Thesis Ilse Bosklopper Final s1968645

54
Ilse Bosklopper Student Number: 1968645 MSc. Program: Technology & Operations Management Institution: University of Groningen Company: Trelleborg Supervisor: Dr. J. Riezebos Co-assesor: Dr. N.D. van Foreest Company supervisor: Eric-Jan Dregmans

Transcript of Thesis Ilse Bosklopper Final s1968645

Page 1: Thesis Ilse Bosklopper Final s1968645

Ilse Bosklopper

Student Number: 1968645 MSc. Program: Technology & Operations Management Institution: University of Groningen Company: Trelleborg Supervisor: Dr. J. Riezebos Co-assesor: Dr. N.D. van Foreest Company supervisor: Eric-Jan Dregmans

Page 2: Thesis Ilse Bosklopper Final s1968645

1

ABSTRACT

Purpose – The goal of study is to examine whether the planners choice of aggregation level,

within an MRP system, influences the relationship between routing uncertainty and lead times.

Design/methodology/approach – The data supporting this case study is obtained from

interviews, observations and simulation experiments.

Findings – According to this study high-level MRP is better able to cope with routing

uncertainty, and should be the preferred method of planning in an MTO/ETO environment.

Furthermore, the participant of the experiment appreciated the reduced complexity of his tasks in

the high-level MRP.

Practical implications – Especially in MTO/ETO environments planning is important yet

extremely difficult. The variability, which is inevitable in these environments, can obstruct the

usability of MRP systems. Increasing the aggregation level can enhance the implementation

ability of MRP systems in MTO/ETO environments without having to develop more complex

planning algorithms.

Originality/value – This paper uses experiments to evaluate the performance results of different

aggregation levels. However, this study also observed and interviewed the planners during the

experiments to assess the impact of aggregation level on their tasks.

Keywords – MRP, ETO/MTO environments, Lead times, Planning Aggregation level,

simulation

Paper type – Research paper

Page 3: Thesis Ilse Bosklopper Final s1968645

2

PREFACE

As the closing chapter of my master in Technology and Operations Management at the

University of Groningen, writing this thesis has challenged me more than any other part of the

master. However, I am satisfied with the results and overexcited to hand in the final results of my

Master Thesis.

This results would never been accomplished without the help of others. First, I would like to

thank Jan Riezebos for giving me the chance to do this research. His feedback, positivity and

especially his patience have helped me a lot to keep challenging myself.

The work presented in this thesis was carried out at Trelleborg Ridderkerk. I am very grateful for

being able to perform my research project there. It gave me the chance to connect theory with

practice. I would very much like to thank my supervisor at Trelleborg, Eric-Jan Dregmans for his

enthusiasm, the in-depth discussions and his eagerness to help me. Moreover, I would like to

thank all my colleagues at Trelleborg. Without their time and information contributions it would

not have been possible to finish this paper.

Finally, I would like to thank my family and friends for heir support, feedback but especially for

their encouraging words.

I hope you will enjoy reading it,

Ilse Bosklopper

Page 4: Thesis Ilse Bosklopper Final s1968645

3

INDEX Abstract   1  Preface   2  Index   3  1  Introduction   4  2  Theoretical  background   7  2.1  MRP  Systems   7  2.2  Routing  uncertainty  in  MTO/ETO  environments   9  2.3  MRP  adjustments  to  cope  with  routing  uncertainty   12  2.4  Human  influence   14  2.5  Research  questions   15  3  Methodology   16  3.1  Research  design   16  3.2  Measurements   16  3.3  Case  organization  selection  and  description   17  4  Simulation  design   19  4.1  General  design   19  4.2  MRP  Tool   19  4.3  Production  simulation   20  4.4  Experimental  Design   22  4.5  Verification  and  validation   23  4.6  Experimental  settings:   24  5  Findings   26  5.1  Framework  for  specifying  planned  lead-­‐times   26  5.2  Influence  of  uncertainty  on  lead-­‐time   29  5.3  Influence  of  aggregation  level  on  lead-­‐time  performance   31  5.4  Human-­‐system  interaction   32  6  Discussion   34  6.1  Planned  lead-­‐times   34  6.2  Lead-­‐time  performance   34  6.3  Implications  for  human  scheduler   35  7  Conclusion   36  7.1  Theoretical  implication   36  7.2  Practical  implications   36  8  Limitations  and  Further  research   37  9  References   38  Appendix  A:  Production  simulation  model   42  Appendix  B:  Workstation  settings   43  Appendix  C:  Welch’s  Method   49  Appendix  D:  Confidence  interval  method   49  Appendix  E:  Normallity  tests   50  Appendix  F:  Influence  of  PLT  method   51  Appendix  G:  Influence  of  uncertainty  on  lead-­‐times   51  Appendix  H:  Average  difference  in  Lead-­‐time   52  Appendix  I:  Influence  of  aggregation  on  lead-­‐times   53  

Page 5: Thesis Ilse Bosklopper Final s1968645

4

1 INTRODUCTION

The  current  market  demand  for  customised  products  is  argued  to  be  greater  than  ever  before.  This  has  

led   to  a   large  growth   in   the  number  of  MTO  and  ETO  companies,  which  produce  non-­‐repetitive,  high-­‐

variety  and  bespoke  products.  Resulting   in  an   increase   in   competition  among   them   (Aslan  et  al.  2012;  

Van  Nieuwenhuyse   et   al.   2011;   Stevenson,   L.   C.  Hendry,   et   al.   2005).  With   this   increased   competition  

between  MTO/ETO  companies,   the  response  time  to  customer  orders  has  become  more   important   for  

obtaining   competitive   advantages.   In   MTO/ETO   environments   the   response   time   consists   of   order  

processing   time   (i.e.   engineering,   designing)   and   lead-­‐time.   Lead-­‐time   is   defined   as   the   time   between  

authorization  of  production  to  the  completion  of  processing,  at  which  point  the  material  is  ready  to  fill  a  

customer  order  (Yücesan  &  de  Groote  2000).  For  MTO/ETO  companies,  shorter  lead-­‐times  means  faster  

customer  response,  less  cost  due  to  work-­‐in-­‐process  (WIP)  and  higher  efficiency  (Pahl  et  al.  2007;  Wedel  

&  Lumsden  1995;  Suri  2010).    

Not  only  the  physical  flow  influences  the  lead-­‐time  of  an  order,  but  also  the  planning  plays  an  important  

role   (Wedel   &   Lumsden   1995).   Organizations   often   use   an   MRP   system   to   support   the   scheduler   in  

making  the  production  planning,  and  determining  when  orders  are  released  to  the  shop  floor  (Jonsson  &  

Mattsson  2006;  Mabert  2007;  Pahl  et  al.  2007).  MRP  assumes  infinite  capacity  and  static  bill-­‐of-­‐materials  

(BOM)  with  known  product  routings.   It  treats  lead-­‐times  as  static   input  data,  called  planned  lead-­‐times  

(PLTs),  representing  the  amount  of  time  allowed  for  orders  to  flow  through  the  task/facility  (Ioannou  &  

Dimitriou   2012;   Jodlbauer   &   Reitner   2012;   Ioannou   &   Dimitriou;   Ho   &   Chang   2001a;   Bertrand   &  

Muntslag  1993).  PLTs  play  an  important  role  in  the  actual  lead-­‐time  performance  of  the  system,  as  they  

influence  the  order  release  moment.  Setting  PLTs  too  high  causes  orders  to  be  released  too  early,  which  

increases  the  level  of  WIP  and  results  in  a  self-­‐fulfilling  extension  of  lead-­‐time  (Karmarkar  1989;  Pahl  et  

al.   2007;   Selçuk   et   al.   2006;  Wedel   &   Lumsden   1995).   On   the   contrary,   if   PLTs   are   too   tight   and   the  

orders   are   released   to   the   shop   floor   too   late,   it   is   not   possible   to  meet   the   due   date   (Ho   &   Chang  

2001b).  These  relationships  show  the  importance  of  having  accurate  PLTs  for  attaining  short  actual  lead-­‐

times.    

