  IAA-­‐CSIC,    Mark  T.  Lemmon    UofA,    SebasLen  Rodriguez,  Univ.  de  Paris  Diderot,    Christophe  SoLn,  JPL,    Nicholas  A.  Teanby,  Univerity  of  Bristol,    Elizabeth  P.  Turtle,  JHU  APL,    Robert  A.  West,  Caltech/JPL.  

 

Exploring  The  Universe  with  JWST  October  13th  2015,  ESA-­‐ESTEC,  Noordvijk,  NL  

JWST  Titan  Focus  Group  The  Titan  SFG  is  a  volunteer  membership  of  15  individuals  drawn  from  the  internaQonal  scienQfic  community  acQve  in  Titan  research.  

SFG  TEAM  GOALS:  •  Produce  a  paper  summarizing  capabiliQes  of  JWST  for  Titan.      •  IdenQfy  special  needs  in  terms  of  observatory  capabiliQes.  •  Verify  that  needs  will  be  supported,  or  describe  those  needs  so  that  

they  can  (potenQally)  be  addressed  by  the  JWST  project.  

WHITE  PAPER/JOURNAL  ARTICLE  SHOULD:  a)  Describe  specific  scienQfic  quesQons  that  could  be  addressed  using  

JWST  data  b)  Summarize  observaQon  scenarios  and  data  products  needed  to  

address  those  quesQons.  c)  Examine  JWST  instrument  and  observatory  performance  in  light  of  

the  above.  

Titan  Surface  Map  From  Cassini  

!"#$ !"#% !"!" !"!# !"!! !"!& !"!' !"!( !"!) !"!* !"!$

"+)(

"+*

"+*(

"+$

"+$(

"+%

"+%(

,-./

012-34./56-57

3

34.7

!"#$ !"#% !"!" !"!# !"!! !"!& !"!' !"!( !"!) !"!* !"!$'

!

"

!

'

)

,-./

893/.:-34;

1<<1./56-5=6-57

4>7

!"#$ !"#% !"!" !"!# !"!! !"!& !"!' !"!( !"!) !"!* !"!$#+(

#

"+(

"

"+(

#

#+(

!

!+(

,-./

?@A

3/.:-34;

1<<1./56-5=6-57

457

!"#$ !"#% !"!" !"!# !"!! !"!& !"!' !"!( !"!) !"!* !"!$"

("

#""

#("

!""

,-./0B<./3@

<BCD.:1BC34E-D7 4E7

F>6-/G.:1BC63CB:3HB661><-F>6-/.G:1BC63IB661><-

Titan  Observability  

JWST  is  restricted  to  observe  solar  elongaQon  angles  85-­‐135  degrees  (lower  right)  due  to  the  sun  shield,  therefore  imposing  limitaQons  on  observability.  (Figure:  N.  Teanby.)  

0.01$

0.1$

1$

10$

0$ 5$ 10$ 15$ 20$ 25$ 30$

Wavelength*(microns)*

Diffrac5on6limited*spa5al*resolu5on*of*JWST*for*Titan*

Titan$pixels$(10.5$AU)$

Titan$pixels$(8.5$AU)$

resol$(arcsec)$

resol$(microrad)$

JWST  Titan  Science  Themes  The  Titan  SFG  idenQfied  five  themaQc  areas  to  focus  on:  

1.  Surface  -­‐  near-­‐IR  spectroscopy  of  Titan’s  surface  to  determine  features,  composiOon,  geology,  history  etc.    

2.  Tropospheric  clouds  -­‐  long-­‐term  monitoring  campaign  and  quick-­‐response  observaOons  of  transient  clouds  and  surface  darkening.  

3.  Lower  atmosphere  composiQon  –  measure  spaOal/temporal  variaOon  of  the  abundance  of  methane  and  other  gases  in  the  troposphere  by  near-­‐IR  spectroscopy.    

