TiO Effects of Transition Metal Ion Doping on the Photocatalytic … · 2003-09-01 · 542 HWAHAK...

7
542 HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 542-548 TiO 2 * * 429-712 332-1 * · 305-343 71-2 (2003 2 7 , 2003 4 14 ) Effects of Transition Metal Ion Doping on the Photocatalytic Reactivity and Physical Properties of TiO 2 Sangeun Park , Hyunku Joo*, Younggu Kim and Myungseok Jeon* Gas Instrument Research Team, Korea Gas Safety Corporation, 332-1 Daeya-dong, Shihung, Gyonggi-do 429-712, Korea *Energy Conversion and Storage Research Center, Korea Institute of Energy Research, 71-2 Jang-dong, Yusung-gu, Daejeon 305-343, Korea (Received 7 February 2003; accepted 14 April 2003) Fe 3+ , Co 2+ , Ni 2+ Mo 5+ , Nb 5+ , W 6+ TiO2 , . trichloroethylene (TCE) GC-ECD, FTIR GC-MS , XRD, SEM, UV-Vis, TG/DSC, FTIR XPS . , SEM 20 nm . , Mo 5+ , Nb 5+ , W 6+ , UV , TCE Fe 3+ , Co 2+ , Ni 2+ , XPS , . / , . . Abstract - In this study, we investigate the physical properties and photocatalytic activities of TiO 2 thin films doped with low valence (Fe 3+ , Co 2+ , and Ni 2+ ) and high valence (Mo 5+ , Nb 5+ , and W 6+ ) cations. Photocatalytic activity was measured with trichloroethylene (TCE) degradation, while films were characterized by XRD, SEM, UV-Vis, TG/DSC, FTIR, and XPS. All samples prepared were in anatase phase with 20 nm film thickness. As a result, there existed a consistency that crystallinity, UV absorption at 360 nm and TCE conversion were higher in case of high valence cations than in case of low valence cations. In addition, even though various oxidation states for Mo 5+ , Nb 5+ , and W 6+ were confirmed, those were not identified for Fe 3+ , Co 2+ , and Ni 2+ thin films. The presence of different oxidation states of dopants and a higher degree of crystallinity seems to be beneficial for retarding charge pair recombination processes in the TiO 2 lattice. Key words: Transition Metal Doped-TiO 2 , X-Ray Photoelectron Spectroscopy (XPS), TCE Degradation, FTIR, Physical Properties 1. , [1, 2]. . [3-5], . TiO 2 , , . , ( ) . Ti To whom correspondence should be addressed. E-mail: [email protected]

Transcript of TiO Effects of Transition Metal Ion Doping on the Photocatalytic … · 2003-09-01 · 542 HWAHAK...

Page 1: TiO Effects of Transition Metal Ion Doping on the Photocatalytic … · 2003-09-01 · 542 HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 542-548 TiO2 429-712 332-1 * · 305-343

HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 542-548

���� ��� � TiO2 �� ���� � �� ��

���†� ���*����� *

�������� ����429-712 � ��� ��� 332-1

*�������� ����� ·�����305-343 ��� � � �� 71-2

(2003! 2" 7# $%, 2003! 4" 14# &')

Effects of Transition Metal Ion Doping on the Photocatalytic Reactivity and Physical Properties of TiO2

Sangeun Park†, Hyunku Joo*, Younggu Kim and Myungseok Jeon*

Gas Instrument Research Team, Korea Gas Safety Corporation, 332-1 Daeya-dong, Shihung, Gyonggi-do 429-712, Korea*Energy Conversion and Storage Research Center, Korea Institute of Energy Research,

71-2 Jang-dong, Yusung-gu, Daejeon 305-343, Korea(Received 7 February 2003; accepted 14 April 2003)

� �

� ����� �� �� � ����� Fe3+, Co2+, Ni2+� Mo5+, Nb5+, W6+ ��� TiO2� ��� �� ��� �

� !"# $"%&' ()*+, , ��-� .//0' 12*34 *56. 78� 9:� �!"; trichloroethylene

(TCE)� <*+ GC-ECD, FTIR �=3 GC-MS' >?*5 @, $"AB; XRD, SEM, UV-Vis, TG/DSC, FTIR �=3

XPS� ()*56. CD 9:� E�F7 GB �8� HIJK @, SEM LM� �N O 20 nm� ,P� QRS� AB

*56. !"TU V $"AB�� , ��� �� W/X YZ[ �F\�], Mo5+, Nb5+, W6+� Y^& GB_�, UV `

(, TCE LN�� Fe3+, Co2+, Ni2+� Y^a6 bc �d @, e4� Y^ XPS LM� �*+ 6f� g_.h& �

d �, i4� Y^� g_.h& HIJ� jk6. 6f� g_.h� e4/Bl L=� �m� n o � >:J@, [p

CD q"LM r; �_st !"� �m� �� o � uvw x� oy[6. e[z{ ��� Y^ �� $|� }~#

[' <� ��J� $" ��[ ^ ��� �� ���� ��*56.

Abstract − In this study, we investigate the physical properties and photocatalytic activities of TiO2 thin films doped with

low valence (Fe3+, Co2+, and Ni2+) and high valence (Mo5+, Nb5+, and W6+) cations. Photocatalytic activity was measured with

trichloroethylene (TCE) degradation, while films were characterized by XRD, SEM, UV-Vis, TG/DSC, FTIR, and XPS. All

samples prepared were in anatase phase with 20 nm film thickness. As a result, there existed a consistency that crystallinity,

UV absorption at 360 nm and TCE conversion were higher in case of high valence cations than in case of low valence cations.

In addition, even though various oxidation states for Mo5+, Nb5+, and W6+ were confirmed, those were not identified for Fe3+,Co2+, and Ni2+ thin films. The presence of different oxidation states of dopants and a higher degree of crystallinity seems to be

beneficial for retarding charge pair recombination processes in the TiO2 lattice.