The  assumptions  of  MRP  are  hard  to  align  with  the  characteristics  of  an  MTO/ETO  environment,  which  

complicates  specifying  accurate  PLTs  (Ioannou  &  Dimitriou;  Aslan  et  al.  2012;  Stevenson,  L.  Hendry,  et  al.  

2005).  Most  attention  of  scholars  has  been  directed  towards  relaxing  the  assumption  of  infinite  capacity,  

and  implementing  variable  PLTs  based  on  capacity  loading  (Ioannou  &  Dimitriou;  Van  Nieuwenhuyse  et  

Page 6: Thesis Ilse Bosklopper Final s1968645

5

al.   2011).  However,   actual   lead-­‐times  are  not  purely   the  effect  of   capacity   loading,  but  also  of   several  

other  factors  often  highly  present  in  MTO/ETO  companies.  While  MRP  assumes  a  static-­‐BOM  with  known  

product   routing,  MTO/ETO  companies  are  often  characterized  by  high   flexibility  and  variety   in  product  

routing.   This   routing   uncertainty   can   result   in   a   gap   between   how   the   MRP   system   models   the  

production   processing   of   the   product,   and   how   the   product   is   processed   in   reality.  MRP   systems   are  

vulnerable  to  uncertainty,  and  research  indicates  that  uncertainty  has  a  damaging  effect  on  the  accuracy  

of  PLTs.  Driven  by  the  still   increasing  power  of  computers,  research  focused  on  adjusting  MRP  systems  

towards   MTO/ETO   environments   has   been   concentrated   on   extending   the   MRP   logic   with   complex  

algorithms   to  capture   the  processes  and   its  variables  more  precisely  and  correctly.  However,  as  actual  

lead-­‐times  are   influenced  by  many   factors,   including  all  of   these   factors   in  an  algorithm  will  be  a   very  

complex   task   and   the   presence   of   uncertainty   will   make   it   imposable   to   capture   the   actual   process  

perfectly.  Moreover,  complex  algorithms  are  often  not  well  understood  by  the  scheduler  (Pandey  et  al.  

2000),  which  makes  it  hard  for  the  planner  to  keep  overview  and  to  have  meaningful  interaction  with  the  

system.  Therefore,   in   this  paper  we  propose  a  different  method   for  adjusting  MRP  towards  MTO/ETO,  

and  preserve  one  of  the  most  important  strengths  of  MRP  logic;  its  simplicity.    

MRP  systems  are  often  designed  to  model   the  operations  at   the  highest   level  of  detail,   i.e.  at   the  task  

level  (Suri  2010).  It  is  very  hard  for  an  automated  scheduling  system  to  handle  an  MTO/ETO  shop  floor  at  

the   detailed   dispatching   level   due   to   high   level   of   variety   and   uncertainty   (McKay,   2000).   This   often  

results  in  a  gap  between  the  actual  business  processes  and  the  way  they  are  being  modelled  in  the  MRP  

system   (Powell   et   al.   2013).   Research   indicates   that   when   uncertainty   is   high,   planning   too   precisely  

could   in   fact  be   counterproductive   (Robinson  &  Moses  2006).   Taal  &  Wortmann   (1997)   further  notice  

that  planning   too  precisely   can  be  detrimental   and   that  using  precise  plans  will  most  often   result   in  a  

nervous   system.  Using  a  more  aggregated  MRP  system   in  which   resources  and   tasks  are  grouped,   can  

positively   influence  the  robustness  of  the  system  (Taal  &  Wortmann  1997).   Instead  of  modelling  at  the  

task   level,   tasks   can   be   grouped   and   PLTs   can   be   specified   for   the   aggregated   group.   If   resources   are  

planned  in  a  more  aggregated  way,  uncertainty  in  product  routing  can  be  reduced  at  the  planning  level.  

While   in   an   MTO/ETO   shop   floor   there   is   often   uncertainty   about   which   machine   will   process   the  

product,  it  is  often  quite  certain  through  which  kind  of  operations  the  product  has  to  flow  through.  

In   this  paper   the  view   is  adopted   that   the  main  problem  with   the  usage  of  MRP  systems   in  MTO/ETO  

companies   is   the   eagerness   to   capture   every   detail.   Therefore,   we   examine   a  more   aggregated  MRP  

system   in  which   resources   are   grouped   together.  We   simplify   the   task   of   adopting  MRP   to  MTO/ETO  

Page 7: Thesis Ilse Bosklopper Final s1968645

6

companies  by  limiting  our  attention  on  the  aggregation  level  of  an  MRP  system,  and  do  not  revise  any  of  

the  other  elements  of  MRP  calculations.  While   several   researchers  have  suggested  a  more  aggregated  

MRP   system,   little   research   is   done   about   the   effects   it   has   on   specifying   lead-­‐time   and   lead-­‐time  

performance.  Therefore,  we  have  chosen  to  perform  an  exploratory  case  study  at  a  company  producing  

a  mix  of  MTO  and  ETO  products.  The  goal  of  this  exploratory  case  study  is  to  create  more  insight  in  the  

ability   of   aggregation   to   cope  with   routing   uncertainty,   and   the   reflection   this   has   on   lead-­‐times.   The  

research  question  guiding  this  case  study  is:  

How   does   the   planner’s   choice   of   the   aggregation   level   of   MRP   influence   the  

relationship  between  routing  uncertainty  and  lead-­‐times?  

To  support  our  analysis  we  will  start  by  building  a  theoretical  framework  in  which  the  sub-­‐questions  of  

this   research   are   presented.   Then,   we   will   outline   the   research   methodology   and   describe   the  

background  of  our  case.  Because  the  effects  of  the  MRP  aggregation  level  are  measured  with  the  use  of  

two  simulation  models,  the  next  chapter  describes  these  models  and  how  they  validated.  After  this,  we  

will   present   and   discuss   the   results   followed   by   a   conclusion,   limitations   and   suggestions   for   further  

research.    

Page 8: Thesis Ilse Bosklopper Final s1968645

7

2 THEORETICAL BACKGROUND

This   theoretical   framework   will   give   an   overview   of   applicable   literature   regarding   MRP   production  

planning.  We  will   start  with  describing  how  MRP  works.   Then,  we  will   discuss   the   routing  uncertainty  

that  is  present  in  MTO/ETO  companies  and  how  this  influences  both  the  planning  and  the  performance.  

Then,  we  will  discuss  how  scholars  have   tried   to  cope  with   the  characteristics  of  MTO/ETO  companies  

and  we  will  discuss  an  alternative  solution,  we  will  look  at  how  these  methods  have  affected  the  human  

scheduler.  In  the  last  section  the  research  questions  we  will  answer  in  this  paper  are  presented.  

2.1  MRP  Systems  

MRP  is  developed  as  a  solution  to  the  problem  of  how  the  right  component  parts  can  be  received  in  the  

right  quantity,  at  the  right  time  (Ioannou  &  Dimitriou  2012;  Murthy  &  Ma  1991;  Ho  &  Chang  2001b).  The  

scope  and  usage  of  MRP  systems  has  grown  since  the  1970’s  (Orlicky  1975;  Wight  1984;  AMR  1995),  but  

in   this   research   MRP   refers   to   the   content   and   processes   in   software   programs   used   to   make   a  

production   planning.  MRP   systems   assume   a   known  BOM,   predetermined   fixed   product   routings,   and  

infinite   capacity   (Jodlbauer   &   Reitner   2012;   Ioannou   &   Dimitriou;   Ho   &   Chang   2001a;   Bertrand   &  

Muntslag  1993).    