4.  Stratospheric  composiQon  -­‐  abundances  of  trace  gases  in  the  stratosphere  by  mid-­‐infrared  spectroscopy.  SpaOal  and  temporal  monitoring,  and  search  for  new  gases  and  isotopes.    

5.  Haze  -­‐  mulO-­‐spectral  monitoring  of  Titan  near-­‐IR  wavelengths  to  determine  spaOal  and  temporal  variaOons  in  haze  distribuOon,  aerosol  composiOon  and  atmospheric  dynamics.  

1.  Surface  •  Titan’s  surface  has  been  observed  

by  HST  and  ground-­‐based  observatories  since  mid-­‐1990s.  

•  JWST  spaQal  resoluQon  is  ~2.5x  Hubble  based  on  primary  aperture.  

22

(Schaller et al., 2009), and in 2010 Cassini observed a major outburst of equatorial clouds, with the surface darkening for weeks thereafter interpreted to be soil damp from methane rain (Turtle et al. 2011).

By 2017 we will be left with the following questions:

1. What does the surface look like in higher-resolution (R ~ 3000 vs. 200) near-IR spectroscopy? 2. What time-variable phenomena might occur due to seasonal (decadal) variations or stochastic surface events in

the near-infrared and in that part of the mid-infrared (640 cm-1) where the atmosphere is once again optically thin enough to see the surface?

JWST can make NIRCam images, and NIRSpec IFU spectral imaging of Titan to build on the 2004-2017 Cassini mission survey, creating a potentially long (10 year +) baseline of spaceborne near-infrared observations of Titan's surface and atmosphere during a seasonal configuration hitherto unexplored in the infrared. The pixel size on NIRCam gives about the same spatial resolution on Titan as Hubble (Table 2), but the signal-to-noise is much higher. Spectral resolution a factor of 6 better than on Cassini can be accomplished using the NIRSpec, allowing for spectra far more diagnostic of the types of organic species present on the surface. Thus while Cassini gets better spatial resolution, JWST will achieve higher spectral resolution with useful spatial resolution (as shown in Figure 12) over the mid-latitude regions of Titan. Of interest is whether surface changes or secular atmospheric changes are in evidence over a decadal timescale. With NIRSpec, the ability to probe the atmosphere over several levels down to the surface provides a unique long-term capability that is unavailable from Hubble and will cease to be available from Cassini after 2017. Thus JWST provides long-time baseline continuity throughout the infrared.

Figure 12. Example of the spatial coverage provided by the NIRSpec IFU on Titan.

One approach is to take NIRCam, NIRSpec and MIRI data on Titan over three equally spaced intervals during the 16-day orbit of Titan, which is phase-locked to Saturn. This provides images and spectra centered approximately 120º apart from each other, and hence global coverage. Cloud movement in the stratosphere, based on our

Lec:  HST  from  Smith  et  al.  1998  Above:  from  Norwood  et  al.  2014  

Figure:  SebasQen  Rodriguez  

•  JWST  NIRSpec  IFU  mode  saturaQon  thresholds  compared  to  Cassini  VIMS  spectrum.  •  Shorter  wavelengths  will  likely  saturate  NIRSpec,  especially  at  lower  resoluQons.    

Figure:  SebasQen  Rodriguez  

2.  Clouds  

Above:  Gemini  adapQve  opQcs  observaQons  of    Titan  showing  a  cloud  outburst  in  2008  (Schaller  et  al.,  Nature,  460,  873-­‐875,  2009.)  

•  Clouds  on  Titan  have  been  detected  by  ground-­‐based  telescopes  (2002+),    HST  and  Cassini.  

•  JWST  can  enable:  •  Long  term  monitoring  of  

cloud  acQvity.  •  Quick-­‐response  monitoring  

of  cloud  evoluQon  over  days/weeks.  

•  Higher  sensiQvity  and  addiQonal  bands  enabled  (no  sky  background.)  