Key words: Transition Metal Doped-TiO2, X-Ray Photoelectron Spectroscopy (XPS), TCE Degradation, FTIR, Physical Properties

1. � �

��� ����� � � � ������ ���, �� �� �

� ��� ��� !"# �$� %&' ()* +� ,�� �-�

� �� ��[1, 2]. ./0 ���1 2$� 34 56�7# �89:

;< )�# %=>? !"�7@ �A B: ,�� C��� ��.

�DE B: �89: ���# �A FG HIJ KLM N��� O

PQ ���[3-5], �R��@ %=>1 S� �<>� #� TUHVW

# XY� �Z��. �/� �<? ���1 2$� !"# 89[

�� \� SI] TiO2 ���# ^U: _: 2`, �a<`, �$R

�` N�� bU� 6$��� �c deI@ fg h I0� OPQ

i�. ./j� �/� ^U�0 k�l ��� ^m n� opqr s

: tuv� wx�� �� �@y, 8o��� HIJ KLM[ XY

\p0 fzI� SI] H�{|[ }�T(~�T)� �$I@ fg

� . I0��. ��7 � tu�7@ ��� ~�T# Ti �� (�†To whom correspondence should be addressed.E-mail: [email protected]

542

Page 2: TiO Effects of Transition Metal Ion Doping on the Photocatalytic … · 2003-09-01 · 542 HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 542-548 TiO2 429-712 332-1 * · 305-343

��� �� TiO2 ��� 543

9�%# u3� �� 3���# ~�T[ �<I] ��� 2`, ��

�>%�, �� ;`, ��� ;`, L<%, L<>�# ��1 �� t

uI��.

2. � �

2-1. TiO2 �� � �� �� �

��o<: titanium isopropoxide(TTIP)[ ��34 \@ ��g�

#4 �[ ��I� indium tin oxide(ITO, 100 mm�25 mm�1 mm)1

zz�� dip ��I] �� ��[ ��I��. �� Hu��7

Aldrich# molybedeum chloride(MoCl5), niobium chloride(NbCl5),

tungsten chloride(WCl6), nickel chloride(NiCl2), cobalt chloride(CoCl2),

iron chloride(FeCl3)1   �% <� ¡� $I��. �� {| Hu

� �: ¢¢ 0.05 atomic %� }�I��. �£¤� �� {|# Hu

�1 ¢¢ }�I] 2 ¥ �5 ¦� TTIP1 §���� ¨� 103 �

5 © ¦, ��34 ª��Z 35% HCl[ }�I� 2 ¥ � �5

I] ��I��. 35% HCl� «¬? T+[ ­�I] �� T: }�

Iz ®¯�. Ti[OCH(CH3)2]4:C2H5OH:HCl(35 wt%)# ° �9:

1:40:0.1# �9� ��I��. Dip ��� #� ITO glass@ 103 ±a

500oC�7 ��²I���, ��: ��� 34 56� $�� S�

�<� �� -³1 SI] 10 5´I] ��o ��²1 I��.

2-2. �

6�z {|�� ��# L<u� 3µ: 500oC�7 103� 10 �

�o ��² o<[ p¶ �� ��� �47 X� ·3µ�(XRD,

Rigaku, D/MAX-IIIC, Japan)1 �$I��. 2θ ¸S@ 20o-80o�7 !

¹ |�@ 3& 3o� º<I��. ¢¢# {|� ��? �� ��# -

³» �� %� �¼z@ SEM(Topcon SM-720, Japan)�� 3µI�

�. ��? ½¾� �47 ¿<À�7 Á0Â� à ÄÂÅ u��# %

H� Æ�, ÇÈ ¬�T �p à É�# L<`c Æ�1 L<I� S

� ��² YÊ ¥, Æ�ËÌÍ ¿EXÎ n �3µÏÐ@ differential

scanning calorimeter(DSC, Mettler Toledo, DSC821e)» TG-DTA(Mettler

Toledo, TGA/SDTA851e)1 �$I] 3µI��. ��# Æ�» m�

Î: indium�� C<I��. FTIR(Bomem MB-series)3µ[ SI]

� %��7 �%�� Ñ�I] 3Ò%�� +Ó ¦, KBro UÎ��

ÔMI] pellet À�# Õ!Ö� +v� Æ� ��²� �G ¬�TU

# �p �×, Ti-OH ÈK ]q, Ti# ØZ[ SI] b I��. Ù�,

trichloroethylene# �34 56[ SI] b ¥ 3µ� �W� FTIR

56�1 �ÚI] GC/MS 3µo  ~� q�T# <`ØZ� �$I

��. ¢¢# ��? ����# ��� ;`: UV-vis(Perkin Elmer

Ramda, USA)� 3µI��. ��? ���# �34 ̀ W# ��1 S

4 TCE1 �ÛI���, TCE 3456 Ü�Ý�@ 200 ppmv�� º

<I��. ÞßÀ 3à 56�1 �$I��, UVA áâ(black light

fluorescent, 15 W, GE Co., USA)1 �Þ�� �$I��. �ã�@ (

äc 360 nm�7 UV intensity meter(Minolta Co. Ltd., Japan)� å<

I��. 3µ: ECD(electron capture detector)� cæ? �!Ö�çè

.éê(GC, HP-5890 serious II)� 3µI��. ëì: í ̀ëìZ HP-5

(25 m�0.32 mm, 0.50µm film thickness)1 $I���, 56 q�T

# <`ØZ: HP-5MS(50 m�0.2 mm, 0.4µm film thickness)1 $

I] GC/MS(GC-6890, MS-5973, HP.Co.)� 3µI��.