The   BOM   shows   the   relationship   between   end   items   and   their   constituent   parts   (Hopp   &   Spearman  

2011).    In  MRP  systems,  PLTs  are  specified  for  each  level  of  the  BOM.  PLTs  represent  the  amount  of  time  

allowed  for  orders  to  flow  through  the  specific  task(s).  PLTs  determine  when  an  order  is  released  to  the  

shop  floor,  by  subtracting  the  total  PLT  of  the  due  date  of  the  product,  after  which  the  material  is  pushed  

through  all  subsequent  work  centres.  An  MRP  system  is  often  complemented  by  dispatching  rules,  which  

arrange   the  queues   in   front  of   the  workstations   (Vandaele  et  al.  2008).  Examples  of   these  dispatching  

rules  are:  First-­‐in-­‐First-­‐out  (FIFO),  Last-­‐in-­‐First-­‐out  (LIFO)  and  Earliest-­‐Due-­‐Date  (EDD).  The  order  release  

policy  of  an  MRP  system  can  be  seen  as  an  input  control  mechanism,  as  it  releases  jobs  to  the  shop  floor  

without  taking  into  account  the  system  status  (Fernandes  &  do  Carmo-­‐Silva  2006).    

In  theory,  the  logic  of  MRP  would  seem  to  preclude  the  use  of  any  buffering  mechanism.  However,  as  in  

realistic   operating   environments   uncertainty   exists   and   it   is   thus   it   necessary   to   implement   a   form   of  

buffer,   which   protects   against   degradation   of   performance   due   to   this   uncertainty.   There   are   several  

approaches   to   buffer   against   uncertainty,   the  most   frequently   described   and   used   buffers   are:   safety  

stock,  safety  lead  times  and  safety  capacity.  According  to  Whybak  &  Williams  (1976),  safety  stock  should  

Page 9: Thesis Ilse Bosklopper Final s1968645

8

be   used   as   protection   against   demand   quantity   uncertainty,   and   safety   lead   times   should   be   used   to  

cover  completion  time  uncertainty.  Their  research  does  not  mention  safety  capacity,  which  also  applies  

to  most   research  about  buffering   in  MRP  systems.  On   the  contrary,  extensive   research  has  been  done  

about   safety   stock,   and   a   modest   amount   of   research   has   focused   on   safety   lead-­‐times   (Dolgui   &  

Prodhon  2007).    

PLTs   are   fixed   input   parameters   that   need   to   be   specified   by   the   planning   department   (Suri   2010).  

Although   it   is   long   known   that   actual   lead-­‐times   are   heavily   influence   by   PLTs,   prescriptive   ways   of  

setting  either  have  not  been  adequately  developed  (Enns  2001).  According  to  Enns  (2001)  PLTs  should  be  

based   on   actual   lead-­‐times,   yet   he   recognizes   the   complexity   of   doing   this   due   to   the   stochastic   and  

dynamic   capacity   constrained   production   characteristics.   Hoyt   (1978)   argues   that   planned   lead-­‐times  

should  be  set  on  the  basis  of  the  average  flow  times  being  observed.  This  method  seems  not  appropriate  

for  the  stochastic  real  world.   It  can   lead  to  a  high  deviation  between  the  due  date  and  the  production  

completion  date,  as  processing  requirements  can  vastly  differ  between  products.  This  results   in  both  a  

high  amount  of  products  waiting  for  shipment,  and  a  low  service  level.  If,  for  example  the  lead-­‐times  are  

normally   distributed,   half   of   the   products  will   be   too   late   and   the   other   half  will   be   too   early.   This   is  

made  visible  in  figure  2.1.  

FIGURE 2.1 NORMALLY DISTRIBUTED LEAD-TIME  

 

Page 10: Thesis Ilse Bosklopper Final s1968645

9

MTO/ETO  job  shops  are  complex  dynamic  systems,  for  which  future  conditions  cannot  be  anticipated  by  

analysing   only   current   performance   (Fabrycky   &   Onur   1987).   Another   approach   is   used   by   Dolgiu   &  

Prodhon  (2007),  who  state  that  the  PLT  is  the  sum  of  the  theoretical  lead-­‐time  and  the  safety  lead-­‐times.  

They  refer  to  Melnyk  &  Piper  (1981),  who  have  proposed  that  the  safety  lead-­‐time  should  be  determined  

by  k  times  the  standard  deviation  of  the  lead-­‐times.  There  are  a  lot  of  different  opinions  about  how  PLTs  

should  be  set,  and  no  consensus  has  been  reached  on  the  best  method.  However,   it   is  known  that  the  

PLT  should  incorporate  the  estimated  processing  time,  the  waiting  time  and  an  appropriate  buffer.  

Even   though   it   is   clear   that   a   deep  understanding   on   the   effects   of   PLTs   on   lead-­‐time  performance   is  

needed,  literature  is  lacking  in  a  clear  guidance  on  to  how  to  specify  accurate  PLTs.  A  good  system  must  

result   in   acceptable   due   date   performance,  without   incurring   excessive   inventory   overall   (Enns   2001).  

Important  relations  are:  

• Increasing  planned  lead  times  result  in  higher  WIP  inventory  due  to  queues  (Enns  2001)  

• Lead-­‐times   increase  non-­‐linear   long  before  resource  utilization  reaches  100%  (Pahl  et  al.  2007;  

Ioannou  &  Dimitriou  2012)  

•  Several   amplifiers   (variability,   uncertainty,   capacity   and   demand   dynamics,   heterogeneity   of  

product  mix)  negatively  influence  lead-­‐times  (Pahl  et  al.  2007;  Ioannou  &  Dimitriou  2012).  

• Lot  sizing  is  about  balancing  the  desire  to  reduce  inventory  (by  using  smaller  lots)  and  increasing  

capacity   (by   using   larger   lots   to   avoid   setups)   and   can   have   severe   effects   on   lead-­‐time  

performance  (Enns  2001;  Hopp  &  Spearman  2011).  

In   MTO/ETO   companies   the   product   mix   is   very   dynamic,   this   results   in   high   variation   in   machine  

utilization,   regularly   updating   of   PLTs   is   thus   necessary.   In   the   next   section   we   will   more   specifically  

address   uncertainty   within   MTO/ETO   environments,   and   how   to   buffer   against   it.   Moreover,   the  

particular  challenges  for  implementing  and  using  an  MRP  system  are  discussed.  

2.2  Routing  uncertainty  in  MTO/ETO  environments  

Many   authors   have   suggested   that   MTO/ETO   companies   present   particular   challenges   for   using   an  

appropriate  planning  and  control  system  (Aslan  et  al.  2012;  Stevenson,  L.  Hendry,  et  al.  2005;  Bertrand  &  

Muntslag  1993;   Ioannou  &  Dimitriou).  Several  articles  have  criticized  about   the  applicability  of  MRP   in  

MTO/ETO   environments   and   report   about   the   low   implementation   success   rate   of   MRP   systems  

Page 11: Thesis Ilse Bosklopper Final s1968645

10

(Bertrand  &  Muntslag  1993;  Hong  &  Kim  2002).  To  understand   the  problems  associated  with  using  an  

MRP   system   in   an   MTO/ETO   environment,   it   is   necessary   to   explore   the   characteristics   of   these  

environments.  

In  MTO/ETO  companies  the  goods  flow  consists  of  both  a  non-­‐physical  (order  processing)  and  a  physical  

stage   (Bertrand   &   Muntslag   1993).   However,   in   this   research   we   are   only   concerned   with   the  

characteristics  of  the  physical  flow  and  in  factors  influencing  this  physical  flow.  This  is  appropriate  since  

this   paper   is   concerned  with   the  planning   and   lead-­‐times  of   the  physical   stage  of   the   flow.   Important  

characteristics   of   MTO/ETO   companies   are:   the   important   role   of   the   customer   order,   the   customer  

specific   product   specifications,   and   product   and   production   variability   and   uncertainty   (Bertrand   &  

Muntslag   1993;   Ioannou   &   Dimitriou   2012).   These   characteristics   have   their   reflection   on   routing  

uncertainty,  but  also  on  the  methods  that  can  be  used  to  buffer  against  this  uncertainty.  