•  Bejer  esQmates  of  alQtude  (maybe),  monitor  surface  darkening  etc.    

2011  ‘Chevron’  Cloud  •  Huge  (1200x1500  km)  

cloud  spojed  by  Cassini  in  2011.  

•  Caused  rainfall  that  darkened  the  surface  over  500,000  km2.  

•  Over  following  months,  methane  re-­‐evaporated  causing  surface  to  brighten  again.    

Figure:  S.  Rodriguez  and  E.  Turtle:  Cloud  laQtude  distribuQon  and  predicQons  2000-­‐2030  using  model  of  Schneider  et  al.  (2012)  and  cloud  data  points  from  published  observaQons.  

Seasonal  monitoring  of  clouds  

Figure:  SebasQen  Rodriguez  –simulaQons  based  on  degrading  VIMS  images  to  JWST  diffracQon-­‐limited  resoluQon.  

Wide-­‐band  filters  

Medium-­‐band  filters  

Narrow-­‐band  filters  

3.  Tropospheric  ComposiQon  •  Use  regions  of  weak  CH4  absorpQon  (center  or  wings  of  the  

methane  windows)  or  regions  of  CH3D  absorpQon  as  a  proxy  for  CH4  (cf  Penteado  &  Griffith  2010  for  1.56  µm  CH3D  band)  to  probe  the  troposphere.    

•  Any  CH4  variaQons  (esp.  with  laQtude)  could  then  be  correlated  with  surface/troposphere  temperature  measurements  at  other  wavelengths  (far-­‐IR).    

•  If  CO  can  be  measured  simultaneously  it  would  provide  a  check  of  the  results  as  CO  is  not  expected  to  show  any  variability.    

•  Measurements  should  be  repeated  to  search  for  seasonal  evoluQon.  

0

0.02

0.04

0.06

0.08

0.1

0.12

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

I/F a

t zer

o ph

ase

angl

e

Wavelength (micrometer)

Methane profile from GCMS

0

0.02

0.04

0.06

0.08

0.1

0.12

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

I/F a

t zer

o ph

ase

angl

e

Wavelength (micrometer)

Methane profile from GCMSRelative humidity divided by 2

0

0.02

0.04

0.06

0.08

0.1

0.12

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

I/F a

t zer

o ph

ase

angl

e

Wavelength (micrometer)

Methane profile from GCMSRelative humidity divided by 2

0

0.02

0.04

0.06

0.08

0.1

0.12

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

I/F a

t zer

o ph

ase

angl

e

Wavelength (micrometer)

Methane profile from GCMSRelative humidity divided by 2

0

0.02

0.04

0.06

0.08

0.1

0.12

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

I/F a

t zer

o ph

ase

angl

e

Wavelength (micrometer)

Methane profile from GCMSRelative humidity divided by 2

0

0.02

0.04

0.06

0.08

0.1

0.12

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

I/F a

t zer

o ph

ase

angl

e

Wavelength (micrometer)

Methane profile from GCMSRelative humidity divided by 2

Figure:  Emmanuel  Lellouch  and  Bruno  Bezard  

C2H2

C3H4 C4H2 C2H4

CH3D

CH4

C2H6

C2H6

CO2

H2

HCN

JWST  MIRI  Range  28  μm  (360  cm-­‐1)  to  5  μm  (2000  cm-­‐1)  

Labeled  Cassini  CIRS  spectrum  (low  laQtude  average)  by  D.  Jennings  

4.  Stratospheric  ComposiQon  

5 6 7 8 9 10 11 12 13 14 15 16 18 20 22 24 26 2810

−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

0.2" 0.2" 0.24" 0.27"

C2H

6

CH4

CH3D

C2H

4

C2H

6

C2H

2

HCNCO

2

C3H

4

C4H

2

Wavelength (µ m)

Radia

nce

(Ja

nsk

ys/p

ixel2

)

MIRI MRS Disk−resolved

R=2800 CIRS based Titan modelSaturationSensitivity (3 sigma, 60s integration)

Figure:  Nick  Teanby  and  Rich  Achterberg  

•  Science  invesQgaQons:  •  Measurements/detecQons  of  trace  species.  •  Seasonal  changes  in  temperature  and  composiQon.  