3. �� �

3-1. � �� ��� TiO2� �� �� � ���

�%��7 �>? äA @ 24 ¥ %Æ�7 Ñ�I���, 10-16 g

# ½¾ Ð@ UY 3S��7 TGA-SDTA, DSC3µ[ I��(Table 1).

6�z ��# ��? ���7 î- 3Ò� �æ? T# ï�(dehydration)

# Lo� 120oC�7 m�êÖ� 0Âð�, Æ�� ¤�ñ�ò 250oC

(Ni-TiO2@ 290oC) d��7 5�z ���� î- Ti Hu�Z TTIP#

isopropoxide à �� ��# ÇÈ ¬�T 34� #� m�êÖ1 C�

� ���, 300oC d��7@ ��{|# Hu�Z chloride# ïóY

>� ��êÖ� 0Âð�. L<% H� Æ�1 ØZI� S� 3µ�

7@ ¢¢ �� TU# ��� �� Á0Â� L<��# H�� ¢¢

�G Æ��7 0Âð@y, ¿<À�7 Á0Â��# L< ôÀ[ 360-

400oC ̧ S�7 Å�0� ��. m�êÖ# ��(∆H : J/g): Mo>Nb>W>

undoped-TiO2>Ni>Fe>Co# �7� 0Âð��, _: ÞÏ� ��Æ

(high valence cation : Mo, Nb, W)� ��? TiO2� B: ÞÏ� ��Æ

(low valence cation : Fe, Co, Ni)� ��? , C� Á0Â��# L<

ôÀ�@ Æ�� õ 20oC   ö÷ 0Â0@ øù� �×[ C](�

��. �@ �È# tuLo�7�ì, HÏ(E�7 ��? Mo, Nb, W

@ �� TiO2# %H� Æ�1 õ 20oC Bú � ��� OPQ ���

[6], Ù� HÏûE TU h Ti üÏa# Fe@ Á0Â� L<�7 ÄÂ

Å L<��# Æ�� BÁz@ ,�� C�? ý ��[7]. þÿ] ÒI

� L<% H�Æ�@ ��? ��� #� Ë×�+ Á�� Ti Hu�

# ��, ��? H�{|o# ÞÏ�, ��34� $? ��# ��,

�> Æ�, ¢¢# �G ��o<� �� V�w�� C����[8, 9].

S# Lo�� TiO2@ 400oC [10], 400-450oC à 400-500oC [11]�7

¿·<�7 Á0Â�� L<ô>� Å�0�, Á0Â��7 ÄÂÅ�#

%H�@ 600-800oC [12], 730oC [13], 800oC [14]�7 ���@ ,:

� OPw b�0, 25-650oC ¸S�7# DSC 3µ Ã 25-1,000oC

¸S�7# DTA(data not shown)3µ Lo�7@ ÄÂÅ ôÀ� �G

��� m� êÖ� 0Â0z ®¯�. Ù�, Fig. 1# XRD 3µ�7�

��� ÄÂÅ êÖ� ØZ�z ®¯��, TiO2# Á0Â� L<u�

(JCPDS File No. 21-1272)1 0�@ 25.38(101), 38.14(004), 48.04

(200), 55.02(105)# 2θ ¢�7 øù� êÖ� C](� ��. Table 1

� 0Â� ¢ �� ��# %�� L<>�(crystallinity)@ ��Iz ®

: TiO2# �Î[ ���� ­����. Nb, Mo, W-TiO2# %��

L<>�@ ���z ®: TiO2 �+ Á��, Fe, Co, Ni-TiO2 C�  

_: Lo� 0Âð�. L<>�# Ö� �7@ Fig. 4» 5�7 C](

� �@ TCE �34 89# �7» ÅI� ��.

Ð# ÇȬ�To �æ? �3# 39� �� DTA» TG .éâ

Fig. 1. XRD patterns of the various metal doped-TiO2 thin films for 10min calcination at 500oC.

HWAHAK KONGHAK Vol. 41, No. 4, August, 2003

Page 3: TiO Effects of Transition Metal Ion Doping on the Photocatalytic … · 2003-09-01 · 542 HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 542-548 TiO2 429-712 332-1 * · 305-343

544 �� ��� ��� ��

-

» �� y�r1 Table 1� 0Â��. ¿E XÎ 39: Nb>W>Mo>

pure-TiO2>Fe>Co>Ni� ��? TiO2# �7� ¢¢ 66.57, 56.19, 55.94,

52.88, 39.55, 38.19, 36.47%��. 300oC qd�7 ïóY>�#� ¿

EXÎ: Mo, Nb, W# ��HuTU# chlorine# ° �� Fe, Co, Ni

C�   _� N�� 5, 6�» �� Ti C� _: ÞÏ� ��Æ� ��

? TiO2�7 _: ïóY> 39[ 0Â�� ���, DSC 3µ Lo»

ÅI@ Lo1 C](� ��.