While  the  important  role  of  the  customer  order  has  a  more  obvious  effect  on  order  processing,  it  does  

effect   the   planning   of   the   physical   flow   and   therefore   also   the   physical   flow.   The   high   level   of  

customization  together  with  the  relatively  long  lead-­‐times  often  forces  the  production  plan  to  be  defined  

before  all  information  on  item  customization  and  details  on  the  manufacturing  activities  are  completely  

disclosed   (Alfieri   et   al.   2012).   During   engineering,   design   and   process   planning   activities,   the   work  

content  and  material   content  of  a  project  becomes  gradually  known   (Bertrand  &  Muntslag  1993).  The  

wishes  of   the  customer  can  also  change  during  the  project;   this  can   lead  to  design  changes  that  affect  

the  product  routing.  Ou-­‐Yang  &  Pei  (1999)  examined  the  effects  of  design  changes  during  the  planning  

phase  that  influenced  the  processing  of  the  product  and  they  concluded  that  early  engineering  changes,  

could  be  easily  anticipated  on.  Nonetheless,   they  did  not  consider   the  effect  of   changes   that  occurred  

later  in  the  planning  process  nor  changes  that  occurred  while  the  product  was  already  in  production.  Koh  

&   Saad   (2003;   2002)   looked   at   the   diagnosis   and   effects   of   various   sources   of   uncertainty.   Change   in  

customer  design   that   resulted   in  additional   routing   steps  was  one  of   the   sources,   and   they   concluded  

that  this  has  a  significant  negative  influence  on  the  performance  of  the  manufacturing  plant.  However,  

they   ignored   that   customer  design   changes   can   also   result   in   a   change  of   one  or  more  of   the   routing  

steps,  or  the  elimination  of  production  steps.  Moreover,  while  these  papers  identified  the  negative  effect  

of  uncertainty   in  routing  on  performance,  they  did  not  specify  how  one  should  react  effectively  to  this  

uncertainty.  Furthermore,  the  important  role  of  the  customer  order  and  the  high  level  of  customization  

of   products   in   MTO/ETO   companies   influence   the   way   one   can   buffer   against   this.   Given   that   for  

Page 12: Thesis Ilse Bosklopper Final s1968645

11

ETO/MTO  products   it   is   impossible   to   keep   an   end-­‐item   inventory,   as   the   specifications   are   unknown  

prior  to  the  order.  

Not  only  does  the  role  of  the  customer  orders  effect  the  uncertainty  in  product  routing,  the  shop  floor  

configuration  adds  up  to  that  routing  uncertainty.  Many  MTO/ETO  environments  can  still  be  classified  as  

a  job  shop  due  to  the  flexible  nature  of  this  configuration  (Hendry  &  Muda  2003;  Stevenson,  L.  Hendry,  

et  al.  2005).  In  this  configuration  the  routing  is  often  somewhat  flexible  and  can  be  changed  by  operators  

if  that  fits  the  current  shop  floor  conditions,  or  if  it  fits  the  product  requirements.  If  for  example,  a  job  is  

planned  on  machine  A,  but   there   is  a   long  queue   in   front  of   this  machine  an  operator  can,   if  possible,  

decide   to   use   machine   B   for   certain   jobs.   While   this   flexibility   is   one   of   the   selling   points   of   this  

configuration,   it   has   consequences   for   the   production   planning   as   variability   and   uncertainty   often  

causes  control  problems  (Soepenberg  et  al.  2012).    The  consequences  are  especially  prevalent  with  long  

routings  and  even  when  both  processing  times  and  routings  are  known  beforehand,  predicting  the  future  

state  of  an  order   is  nearly   impossible.  Only  a  small  disruption  of  an  order  at  a  station  or  a  deviation  of  

the   routing   can   have   consequences   for   the   progress   of   the   order   itself   and   for   many   other   orders  

(Soepenberg   et   al.   2012).   Another   variable   adding   to   the   routing   uncertainty   is   the   possibility   to  

outsource  the  production  or  part  of  the  production  while  the  product  was  already  released  to  the  shop  

floor.  Outsourcing  can  have  various   reasons,   regulation  of  capacity   through  outsourcing  can  be  one  of  

the   reasons   (Riezebos,   2001),   The   actual   lead-­‐times   can   be   both   negatively   and   positively   affected   by  

outsourcing.      

In  an  MRP  system  without  buffers,  whenever  a  routing  is  changed  which  negatively  affects  the  lead-­‐time,  

due  dates  are  not  met  and  the   lead-­‐time  will  be  expanded.  On   the  contrary,   in   the  same  MRP  system  

when  a  routing  is  changed  that  positively  affects  the  lead-­‐time,  this  will  only  result  in  finished  products  

waiting  at   the  Finished  Goods   Inventory   (FGI)   till   its  due  date.   Especially   in   capital-­‐intensive  MTO/ETO  

companies  this  is  considered  a  problem.  Safety  lead-­‐time  buffering  can  be  used  to  avoid  missing  the  due  

date;  however   it   can   lead   to  high  FGI.  These   two  should   thus  be  balanced,  depending  on   the  context.  

However,   in  order  to  attain  the  desired  service   level,   it   is  often  necessary  to  buffer  against  uncertainty  

(Koh  &  Saad  2003).    

Moreover,  in  practice  it  appears  that  changes  in  the  routing  that  occur  just  before  or  while  the  product  is  

on  the  shop  floor,  are  often  not  translated  to  the  MRP  system.  This  can  for  example  been  done  to  avoid  

Page 13: Thesis Ilse Bosklopper Final s1968645

12

nervousness  of  the  system  or  because  no  feedback  mechanisms  are  present.  Companies  thus  settle  with  

out-­‐dated  routing  information,  and  base  new  order  releases  on  old  information.    

 

2.3  MRP  adjustments  to  cope  with  routing  uncertainty  

The  robustness  of  a  production  plan  relies  heavily  on  the  possibility  of  modifying  the  routing  of  a  product  

with  no  penalty  in  terms  of  lead-­‐time  performance  in  the  companies’  objectives  (Alfieri  et  al.  2012).  Due  

to   the  high  product   routing  uncertainty   in  MTO/ETO   companies,   it   is   clear   that   a   production  planning  

should  be  able  to  incorporate  a  certain  degree  of  anticipation  to  these  uncertain  events,  while  providing  

a  robust  schedule  for  the  execution  of  activities  and  utilization  of  resources.    

In   the   battle   to   make  MRP   systems  more   veracious,   most   papers   focus   on   the   relationship   between  

capacity   loading   and   actual   lead-­‐times,   and   propose   a   variable   PLT   that   is   based   on   the   shop   floor  

condition.  Examples  are  dynamic   lead  time  estimation  (Jodlbauer  &  Reitner  2012;   Ioannou  &  Dimitriou  

2012),  Advanced  Resource  Planning   (Vandaele  &  De  Boeck  2003)  and  Workload  dependent   lead   times  

(Pahl   et   al.   2007).   These   examples   all   base   the   PLTs   on   the   system’s   actual   workload.   The   main  

advantage  of  these  approaches  is  that  they  effectively  take  into  account  the  congestion  that  is  caused  by  

the   interference  of  different  products   in   the   shop   floor.   These  authors  however,   do  not   include  other  

factors   that   influence   actual   lead-­‐times   in   their   model.   It   can   even   be   argued   that   introducing   these  

extensions  of  MRP  systems  can  make  the  influence  of  uncertainty  and  flexibility  in  product  routings  more  

severe   as   the   planned   lead-­‐time   of   an   order   will   be   based   on   the   position   of   orders   in   production  

according   to   the   production   planning.   Due   to   the   uncertainty   and   variability   in   product   routing   this  

information  can  be  incorrect.  Besides,  the  robustness  of  the  production  plan  will  probably  be  low  when  

routings  are  modified  on  a  regular  basis,  as  the  PLT  will  fluctuate  even  more  heavily  than  in  a  standard  

MRP  system.    