•  Challenges:  •  Possible  saturaQon  of  MIRI  in  strong  bands  of  C2H6,  C2H2.  •  Low  spaQal  resoluQon(4  pixels  at  5  μm,  1  pixel  at  20+  μm)  

3.0 3.5 4.0 4.5 5.0Wavelength (µm)

0.00

0.02

0.04

0.06

0.08

0.10

Jy a

rsec-2

400 km

500 km

600 km

700 km

800 km

900 km

HCNC2H2

PAHs

CH4

CH4 CH3DCO

VIMS  dayQme  limb  spectra  –  various  alQtudes  –  showing  gases  and  PAH  band.  

5.  Haze  

Earth’s. However, the tholin haze is blue-absorbing, and soimage darkness implies a relative enhancement of dark hazeabove the bright atmosphere. In near-infrared methane bandsthe lower atmosphere is dark, while haze is bright, and thusabundant haze at high altitudes leads to a bright appearance.[9] The observations are consistent with a seasonal cycle

wherein circulation like that of thermally-direct winds (i.e.,a pole-to-pole Hadley cell) chases haze away from thesummer hemisphere to the winter one [e.g., Hutzell et al.,1996]. This conceptual picture, a simple analytical model ofwhich was developed and compared with HST data in thework of Lorenz et al. [1999] has been captured in detail innumerical models that couple general circulation with hazetransport [e.g., Tokano et al., 1999; Rannou et al., 2002].[10] Remarkably, the 619 nm profile is essentially un-

changed (see Figure 2) over the 8 year period and indicates

an enhanced opacity in the S hemisphere. 953 nm images(Figure 1 and Lorenz et al. [2001]), probing down to Titan’ssurface also show a persistent brightness in the deepsouthern hemisphere.[11] The 619 nm data require comment. Either (1) there is

no seasonal cycle at this wavelength, that the altitudesprobed are so stagnant that the total haze amount at eachlatitude, dominated by lower altitudes, does not change withtime. If so, the persistent asymmetry requires an explana-tion, perhaps due to the eccentricity of Saturn’s orbit aroundthe sun such that southern summers are hotter but shorter.More probably (2) the phase of the seasonal cycle down tothese altitudes is delayed with respect to that seen above100 km or so at 439 nm and 889 nm. It is known that thedisk-integrated albedo cycle recorded by Lockwood [seeLorenz et al., 1999] is delayed by !0.5–1 year at 550 nmcompared with 467 nm: at these wavelengths where thehaze reflectivity is low, the corresponding unity opticaldepth levels are !100 km and 85 km [Lorenz et al.,1997]. The corresponding phase lag at 619 nm is evidently>5 years. At this wavelength, where the haze scatters ratherthan absorbs, the altitude probed is somewhere between!70 km where the haze optical depth is unity and !15kmwhere the methane absorption optical depth is unity [Younget al., 2002]. Thus, if haze is responsible for the 619 nmNSA, there is a substantial phase lag between 85-100 kmand 15–70 km. We point out that the opacity appearedstronger in the south before the subsolar point crossed intothe south in 1995: this would be inconsistent with atropospheric cirrus origin (i.e. indirectly related to convec-tive activity, which is now seen to dominate in the South,e.g., Brown et al. [2002]).[12] The changes are most obvious at 889 nm which

probes only the stratosphere. The limb brightness profiles atthis wavelength are shown in Figure 3a, which gives aquantitative representation of the reversal of Titan’s ‘‘smile’’into a ‘‘frown’’ [Lorenz et al., 2001]. The limb brightnesscorresponds to the high-altitude haze number density. Themodel results of Tokano et al. [1999] show a similar trendswith time (see Figure 3b) although the detailed shape differssince 889 nm data probe only the stratosphere while themodel 640 nm opacity is a total column.