3-2. FTIR ��

FTIR 3µ[ SI] 25oC�7 24 ¥ Ñ� © {|�� ��@ �

�# ��1 p# Iz ®@ KBro UÎ�� ÔMI] Õ!ÖÀ�#

½¾� +v��. �� ��� H2O 3Ï# õ� >��æ[ 3,000-3,400

cm−1�7 ���v# ��w±�� 0Â0� ��[15, 16]. 1,621 cm−1

# êÖ@ hydroxyl .�(OH−)# w±[ 0Â��[17], TTIP# -CH2

» -CH3# êÖ@ �� à ��� w±�� 2,969, 2,927, 2,865 cm−1

�7 C](� ��. 1,441 cm−1# êÖ@ isopropoxide# �� dimethyl

�» -CH# ��� w±# Lo N���. � �� 1,383 cm−1o 1,278

cm−1: isopropyl �, 1,125 cm−1: isopropyl alcohol# C-O ��w±

(>CH-OH), 1,087 cm−1o 1,040 cm−1: ethanol# C-O ��w±(-CH2-

OH)[ 0Â�@ øù� ;`êÖ� 0Â��[18]. 200oC ��² ¦,

isopropanolo ethanol# ;` êÖ�7 �IE �æ? C-C and C-OH

groupv# 1,125, 1,087, 1,040 cm−1, 1,085-1,030 cm−1�7# êÖ@ p

# ��v��[16]. 300oC ��² ¦, Hu��7 TTIP# êÖv: î

- ����, �@ DSC �3µ�7 250-300oC d��7 m�êÖ@

¬�ÇÈT# 34� #� Lo1 �û� 4(� ��. Ti-O# ��w

± êÖ@ 550 cm−1 [9], 624 cm−1 [10], 653-550 cm−1 [15], 687 cm−1 [19],

511.9 cm−1 [20]�7 0Â��� C�I� ��. KBr(a)[ ý�b��

� � ,o KBr+pure-TiO2(b) ý�b�[ ß4 Nb0.005Ti0.995O2# Ti-O ;

`êÖ1 Fig. 2�7 C](� ��. Fig. 2(b)�7@ 891 cm−1Áé A u¥

�7 0Â0z ®¯�. ��7 A u¥# 717o 810 cm−1@ Nb0.005Ti0.995O2

# Ti-O ;` êÖ� Ð?�. �� 3S��7 Nb0.005Ti0.995O2# �

�² Æ�� �� Ti-OH, $�# O�¤.�, Ti Hu�# ;`êÖ1

ØZI��. 200oC�7 103¥ ��²� �A 0Â0z ®:

isopropoxide êÖ@ DSC�7# ÇȬ�T 341 0Â�@ m�êÖ

# Lo1 ��4(���, -CH2-CH3- (2,969, 2,927, 2,865 cm−1), Ti-OH

(1,621 cm−1), alcohol (1,125, 1,087, 1,040 cm−1)# 0�z êÖv:

300oC ��² ¦�@ H� C�z ®¯�.

3-3. UV-Vis ��

Ï � ËÌ+[ $4�I@ TiO2# � [ í´IP@ s: tu

Lov� m����. � � ÌÌ��# Ø�1 S� !"h# I0Z

Fe, Cr, Ru, V, Mo, Mn, Rh [21]» �: H�{|[ ~�T(dopant)�

�$I@ ,��. Fe# �A, ���@ FeÞÏÝ�� 1 atomic %1 #

[ �A ÔM�>T(Fe2TiO5)# À�0 $�>T(hematite)[ %`IE

?�@ C�� #4 �� äc ËÌ[ � ��� &' � ��@ ,:

� OPw b��. 0.05 atomic %# �� 6�z H�{|� ��

? TiO2# UV-Vis ��äc[ Fig. 3� 0Â��. øù� ��1 0Â

( +)# s: ��*�0 _: �� Ý�� Á�� *z��, Fe3+

(430 nm), Co2+ (415 nm), Ni2+ (450 nm)» �: HÏûE ~�Tv�

HÏ(E Ì*[ I@ Nb, Mo, W C�   red-shift� Lo1 C��.

./0 �34 56� $�@ UV-A áâ# É� äcã�Z 360 nm

�7# UV-Vis ���@ Nb- (0.6504), W- (0.6026), Mo- (0.4867), Co

Table 1. DSC, DTA and TG results of transition metal doped TiO2 with 0.05 atomic %

Dopant Analysis

Undoped TiO2 Fe Co Ni Mo Nb W

DSC ∆H (J/g) 228.89 211.36 206.98 214.40 258.40 259.90 242.33Peak (oC) 397.68 393.04 396.55 405.95 377.73 381.93 379.07Crystalli-nity (%) 100.00 92.34 90.42 93.85 112.89 113.54 105.87

DTA oC/g 39.11 23.56 24.95 8.25 39.12 42.06 36.53Onset (oC) 383.49 400.14 389.26 508.65 359.79 359.58 363.30Endset (oC) 416.30 425.62 431.79 615.39 393.00 394.96 406.63Integral (s oC) 253.33 311.73 327.58 65.78 410.29 367.30 403.53

TG Weight loss (%) 52.88 39.55 38.19 36.47 55.94 66.57 56.19

Fig. 2. FTIR spectra of Nb0.005Ti0.995O2 without calcination: (a) KBrblank, (b) KBr+pure-TiO 2 blank.

Fig. 3. UV-Vis spectrum of various metal-doped TiO2 thin films with500oC calcination for 10 min.

���� �41� �4� 2003� 8�

Page 4: TiO Effects of Transition Metal Ion Doping on the Photocatalytic … · 2003-09-01 · 542 HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 542-548 TiO2 429-712 332-1 * · 305-343

��� �� TiO2 ��� 545

(0.4652), Fe- (0.4380), Ni- (0.3739)� ��? TiO2 .²� ��Iz ®

: TiO2 (0.3451)# ��� 0Âð�. �/� �×[ TCE �34 56

(Fig. 4)o ��I� ¢¢# ���� ���ã�(Nb>W>Mo>pure-

TiO2>Co>Fe>Ni)» TCE �p89(Mo>Nb>W>pure-TiO2>Fe, Co, Ni)

# �7�@ ��� �z+, _: ÞÏ# ��Æv� ��? TiO2.�

� B: ÞÏ# ��Æv� ��? TiO2.�C�   _: TCE �p 8

9[ 0�� ��. Red-shift� #4 %���� Mo, Nb, W-TiO2C

�   s: � � ËÌ# + ��� Fe, Co. Ni-TiO2# �34 `W:

,ÁQ�Iz+, UVA áâ((äc 360 nm) $�� 360 nm �%�

7 0�@ � �äc: p# ¡� N�� B: TCE �p89[ C�

@ �¬ h# I0�� Ð?�.