Most   attention   has   been   paid   to   incorporate   the   relation   between   capacity   loading   and   lead-­‐times   in  

planning  systems,  only  a   few  papers   focused  on  dealing  with  routing  variability  and  uncertainty.  These  

algorithms   are   often   concerned  with   determining   optimal   routings   in   other   industries   than  MTO/ETO.  

Several  scholars  have  developed  algorithms  or  decision  frameworks  to  determine  the  optimal  routings.  

When  the  number  of  re-­‐routing  is  high,  these  algorithms  fail.  Using  the  assumption  that  all  other  things  

remain  equal  is  not  valid  anymore  and  will  result  in  sub-­‐optimizing  (Riezebos  et  al.  2011).  Riezebos  et  al.  

Page 14: Thesis Ilse Bosklopper Final s1968645

13

(2011)  propose  the  use  of  a  heuristic  to  deal  with  re-­‐routing,  to  support  planning  decisions  However,  in  

MTO/ETO  environments  implementing  a  heuristic  like  this    requires  a  lot  of  information  to  be  available  in  

time.  While  this  could  be  done  by  implementing  and  integrating  manufacturing  execution  systems,  this  is  

often  expensive  and  difficult  to  accomplish  in  job  shop  environments  (Saenz  de  Ugarte  et  al.  2009).  

Another  approach  suggested  in  literature  to  make  MRP  more  suitable  for  MTO/ETO  companies  is  high-­‐

level  MRP  (HL/MRP).  The  idea  behind  this  approach  is  reflected  in  for  example  Period  Batch  Control  and  

QRM  (Suri  2010;  Riezebos  2001).   It  suggests   that  the  planning  system  does  not  need  to  prescribe  who  

will  work  at  the  various  tasks  and  when  they  have  to  start  within  a  period,  it  suffices  to  know  that  there  

will  be  enough  capacity  at  the  planning  level  to  accomplish  all  tasks  that  are  scheduled  within  this  period  

(Burbidge  1996;  Riezebos   2013).   In  HL/MRP   the   amount  of   BOM   levels   is   reduced  by   combining   tasks  

into  one  level.  In  a  detailed  MRP  system  the  planning  department  has  to  specify  PLTs  per  task,  in  a  more  

aggregated  MRP  this  has  to  be  done  per  subset  of  tasks.  The  rest  of  the  logic  of  MRP  remains  unchanged  

in  HL/MRP.  

In  detailed  MRP  systems,  every  small  change  in  the  routing  should  be  adjusted  in  the  MRP  system  if  one  

wants  to  prevent  a  gap  between  the  real  process  and  the  modelled  process.  These  changes  often  lead  to  

nervous  behaviour  of  the  system,  which  influences  the  performance  of  the  plant  negatively.  By  reducing  

the  level  of  detail,  and  specifying  PLTs  for  sets  of  operations  that  are  performed  within  a  department  or  

team,  small  changes  will  not  effect  the  planning.  This  is  illustrated  with  the  following  example:  Station  1  

to  4  forms  a  group  within  the  HL/MRP  and  the  group  has  a  PLT  of  5  hours.  Product  A  is  planned  to  flow  

through  station  1  and  station  2,  with  both  a  processing  time  of  2  hours.  In  a  HL/MRP  system  the  planning  

does   not   have   to   be   updated   when   the   routing   has   been   changed   to   station   3   and   4,   with   differing  

process  times,  because  the  new  routing  belongs  to  the  same  group.  A  change  within  the  routing  of  the  

department  or  team  does  not  influence  the  planning  within  HL/MRP.  Reducing  the  level  of  detail,  using  

subsets   of   resources   is   comparable   to   the   time-­‐bucket   approach   as   for   example   discussed   by   Taal   &  

Wortmann   (1997).   They   state   that   if   aggregated   information   is   used,   nervousness   of   a   plant   can   be  

greatly  reduced.  

In  MRP  it  is  common  to  use  buffers  at  each  level  of  the  BOM  (Vandaele  &  De  Boeck  2003).  In  a  detailed  

MRP  system  this  implies  using  a  safety  lead-­‐time  buffer  for  every  individual  task.    In  a  more  aggregated  

MRP  system,  several  tasks  are  planned  as  one  step,  which  means  only  one  buffer  (Vandaele  &  De  Boeck  

2003;  Suri  2010).  One  of  the  advantages  of  a  more  aggregated  MRP  is  variability  pooling.  A  longer  lead-­‐

Page 15: Thesis Ilse Bosklopper Final s1968645

14

time  on  one  workstation  can  be  compensated  by  a  shorter  lead-­‐time  in  another  workstation  (Vandaele  &  

De  Boeck  2003).  Pooling  variability  tends  to  dampen  the  overall  variability  by  making  it  less  likely  that  a  

single  occurrence  will  dominate  performance   (Hopp  &  Spearman  2011).  Due   to   the  variability  pooling,  

HL/MRP  needs  lower  buffers.    

We  propose  that  by  reducing  the  level  of  detail,  the  uncertainty  of  the  product  routing  will  be  reduced  at  

the  planning  level.  Small  deviations  from  the  planned  routing  will  no  longer  affect  the  product  routing  at  

the   planning   level.   This   will   positively   influence   the   robustness   of   the   planning.   Moreover,   buffering  

against  routing  uncertainties  is  done  at  the  group  level,  which  will  reduce  the  buffer  that  is  needed  due  

to   variability   pooling.   We   propose   that   the   reduction   in   uncertainty   and   the   centralized   buffers   will  

positively  influence  lead  times.    

2.4  Human  influence  

The  influences  of  changes  to  the  MRP  system  are  hardly  or  not  discussed  in  relation  to  their  effects  on  

the   human   scheduler   who   will   work   with   it.   In   complex   manufacturing   organizations,   planning   and  

scheduling  still  requires  significant  human  support  to  ensure  effective  performance.  Planning  should  thus  

not   be   considered   as   a  mere   technical   problem.   The   scheduler   is   and  will   stay   a   critical   factor   in   the  

planning  process   (MacCarthy  et  al.   2001;  Taal  &  Wortmann  1997).   The  absence  of  discussing  how   the  

proposed   extension   influences   the   scheduler   can   be   seen   as   a   flaw   in   previous   research   extending   or  

changing  MRP  systems.    

Most  extensions  of  MRP  systems  are  designed  from  a  mathematical  perspective  and  focus  on  finding  a  

mathematically   optimal   planning.  Mathematical   optimality   does  not   always   correspond   to   ‘real  world’  

optimality.  It  is  the  task  of  the  scheduler  to  create  a  feasible  and  reasonable  planning;  the  main  function  

of  the  planning  system  is  supporting  the  planner  in  the  planning  process  (Taal  &  Wortmann  1997).  The  

interaction   between   human-­‐system   should   not   be   underestimated   while   researching   revised   MRP  

systems.  

Complex  algorithms  are  often  not  well  understood  by  the  scheduler,  and  are  considered  as  ‘black  boxes’  

(Taal  &  Wortmann  1997).   Increasing  complexity  will  affect  the  way  people  work  with  algorithms.   If  the  

planner  does  not  understand  the  system,  meaningful  system-­‐human  interaction  will  be  complicated,  as  it  

will   be   hard   for   a   planner   to   detect   problems,   adjust   parameters   and   keep   overview.   In  HL/MRP,   the  

Page 16: Thesis Ilse Bosklopper Final s1968645

15

simple   logic   of   MRP   is   preserved,   which   probably   leads   to   a   better   understanding   than   complex  

algorithmic  adjustments.  