3. Comparison With Other Observations

[13] Variable seeing for groundbased observers, and dif-ferent filter widths, make comparison between data difficult,

Figure 2. North-South cuts along the central meridian ofimages in 1994,1997 and 2002. All data are normalized tothe same maximum brightness (1000). The reversal ofthe north-south asymmetry in blue (439 nm) and (in theopposite sense) in the 889 nm methane band is obvious. The619 nm data is remarkably unchanged.

Figure 1. HST Titan images from the UV to the Near-IRsince 1992. All images are north-up, scaled to samemaximum brightness, and show brightness cubed toenhance contrast. Globes at right show the changing aspect:L is the declination or Subsolar Latitude. The apparentchange in diameter with wavelength is due to changinglimb-darkening. 1990 images (not shown) are of poorquality [see Caldwell et al., 1992].

Table 1. Season on Titan

Date Observation/Event Ls (deg) Solar Latitude (deg)

Sep 1979 Pioneer 11 encounter 354 "2.9Feb 1980 vernal equinox 360 0Nov 1980 Voyager 1 encounter 8 +4.1Aug 1981 Voyager 2 encounter 16 +8.0Nov 1987 northern summer solstice 90 +26.7Aug 1990 HST WFPC 122 +23.0Aug 1992 HST WFPC 145 +16.0Oct 1994 HST WFPC2 168 +5.8Aug 1995 HST WFPC2 177 +1.3Nov 1995 autumnal equinox 180 0Nov 1997 HST WFPC2/STIS 202 "10.7Dec 2000 HST WFPC2/STIS 242 "24.0Oct 2002 southern summer solstice 270 "26.7Dec 2002 HST WFPC2/STIS/ACS 271 "26.7Apr 2004 Cassini approach science 292 "25.0Oct 2004 first Cassini flyby (Ta) 300 "23.5May 2008 end of nominal Cassini tour 345 "7.2Aug 2009 vernal equinox 360 0May 2010 possible Cassini extension 8 +4.1

L10702 LORENZ ET AL.: TITAN FROM HST L10702

2 of 4

•  Titan  has  a  very  complex,  mulQ-­‐layered  haze  as  seen  by  Voyager  and  Cassini  (lec).  

•  HST  imaging  showed  seasonal  reversal  of  haze  (below,  from  Lorenz  et  al.  2004)  with  an  increase  in  blue-­‐absorbing  haze  (439  nm)  in  the  north  from  1992-­‐2002.  

•  JWST  will  enable  long-­‐term  monitoring  of  global  haze  distribuQons  using  imaging  and  enable  composiQon  inference  from  NIR/MIR  spectroscopy.  

Conclusions  •  JWST  will  have  significant  capability  for  Titan  science  in  the  

post-­‐Cassini  era,  complemenQng  ground-­‐based  observatories  in  2018-­‐2028  Qme  frame,  especially:  1.  Imaging  and  spectroscopy  of  Titan’s  surface  to  constrain  

possible  composiQon,  monitor  surface  response  to  rainfall.  

2.  Long  monitoring  of  cloud  distribuQons  and  quick  response  observaQons  of  cloud  system  evoluQon.  

3.  Measurements  of  methane  relaQve  humidity  in  troposphere.  

4.  Spectroscopy  of  trace  stratospheric  gases,  stratospheric  temperature  measurements.  

5.  Haze  evoluQon  over  Qme.  

Current  Status  

•  2-­‐page  Titan  JWST  informaQonal  flyer  available,  was  distributed  at  2014  DPS.  

•  JWST  Titan  paper  accepted  for  publicaQon  in  PASP  –  special  volume  on  solar  system  science  (10  papers).  

•  Results  (poster)  will  be  presented  again  at  DPS  in  November  2015.