3-4. XPS ��

��? �� ��# îÓ L|�-z@ �q��T�7 C 1s# L|

�-zZ 284.8 eV1 ���� I��. ¢¢# Fe, Co, Ni, Mo, Nb, W-

TiO2» pure-TiO2 �� ��� �� �� �>%�1 ��I��. Fig. 6(d)

�7 Mo-TiO2# �34W XPS !./�@ ]/ ^# Mo 3d !0¢

[ �z@ �A ́ 1� À�1 C](� ��. J[ À`I@ !0¢ 3

² �-z@ î- 3.2 eV��[22]. 2 34, êÖ A(Mo 3d5/2)» B(Mo

3d3/2)@ Mo5+# �>%�1 0�� 231.1 eVo 234.3 eV� S4

��. - 34� MoO2# À�� Mo4+# �>%�1 C](@ êÖ

C(Mo 3d5/2)» D(Mo 3d3/2)# L|�-z@ ¢¢ 230.1 eV» 233.3 eV

��. 232.6 eV» 235.6 eV� S� êÖ E(Mo 3d5/2)» F(Mo 3d3/2)

@ <5�� MoO3# À�� Mo6+# �> �S1 C�� ��[22, 23-25].

Moo# �>�S@ 228.8 eV» 232.0 eV�7 ¢¢ êÖ G(Mo 3d5/2)»

H(Mo 3d3/2)� 0��. ��7 Mo� ��? TiO2 �����7 Mo

# �� �>%�@ 0, 4+, 5+, 6+� ÈK��[23-25].

Fig. 6(e)@ NbO2# �>TÀ�� Nb4+# �>%�@ êÖ A(Nb 3d5/2:

205.0 eV)» B(Nb 3d3/2: 207.8 eV)� 4&��. op tuLo�@ Nb2+,

Nb4+, Nb5+ %�� �� Nb 3d5/2 L|�-z� ¢¢ 203.9eV, 205.9 eV,

207.2 eV� C���@y[22, 26] � tu�7� �» 6 �� ¡� Nb5+

# �>%�� C(Nb 3d5/2: 206.6 eV)» D(Nb 3d3/2: 209.4 eV)êÖ�

�6��. L|�-z# �±� #4 Nb4+(NbO2)� �� Nb 3d5/2,

205.0 eV(êÖ A)@ �� L|�-zC� 0.9 eV _: Lo1 C��,

NbO� 4&I@ êÖ E(204.7 eV)@ êÖ C(206.6 eV)C� �A Ú�

N�� Nb5+� Nb2+C�   s: À�� ÈKI²� Ð?�. Lo�

��, Nb-TiO2 ����: �q3 Nb5+» Nb4+�� Nb2+À�� ÈK

I� ��[27, 28].

W� ��? TiO2(Fig. 6(f))# �A, 35.7 eV» 38.1 eV�7 êÖ A(W

4f7/2)» B(W 4f5/2)@ W6+ �>%�1 0Â��[29], �@ tungsten(VI)

trioxide power(WO3)# L|�-z» � ÅI� ��. W5+ and W4+

# �>%�1 C�@ êÖ C» D@ 34.6 eV» 33.9 eV� SI� �

�[22, 30-32]. �/� Lo@ � tu�7# W-TiO2@ W4+, W5+, W6+

# ÔM? �>%�� u`�� �@ ,�� 7�?�.

5�, Fe-, Co-, Ni-TiO2 �� ��# XPS 3µ�7@ Fe 2p, Co 2p,

Ni 2p� �� {|�Æ �>%�� uÍ�@ øù� êÖ@ 0Â0z

®¯�. �/� 8%: high valence cation� ��? ��# XPS Lo

» 9H' %5�@ Lo1 C�� ��. ��7 �� ��# �Æ�>

%�# qK@ ���56�7 KLM fz1 S� HÏ-<�[ /:I

� ;v� Lo��� B: �34 89# Lo1 �Q�E ?�. 5�,

HÏ(E Ì*[ I@ 5, 6� H�{|v� ��? ��» �� ���

��� �>%�� ÈKI�, KLM fz1 S� /:Ú$� + Á�

� ¢¢ �>�S� �G {| �Æ# HÏ /:� #� HÏ/<� H

V �W[ ×% \E �� H5��� ��� 2`[ �� \@ Þ

Zh# I0�� Ð?�. �� �� <%b��7 ¬� Lo� m

����[33, 34].

3-5. TCE �� ��

��? ��# �2`: TCE# �34 56� #� H�9� =�I

��(Fig. 4). Nb-TiO2» Mo-TiO2@ 303, W-TiO2@ 503 ¦� TCE#

100% H�9[ >: 5�, Fe-, Co-, Ni-� ��? TiO2 �A@ +�

703 ¦�� 30%# H�9�� ¼z ?I� ��. 56To q�T#

<Î, <`� 3µ: 56 ¥� �� W-TiO2 �� ��� �47 in-situ

56�1 �$4 FTIR� 3µ� Lo@ TCE �+ Á�� dichloroacetyl

chloride(DCAC), carbonyl dichloride(COCl2), CO, CO2� �I] Table 2

� �� y�r» «³ ÊõI��. §����, Fe-TiO2, undoped-TiO2»

Nb-TiO2# FTIR ��9[ Fig. 5�7 0��. Fig. 5(a)# Fe0.005Ti0.995O2@

TCE# ( êÖZ C-Cl ��w±(630, 788, 845 cm−1), C-Cl ��� �

�w±(939 cm−1)êÖ@ �� 603 ¦�� p# ô>� ¡��,

DCAC1 0Â�@ C-Cl ��w±(738 cm−1) êÖ� Fig. 5(c)# DCAC

êÖ� �4 �A Ú�. 5�, Nb0.005Ti0.995O2 Fig. 5(c)�7@ � 103

±a# �56� TCE ( êÖ� 9H' �z� q�TZ DCAC(738,

805, 981, 1,073, 1,213 cm−1)# ( êÖ î- øù� 0Â0� ��. 5

6 203 ¦�@ DCAC# ��� êÖ� C�z ®�� k�l phosgene

êÖZ C=O(1,815, 1,827 cm−1)o C-Cl2(856 cm−1)� %`?�. ��I

z ®: �� TiO2 (b)# q�T %` ��@ Fig. 5(c)» ±ÅI�. .