 

 

2.5  Research  questions  

The   main   question   of   this   study,   ‘How   does   the   aggregation   level   of   MRP   influence   the   relationship  

between  routing  uncertainty  and  lead-­‐times?’  will  be  answered  in  the  proceedings  of  this  thesis.  The  sub  

questions  addressed  are:  

1. How  does  implementing  HL/MRP  influence  the  planned  lead-­‐times?  

2. How  is  lead-­‐time  performance  influenced  when  routing  uncertainty  is  present?  

3. How   does   the   level   of   MRP   aggregation   affect   lead-­‐time   performance   when   uncertainty   is  

present?  

4. What  are  the  implications  for  the  scheduler  by  implementing  a  HL/MRP?  

Page 17: Thesis Ilse Bosklopper Final s1968645

16

3 METHODOLOGY

The   purpose   of   this   study   is   to   broaden   the   insights   into   how   the   aggregation   level   of   planning   can  

influence   the   relationship   between   routing   uncertainty   and   lead-­‐times.   The   core   goals   are   to   identify  

how   the   aggregation   level   influences   the   lead-­‐time   performance,   especially   related   to   planned   lead-­‐

times,  uncertainty  and  system-­‐scheduler  interaction.  

3.1  Research  design  

After  performing  a   literature  study,  empirical   research   is  conducted  through  an  exploratory  case  study  

(Voss  et  al.  2002;  Karlsson  2009).  The  objective  of  this  study  is  to  answer  “how”  questions,  and  the  focus  

is  on  a  phenomenon  within  a  real   life  context,  which  makes  case  study  most  appropriate  (Yin,  2009).  A  

single   case   study   is   chosen   to   increase   the   depth   of   the   analysis.   Within   the   settings   of   the   case  

company,  a  broad  range  of  methods  is  used  to  gather  both  quantitative  and  qualitative  results.  In  order  

to   answer   the   (sub-­‐)   questions   guiding   this   research,   a   combination   of   interviews,   behavioural  

observations  and  two  interrelated  simulation  models  have  been  used.  

Within   the   empirical   settings   of   the   case   organization,  we   have   carefully   developed   two  models;   one  

simulates  the  production  system  and  the  other  simulates  the  planning  system.  Robinson  (2004)  defines  

simulation   as   experimentation   with   a   simplified   imitation   of   an   operations   system   as   it   progresses  

through   time,   for   the   purpose   of   better   understanding   and/or   improving   the   system.   The   use   of  

simulation  enables  us  to  test  multiple  scenarios  in  a  relatively  short  amount  of  time,  which  is  necessary  

for  answering  our   research  questions.  The   simulation  models  are  not  only  used   to  gather  quantitative  

data   about   lead-­‐time  performance,   but   the  models  were   also  used   in   a   simulation   game   in  which   the  

interaction  with  the  human  scheduler  was  assessed  with  both  behavioural  observations  as  interviews.    

3.2  Measurements  

The   unit   of   analysis   is   the   MRP   of   an   MTO/ETO   company,   with   the   independent   variable   being   the  

planning   aggregation   level.   The   dependent   variable   is   lead-­‐time   performance.   In   this   thesis   lead-­‐time  

performance  refers  to  the  actual   lead-­‐time,  the  service   level  and  the  average  days  spent   in  FGI.   In  this  

thesis,   lead-­‐times   are   measured   as   the   time   between   order   release   to   the   completion   of   processing  

(Yücesan  &   de  Groote   2000).   Lead-­‐time   can   have   an   effect   on   the  moment   of   delivery;   this   due   date  

performance  will   be  measured   by   the   percentage   of   products   that   is   ready   to   fulfil   a   customer   order  

Page 18: Thesis Ilse Bosklopper Final s1968645

17

before  or  on  the  due  date.  FGI  exists  because  of  deviations  between  the  completion  time  of  an  order  and  

the  due  date  agreed  upon  with  a  customer,  and  will  be  measured  by  the  average  time  a  product  spends  

in  FGI.  In  short  the  variables  under  consideration  are:  

• Lead-­‐time  (hours)  

• Customer  service  (%  on-­‐time)  

• Average  time  in  FGI  (due  to  deviation  between  due-­‐date  and  lead-­‐time)  (hours)  

Furthermore,  planned  lead-­‐times  are  measured,  to  evaluate  the  accurateness  of  the  PLT  and  to  evaluate  

the   difference   between   the   two   aggregation   levels.   The   observations   of   the   participant   and   the  

interviews  conducted  are  used  to  assess  the  scheduler-­‐system  interaction.  

3.3  Case  organization  selection  and  description  

We  have  selected  a  MTO/ETO  company   in  which  the  production  process  could  be  categorized  as  a   job  

shop  with  varying,   flexible   routing.  This  company  desires   to   reach  shorter   lead-­‐times  and   the  planners  

were  used  to  working  with  an  MRP  system.  The  case  company,  Trelleborg  Ridderkerk,  is  a  global  supplier  

of  engineered  rubber  solutions  in  e.g.  civil  engineering,  dredging  and  energy,  and  is  located  in  the  south  

of   the  Netherlands.  Trelleborg  distributes  products   to  more  than  40  countries   in   the  world.    Although,  

part   of   a   larger   group,   the   organization   can   be   considered   as   a   medium-­‐sized   enterprise   (MSE)   with  

around  160  employees.   It  produces  a  mix  of  MTO  and  ETO  products  with  a  high   level  of  customization  

and  variability,  which  make  it  appropriate  for  our  research.  Figure  3.1  gives  a  clear  picture  of  their  annual  

results  in  terms  of  products  and  product  mix.    

The  organization  is  currently  involved  in  a  Quick  Response  Manufacturing    (QRM)  transformation.  QRM  

pursues   the   reduction   of   lead-­‐time   in   all   aspects   of   an   organizations   operations,   both   internally   and  

externally   (Suri  2010).  The   transformation  has  until  now  mainly   focused  on   the  office  and  engineering  

practices  of  the  case  organization  (Q-­‐ROCs,  redesigning  processes).  While  the  office  is  designed  in  QRM  

cells,  the  shop  floor  can  be  classified  as  a  job  shop  and  is  therefore  suitable  for  this  research.  The  level  of  

uncertainty  in  product  routing  is  high  due  to  the  existence  of  late  design  changes,  changes  due  to  shop  

floor  conditions  and  the  possibility  of  outsourcing.    

 

Page 19: Thesis Ilse Bosklopper Final s1968645

18

FIGURE 3.1 TRELLEBORG PRODUCTION ORDERS  

The   case   company   implemented  AX  Dynamics,   and   started  with  designing  and   implementing   the  MRP  

system  in  2013.  Currently,  the  MRP  system  is  designed  in  a  highly  detailed  manner.  This  level  is  used  as  

the  basis  for  modelling  the  detailed  MRP  system.  However,  it  should  be  noted  that  production  is  still  not  

controlled   with   the   system   as   little   faith   is   put   in   whether   the   performance   would   be   positively  

influenced.  

Page 20: Thesis Ilse Bosklopper Final s1968645

19

4 SIMULATION DESIGN

This  section  will  discuss  the  design,  validation  and  settings  of  the  simulation  models  that  are  used.  It  also  

provides  insights  into  how  the  experiments  were  conducted.  This  section  is  split  up  into  four  parts.  First,  

we   explain   the   general   design   of   the   study,   and   show   the   interrelationship   between   the   simulation  

models.   Second,   a   detailed   description   of   the   two   simulation  models   and   the   in-­‐   and   outputs   of   the  

models  are  discussed.  Third,  the  experimental  design  is  discussed.  Fourth,  the  verification,  validation  and  

experimental  settings  of  these  two  models  are  discussed.  