Fig. 4. TCE photocatalytic degradation as a function of illuminationtime for various metal-doped TiO2 thin films (Initial Conc.=200ppmv, UV intensity=7.3 mW/cm2@360 nm).

Fig. 5. Comparison of TCE degradation by In-situ FTIR analysis ofthin films coated with (a) Fe0.005Ti 0.995O2, (b) pure-TiO2 and (c)Nb0.005Ti 0.995O2 (UV intensity=8 mW/cm2, initial TCE Conc.=2,000 ppmv).

HWAHAK KONGHAK Vol. 41, No. 4, August, 2003

Page 5: TiO Effects of Transition Metal Ion Doping on the Photocatalytic … · 2003-09-01 · 542 HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 542-548 TiO2 429-712 332-1 * · 305-343

546 �� ��� ��� ��

/0 34 56|�@ Nb0.005Ti0.995O2 Fig. 5(c)C�@   @²z+,

Fe0.005Ti0.995O2 Fig. 5(a)C�@ �A FA�@ ,[ O � ��. Co-»

Ni-TiO2# �A@ Fe-TiO2» �B� �×[ C](��. �34 =�

Lo _: ÞÏ� ��Æv� ��? TiO2� ÞÏ�� B: ��Æv

� ��? , C� TCE �34 89� �A _�@ ,[ GC» FTIR

3µ�� ØZI��.

3-6. �� �

����7 %���� B: �89# ÞZ� �@ KLM[ �� S

I], H�{|# ��[ �$I� ��. Mo5+, Nb5+, W6+» �: Ti4+

# �Æ �C�   s: high valence cation: TiO2 üÏ�# Ti4+ Ï

²� ���, dopant h o õIE LM�� �@ C]HÏ1 +v

E ?�. H�D# HÏ@ KLM ¡� Ti» üÏ �? ��{|v�

#4 /:�� � Lo� �¬D�@   s: <�� EÁ�E ?�. �

DE I] XY? KLM: super oxide �Õë(O2−F)[ %` \� S

� ��HI�± W"[   s� ×% \E �� Lo��� HIJ

� #�? )��� $�E �� 89� ��IE ?�.

Nb, Mo, W� ��? TiO2 ����# ��� �>%�@ �¬D�

7 <�/:, H�D�7 HÏ/: î- �WI�. �/� 8%: Grätzel

.��7 ESR3µ� #4 GH��, TiO2 üÏa� Mo6+» Mo5+� ±

� ÈK��� C�I��[34]. � tu�7� Nb5+» Mo5+# �>

%�� ÈKI@ TiO2@ �% TCE �34 56�7 %���� _:

�34 Lo1 >���, 34TU: �Az+ C�? tuLo[35-36]

»� � Å��. �È tuLo�7� {|�� TU# ���@ �

�� �z+ W6+, Ta5+, Nb5+� ��? TiO2# �Ym% |�� In3+,

Zn2+, Li+� ��? ,C� IJ   _�@ ,� C����[36].

5�, � tu�7 Fe3+ ��? TiO2# 3489: �A BE 0Âð

�. � Lo@ �G tu.�# b� Lo»@ �G �×[ C�� ��[33].

Fig. 6. The high resolution XPS spectra of various metal doped-TiO2 thin films: (a) Fe 2p (b) Co 2p (c) Ni 2p (d) Mo 3d (e) Nb 3d (f) W 4f spectra.

���� �41� �4� 2003� 8�

Page 6: TiO Effects of Transition Metal Ion Doping on the Photocatalytic … · 2003-09-01 · 542 HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 542-548 TiO2 429-712 332-1 * · 305-343

��� �� TiO2 ��� 547

.,

,”

on

of

-

t-

o-

and

lytic

of

ter

is

Iz+ � tu�7 Fe3+# XPS êÖ@ high valence cation� �4 ê

Ö� * � ¡[ +) �A Ú�, Ù� Fe� ��? TiO2# �A Fe3+,

Fe2+, Fe4+ �> %�@ H� 0Â0z ®¯� N�� HI KLM fz

# Ì*[ Iz ?� ,� B: �3489# ÞZ�� 7�?�.

4. � �

HÏ (E Ì*[ I@ _: ÞÏ� ��ÆZ Mo5+, Nb5+, W6+� �

�? TiO2 �� ��# �% TCE �34 89: HÏûE�7 B: Þ

Ï� ��ÆZ Fe3+, Co2+, Ni2+� ��? TiO2C� IJ   _: Lo

1 0Â��. ��� 89# ��» XY@ ��? {|# ÞÏ�HÏ

� �� KA���.

(1) Mo, Nb, W� ��? TiO2 ���� ��# ��� �>%�@

TiO2 �q» ���7 �]�? HÏ» <�[ 3²I� �± \@y

��Iz ®: TiO20 Fe, Co, Ni-TiO2C�   8o�Z Ì*[ I��

. W4+, W5+, W6+(W-TiO2) Nb-TiO2# �>%�@ Nb2+, Nb4+, Nb5+, Mo-

TiO2@ Mo4+, Mo5+, Mo6+, W-TiO2@ W4+, W5+, W6+L[ XPS 3µ[

ßI] ØZI��. ./0 Fe, Co, Ni-TiO2# XPS êÖ ã�@ �A

Ú¯��, �>%� Ì 0Â0z ®¯�.