4.1  General  design  

To   examine   the   influence   of   the   aggregation   level   of  MRP,  we   have   simulated   the  MRP   system.   Two  

configurations  have  to  be  possible  within  this  simulation,  a  detailed  planning  and  a  high-­‐level  planning.  

Furthermore,   the   simulation   model   is   designed   in   such   a   manner   that   it   allows   for   analysing   the  

interaction  with  the  human-­‐scheduler.  In  order  analyse  the  influence  of  the  aggregation  level  of  the  MRP  

system  on  the  lead-­‐time  performance,  a  simulation  model  of  the  production  process  is  made.  Input  data  

for  both  models   is  obtained  from  the  ERP  system,  observations  of  the  real  system  and   interviews  with  

the  production  planner,  the  plant  manager  and  several  operators.  

4.2  MRP  Tool  

The  frame  of  the  MRP  model  and  its  boundaries  result  from  the  scope  of  this  dissertation:  planning  the  

physical   flow   of   the   product.   Therefore,   the  model   needs   to   span   the   entire   production   operation.   It  

excludes  process  steps  like  engineering,  designing  and  tendering  that  are  likely  to  occur  within  MTO/ETO  

companies  (Hicks  &  McGovern  2009).    

The  model  is  built  using  Microsoft  Excel.  This  software  is  mainly  chosen  because  of  the  familiar  interface.  

As   the  scheduler  has   to   interact  with   this  model,   it   is   suitable   for   the  purpose  of   this  study.  The  study  

requires  two  configurations  of  the  model:  an  MRP  at  task  level  and  an  MRP  at  team/department  level.  

The  input  data  obtained  for  the  purpose  of  this  model  is:  

• Demand  

• Order  specifics  

Page 21: Thesis Ilse Bosklopper Final s1968645

20

• Planned  routings  of  orders  

• Expected  processing  times  per  task    

• Expected  setup  time  per  task  

• Capacity  of  the  departments/machines/people  

• Buffer  time  per  task/department  to  accommodate  uncertainty  

 

The  output  of  the  system  is,  in  both  configurations,  an  order  release  list  for  the  coming  period  specifying  

the  day  an  order  has  to  start.  Next  to  that,  a  capacity  requirement  overview  is  presented  in  time  buckets  

of  one  week.  

 

4.3  Production  simulation  

Again,  the  frame  of  this  simulation  model  and  its  boundaries  are  a  result  of  the  scope  of  this  dissertation:  

planning   the   physical   flow  of   the   product.   The   aim  of   this   simulation  model   is   to   assess   the   ability   of  

HL/MRP   to   cope   with   routing   uncertainty   in   the   physical   flow,   and   the   model   should   thus   be   a  

representation  of   the  whole   job   shop   through  which   the  products   flow.  Within   the  boundaries   of   the  

simulation,  there  were  almost  limitless  options  for  the  routing.  With  the  restriction  of  two  stations,  the  

exit  strategy  was  not  limited  and  all  other  stations  could  be  their  successor,  of  course  depending  on  the  

characteristics  of  the  product  under  consideration.  The  study  requires  two  configurations  of  the  model:  a  

production  system  with  low  routing  uncertainty  and  one  with  high  routing  uncertainty.  This  is  modelled  

by  increasing  the  deviation  between  the  planned  product  routing  and  the  actual  product  routing  due  to  

late  design  changes,  decisions  on  the  shop  floor  and  outsourcing  of  tasks.  

The  model   is   built   using   the   simulation   software  Tecnomatrix  Plant   Simulation,  which   is   developed  by  

Siemens   with   the   purpose   to   model,   simulate,   analyse,   visualize   and   optimize   production   systems,  

material  flows  and  logistic  operations  in  an  efficient  way  (Bangsow  2010).  The  ability  of  Plant  Simulation  

models  to  represent  the  variability,  interconnectedness  and  complexity  of  a  system  makes  it  appropriate  

software  for  modelling  a  job  shop  production  environment.  To  give  an  indication  of  the  content  of  this  

simulation  model,  a  small  overview  of  some  content  is  given  in  appendix  A.  

The   input   data   for   this   model   can   be   divided   into   two   groups:   production   datasets   and   process  

parameters.   In   table  4.1,   the  subsets   the   input   types  are  presented.  The   results  of  a   simulation  model  

depend   heavily   on   the   quality   of   the   input   data   and   the   accuracy   of   the   model   compared   to   the

Page 22: Thesis Ilse Bosklopper Final s1968645

21

behaviour  of  the  real  production  system  (Robinson  2004).  To  assure  data-­‐validity,  the  source  all  data  has  

been  checked  for   inconsistencies  and  unusual  patterns  and  outliers.  Knowing  the  distribution  of  a  data  

set   matters,   as   using   differences   in   distribution   deliver   great   differences   when   implemented   into   a  

simulation.  The  distribution  of  the  process  and  the  distribution  of  the  setup  time  are  determined  for  all  

31  workstations  within  the  boundaries  of  the  production  simulation.  Evaluating  the  distributions  of  the  

workstations   has   been   performed   with   the   use   of   DataFit,   an   Add-­‐in   of   Plant   Simulation   12.   A  

significance   level   of   95%   is   used   for   determining   the   distribution   type.   The   results   are   summarized   in  

appendix  B.

Input  Type   Dataset/parameter  

Production  datasets  

Order  release  list  

Planned  Product  Routing  

Actual  Product  Routing  

Process  parameters  

Work-­‐hours  per  machine/employee  

Process  time  parameters  per  process  step  

Setup  time  parameters  per  process  step  

Batch  size  parameter  per  process  step  

TABLE 4.1: INPUT DATA  

In  order   to   assess   the   lead-­‐time  performance  of   the   system,   all   performance  measures  defined   in   the  

methodology  are   tracked  per  order  and  are  averaged  over   the   run-­‐length   to  make   it  possible   to  make  

comparisons   between   the   difference   experimental   settings.   Descriptive   statistics   such   as   minima,  

maxima  and  standard  deviation  are  also  calculated   for   the   lead-­‐time.  Moreover,   the   simulation  model  

provides   the   scheduler   with   information   for   determining   the   PLTs.   For   this   purpose,   the   simulation  

model  also  tracks  the  average  waiting  times  of  each  buffer,   the  average  processing  time  together  with  

the  capacity  loading  of  the  past  period.  

Several   simplifications   have   been  made   to   simplify   the   situation   and   to   focus   on   the  most   important  

characteristics  of   the   job  shop.  The  main  purpose  of   these  simplifications   is   to   increase   the  utility  of  a  

model  while  not  significantly  affecting  the  validity  or  credibility.  However,  some  simplifications  are  also  

made  simply  because  required  data  was  not  available.    These  simplifications  enabled  a  more  rapid  model  

development  and  use,  while  not  endangering  sufficient  accuracy  for  the  purpose  of  this  study  (Robinson  

Page 23: Thesis Ilse Bosklopper Final s1968645

22

2004).   The   simplifications   made   are   based   upon   analysis   of   case   company’s   data   and   information  

gathered  longitudinally.  The  simplifications  that  have  been  made  are:  

• Machines  never  fail  

• Input  of  external  supplies  are  always  present  at  the  release  moment  specified  by  the  MRP  model  

• Human  capacity  is  not  affected  by  illness  or  other  factors  other  than  lunch  breaks  

• Transport  from  one  station  to  another  does  not  require  time  

• Product  Quality  Check  Type  Three  (QC3)  does  not  require  any  time,  and  is  done  during  ‘normal’  

processing  time  

• Aggregation  of  one  type  of  machines  (caldron)  to  one  machine  

 

4.4  Experimental  Design  

This   study  will   compare  different   configurations   of   both   the  MRP   tool   and   the   simulation  model.   This  

section  will  provide  an  overview  of  the  scenarios  that  are  tested.  However,  we  will  start  with  outlining  

the   planning   procedure   that   is   used.   In   collaboration   with   the   scheduler   of   the   case   company,   in   all  

configurations  of  the  MRP  tool,  order  release  lists  are  made  on  a  weekly  basis,  for  a  period  of  five  weeks,  

indicating   which   order   should   be   released   to   the   shop   floor   on   which   day.   Both   determining   and  

adjusting   the   planned   lead   times,   and   readjusting   the   planning   due   to   capacity   limits   was   the  

responsibility  of  the  scheduler.  This  made  it  possible  to  study  the  behaviour  of  the  planner,  and  study  the  

impact  the  level  of  aggregation  has  on  the  planner.  