(2) Nb>Mo>W>prue-TiO2>Ni>Fe>Co-TiO2# L<>� �7@ TCE

�34 89# �7» ÅI�, Mo, Nb, W-doped TiO2# Fe, Co, Ni-

doped TiO2C�   _: L<>�, 360 nm�7# ���@ ��� 2

` ��# ÞZ�� Ð?�.

� �

1� Ollis, D. F. and Al-Ekabi, H. (Eds.), Photocatalyzed Purification of

Water and Air, Elsevier, Amsterdam(1993).

2� Serpone, N. and Pelizzetti, E., Photocatalysis (Fundamental and Applica-

tions), John Wiley Sons, New York(1989).

3. Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W

“Environmental Applications of Semiconductor Photocatalysis,” Chem.

Rev., 95, 69-96(1995).

4. Fox, M. A. and Dulay, M. T., “Heterogeneous Photocatalysis

Chem. Rev., 93, 341-357(1993).

5. Linsebigler, A. L., Lu, G., Yates, J. T. and Jr., “Photocatalysis

TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem.

Rev., 95, 735-758(1995).

6. Bickley, R. I., Gonzallez-Carreno, T. and Palmisano, L., “A Study

the Interaction between Iron(III)oxide and Titanium(IV)oxide at Ele

vated Temperatures,” Materials Chem. Phys., 29, 475-478(1991).

7. Bonamali, P., Tomohiro, H., Kouichi, G. and Gyoichi, N., “Photoca

alytic Degradation of o-Cresol Sensitized by Irontitania Binary Ph

tocatalysts,”Journal of Molecular Catalysis A: Chem., 169, 147-155

(2001).

8. Brinker, C. J. and Scherer, G. W., Sol-gel science, The Physics

Chemistry of Sol-Gel Processing., John Wiley Sons(1990).

9. Pecchi, G., Reyes, P., Sanhueza, P. J. and Villasenor, “Photocata

Degradation of Pentachlorophenol on TiO2 Sol-Gel Catalysts,” Chemo-

sphere, 43, 141-146(2001).

10. Gao, Y., “In-situ IR and Spectroscopic Ellipsometric Analysis

Growth Process and Structural Properties of Ti1-xNbxO2 Thin Films

by Metal-Organic Chemical Vapor Deposition,” Thin Solid films, 346,

73-81(1999).

11. Yu, J., Zhao, X. and Zhao, Q., “Photocatalytic Activity of Nanome

TiO2 Thin Films Prepared by the Sol-Gel Method,” Materials Chem.

and Phys., 69, 25-29(2001).

12. Xie, H., Zhang, Q., Xi, T., Wang, J. and Liu, Y., “Thermal Analys

on Nanosized TiO2 Prepared by Hydrolysis,” Thermochimica Acta,

Table 2. Main FT-IR peaks of reactant and by-products

Compounds Group and Class Peak from our experiment Reference peak wavenumber (cm−1)

reactant TCE C-Cl str. 630 (m) 629 (a,b,d)C-Cl str. 788 (s) 782 (a,b,c,d)C-Cl str. C-H def. 845 (s) 845 (a,b,c,d)C-Cl a.-str. 939 (s) 942 (a,b,c,d)C=C str. 1,255 (w) 1,253 (a.b)� 1,242 (d)CH-Cl bending 1,585 (w) 1,556 (a,b), 1,580 (d)C-H a.-str. - 3,097 (c), 3,070 (d)

by-products DCAC C-Cl2 sym.-str. 665 (w) 665 (a)C-Cl str. 738 (s) 739 (b)C-Cl a.-str. 805 (s) 803 (b)C-Cl2 str. 981 (s) 991 (b,c)C-C str. 1,073 (m) 1,077 (b)C-H bending 1,213 (w) 1,218 (b,c)

COCl2 C-Cl2 str. 856 (s) 858 (a) C=O str. 1,827 (s) 1,827 (a), 1,835 (b)

CO C=O a.-str. 2,130 (s) 2,112 (a,b)C=O sym.-str 2,170 (s) 2,140 (b,c)

CO2 O=C=O str. 2,332, 2,362 (s) 2,330. 2,370 (a), 2,353 (d)

(a) library data from Nist Webbook (http://webbook.nist.gov)(c) library spectra supplied by Nicolet (b) from chemosphere 36, 1998, 483-495(d) from J. Molecular Catalysis, 77, 1992, 297-311w: weak , m : medium, s : strong

HWAHAK KONGHAK Vol. 41, No. 4, August, 2003

Page 7: TiO Effects of Transition Metal Ion Doping on the Photocatalytic … · 2003-09-01 · 542 HWAHAK KONGHAK Vol. 41, No. 4, August, 2003, pp. 542-548 TiO2 429-712 332-1 * · 305-343

548 �� ��� ��� ��

.,

ion

lec-

M.,

R.,

ten

ray

lec-

s,”

P.,

he

ome

on

n

nce

and

n

er

381, 45-48(2002).

13. Quin, D., Chang, W., Zhou, J. and Chen, Y., “An Investigation of the

Preparation of TiO2-based Catalysts Using Methods of Thermal

Analysis,”Thermochimica Acta, 236, 205-216(1994).

14. Hariaznov, O. and Harizanova, A., “Development and Investigation of

Sol-Gel Solutions for the Formation of TiO2 Coatings,”Solar Energy

Mat. & Solar Cells, 63, 185-195(2000).

15. Music, S., Gotic, M., Ivanda, M., Povovic, S., Turkocvic, A., Trojko,

R., Sekulic, A. and Furic, K., “Chemical and Microstructural Properties of

TiO2 Synthesized by Sol-Gel Procedure,”Materials Sci. Eng.: B, 47,

33-40(1997).

16. Kaliwoh, N., Zhang, J. Y. and Boyd, I. W., “Titanium Dioxide Films

Prepared by Photo-Induced Sol-Gel Processing Using 172 nm Exci-

mer Lamps,”Surface and Coatings Technol., 125, 424-427(2000).

17. Djaoued, Y., Taj, R., Bruning, R., Badilescu, S., Ashrit, P. V., Bader,

G. and Vo-Van, T., “Study of the Phase Transition and the Thermal

Nitridation of Nanocrystalline Sol-Gel Titania Films,”J. Non-Crys-

tal. Solids, 297, 55-66(2002).

18. Socrates, G., Infrared Characteristic Group Frequencies, John Wiley

& Suns, New York(1980).

19. Pal, B., Sharon, M. and Nogami, G., “Preparation and Characteriza-

tion of TiO2/Fe2O3 Binary Mixed Oxides and Its Photocatalytic

Properties,”Materials Chem. and Phys., 59, 254-261(1999).

20. Ivanova, T. and Harizanova, A., “Characterization of TiO2 and TiO2-

MnO Oxides Prepared by Sol-Gel Method,”Solid State Ionics, 138,

227-232(2001).

21. Palmisano, L., Augugliaro, V., Sclafani, A. and Schiavello, M., “Activity

of Chromium-Ion-Doped Titania for the Dinitrogen Photoreduction

to Ammonia and for the Phenol Phtotodegradation,”J. Phys. Chem.,

92, 6710-6713(1988).

22. Wagner, C. D., Riggs, W. M., Davis, L. E., Moulders, J. F. and Mul-

lenberg, G. E., Handbook of X-ray Photoelectron spectroscopy,

edited by Mullenberg, G. E., Perkin-Elmer Corporation, Eden Prai-

rie, MN(1979).

23. Spevack, P. A. and McIntyre, N. S., “A Raman and XPS Investiga-

tion of Supported Molybdenum Oxide Thin Films. 1. Calcination

and Reduction Studies,” J. Phys. Chem., 97, 11020-11030(1993).

24. Galtayries, A., Wisniewski, S. and Grimblot, J., “Formation of Thin

Oxide and Sulphide Films on Polycrystalline Molybdenum Foils:

Characterzation by XPS and Surface Potential Variations,” J. Elec-

tron Spectroscopy and Related Phenomena, 87, 31-44(1997).

25. Jong, A. M., Borg, H. J., IJzendoorn, L. J., Soudant, V. G. F. M

Beer, V. H. J., Veen, J. A. R. and Niemantsverdriet, J. W., “Sulfidat

Mechanism of Molybdenum Catalysts Supported on a SiO2/Si(100)

Model Support Studied by Surface Spectroscopy,” J. Phys. Chem.,

97, 6477-6483(1993).

26. Murata, Y., Fukuta, S., Ishikawa, S. and Yokoyama, S., “Photoe

trochemical Properties of TiO2 Rutile Microalloyed with 4d and 5d

Transition Elements,” Solar Energy Mat. and Solar Cells, 62, 157-165

(2000).

27. Gao, Y., Thevuthasan, S., McCready, D. E. and Engelhard,

“MOCVD Growth and Structure of Nb-and V-doped TiO2 Films on

Sapphire,” J. Crystal Growth, 212, 178-190(2000).

28. Atashbar, M. Z., Sun, H. T., Gong, B., Wlodarski, W. and Lamb,

“XPS Study of Nb-Doped Oxygen Sensing TiO2 Thin Films Pre-

pared by Sol-Gel Method,”Thin Solid Films, 326, 238-244(1998).

29. Colton, R. I. and Rabalais, J. W., “Electronic Structure of Tungs

and Some of Its Borides, Carbides, Nitrides and Oxides by X-

Electron Spectroscopy,”Inorganic Chem., 15, 236-238(1976).

30. Su, L., Dai, Q. and Lu, Z., “Spectroelectrochemical and Photoe

trochemical Studies of Electrodeposited Tungsten Trioxide Film

Spectrochimica. Acta., : A, 55, 2179-2185(1999).

31. Siokou, A., Leftheriotis, G., Papaefthimiou, S. and Yianoulis,

“Effect of the Tungsten and Molybdenum Oxidation States on t

Thermal Coloration of Amorphous WO3 and MoO3 Films,” Surface

Science, 482-485, 294-299(2001).

32. Colton, J. and Wayne, J., “Electronic Structure of Tungsten and S

of Its Borides, Carbides, Nitrides, and Oxides by X-Ray Electr

Spectroscopy,” Inorganic Chemistry, 15, 236-238(1976).

33. Choi, W. Termin, A. and Hoffamann, M. R., “The Role of Metal Io

Dopants in Quantum-Sized TiO2: Correlation Between Photoreactiv-

ity and Charge Carrier Recombination Dynamics,”J. Phys. Chem.,

98, 13669-13679(1994).

34. Gratzel, M. and Howe, R. F., “Electron Paramagnetic Resona

Studies of Doped TiO2 Colloids,” J. Phys. Chem., 94, 2566-2572(1990).

35. Serpone N. and Lawless, D., “Spectroscopic, Photoconductivity,

Photocatalytic Studies of TiO2 Colloids: Naked and with the Lattice

Doped with Cr3+, Fe3+, and V5+ Cations,” Langmuir, 10, 643-652(1994).

36. Karakitsou, K. E. and Verykios, X. E., “Effects of Altervalent Catio

Doping of TiO2 on Its Performance as a Photocatalyst for Wat

Cleavage,” J. Phys. Chem., 97, 1184-1189(1993).

���� �41� �4� 2003� 8