With  these  order  release   lists,  several  scenarios  have  been  tested.  The  focus  of  the  scenarios   is  on  the  

lead-­‐time  performance  of   these  order   release   lists  under   routing  uncertainty.  The  scenarios   tested  are  

presented  in  table  4.2.  

 Scenario  Settings   Detailed  MRP   HL/MRP   HL/MRP-­‐PM  

No  routing  uncertainty   Scenario  1D   Scenario  1H   Scenario  1H-­‐PM  

Routing  uncertainty     Scenario  2D   Scenario  2H   Scenario  2H-­‐PM  

TABLE 4.2 SCENARIO SETTINGS  

 

Page 24: Thesis Ilse Bosklopper Final s1968645

23

To  give  a  clear  insight  into  the  several  scenarios,  the  scenarios  are  discussed  below.  

• Scenario  1D:  In  this  scenario  all  planned  products  are  produced  in  exactly  the  routing  as  planned,  

the  planning  is  made  with  the  use  of  the  detailed  MRP  tool.  Planned  lead-­‐times  are  intuitively  set  

based  on  the  experience  of  the  scheduler  

• Scenario  2D:  This  scenario   is  similar  to  scenario  1D,  but  with  routing  uncertainty  due  to  design  

changes  introduced.  

• Scenario  1H:  In  this  scenario  all  planned  products  are  produced  in  exactly  the  routing  as  planned,  

the   planning   is  made  with   the   use   of   the   HL/MRP   tool.   Planned   lead-­‐times   are   intuitively   set  

based  on  the  experience  of  the  scheduler  

• Scenario  2H:   This   scenario   is   similar   to   scenario  1H  but  with   routing  uncertainty  due   to  design  

changes  introduced.  

• Scenario   1H-­‐PM:   In   this   scenario   all   planned   products   are   produced   in   exactly   the   routing   as  

planned,   the   planning   is   made   with   the   use   of   the   HL/MRP   tool.   Planned   lead-­‐times   are   set  

according  to  the  method  proposed  in  the  next  chapter.  

• Scenario  2H-­‐PM:  This  scenario  is  similar  to  scenario  1H-­‐PM  but  with  routing  uncertainty  due  to  

design  changes  introduced.  

4.5  Verification  and  validation  

This  section  addresses  the  verification  and  validation  of   the  two  simulation  models,   in  order  to  ensure  

that   the   two  models   are  working   correctly   and   accurately.   Verification   according   to   Sargent   (2013),   is  

‘ensuring   that   the   computer   program   of   the   computerized  model   and   its   implementation   is   correct’.  

Validation   is  defined  as   ‘the   substantiation   that  a  model  within   its  domain  of   applicability  possesses  a  

satisfactory  range  of  accuracy  consistent  with  the  intended  application  of  the  model’  (Sargent  2013).    

Validation   consists   of   identifying   issues,   and   adapting   accordingly.  Model   validation   is   done   in   various  

forms,   based   on   the   approaches   discusses   in   Robinson   (2004).   Conceptual   model   validation   of   both  

models  was  conducted  with   interview  sessions  and  group  discussions  about  the  conceptual  model  and  

the   assumptions  made.   The   results   of   a   simulation  model   depend   heavily   on   the   quality   of   the   data  

(Robinson  2004).  To  assure  data-­‐validity,   the   source  all  data  has  been  checked   for   inconsistencies  and  

unusual  patterns  and  outliers.  This  is  done  both  visually  and  with  the  use  of  DataFit,  an  Add-­‐in  of  Plant  

Page 25: Thesis Ilse Bosklopper Final s1968645

24

Simulation  12.  We  have  tried  to  find  the  cause  of  outliers  and  whenever  found  appropriate  the  outliers  

are  removed  from  the  data.  

Doing  several  tests,  and  watching  the  models  at  a  low  running  speed  verified  the  models.  This  was  done  

to   check   whether   the   products   are   processed   correctly   and   whether   the   methods   do   what   they   are  

intended  to  do.  Moreover,  a  semi-­‐experienced  user  of  Plant  Simulation  was  asked  to  test  the  production  

simulation   model.   Beforehand,   he   was   informed   about   the   goal   of   the   model   and   a   quick   screening  

through  the  model  was  done  in  collaboration.    

By   comparing   the   capacity   loading   of   individual   workstations   in   the   commercial   ERP   system  with   the  

MRP  simulation,  white-­‐box  validation  of  the  MRP  simulation  model  was  done.  At  first  high  deviations  in  

capacity  requirement  were  found  for  one  particular  workstation,  however  it  appeared  that  the  capacity  

profile  of  this  workstation  (Bouwwikkel)  was  out-­‐dated  in  the  commercial  ERP  system  as  the  merger  of  

two-­‐production   sites   added   extra   capacity.  When   all   settings   within   both  models   were   the   same,   no  

deviations  were  found  in  both  the  order  release  list  as  the  capacity  requirements.  As  the  HL/MRP  is  just  

an   adjustment   in   configurations   of   the   detailed  MRP   simulation,   and   the   logic   remains   the   some,   not  

specific  white-­‐box  testing  has  been  performed.  We  have  verified  the  model  by  setting  the  PLTs  to  zero  in  

both  configurations;  this  should  result  in  exactly  the  same  capacity  requirements  and  order  release  lists.  

White-­‐box   validation   of   the   production   simulation   was   done   by   inspecting   the   output   reports   for  

individual   stations,   and   discussing   them   with   the   production   planner,   the   shop   floor   manager   an  

operator.  Within   these   sessions   in-­‐   and   output   of   the  model  were   discussed,   and   important   variables  

were  discussed   like  utilization  and  actual   lead-­‐time.  Some  minor  adjustments  were  made,  especially   in  

the  hours  a  day  a  workstation  worked.  Moreover,  breaks  were  reduced  from  one-­‐hour  to  a  half-­‐hour  per  

shift.  This  as  a  rotating  system  is  used,  which  implies  that  while  every  worker  goes  on  a  shift  of  an  hour,  

machinery  is  only  standing  still  for  a  half  hour.  

After  this,  black-­‐box  validation  is  used  to  check  the  overall  behaviour  of  the  model  (Robinson  2004).  For  

both   models,   extensive   validation-­‐sessions   with   the   production   planner   and   the   shop   floor   manager  

were   conducted.   Black-­‐box   validation   of   the   MRP   simulation   model   is   done   by   comparing   the   order  

release  dates  of  the  detailed  MRP  simulation  with  the  commercial  ERP  system  the  company  is  currently  

using.  The  issue  of  experimentation  validity  is  discussed  in  the  next  section.  

4.6  Experimental  settings:  

Page 26: Thesis Ilse Bosklopper Final s1968645

25

In  the  simulation  game,  the  production  simulation  model  used  is  a  terminating  process,  as  a  one-­‐week  

production   schedule   in   the   end-­‐point   of   the   simulation.   Therefore,   the   run   length   will   be   a   week   of  

operations   (Monday   to  Sunday).  While  often   terminating  process,   returning   to   the  empty  setting  after  

each  period  is  not  a  realistic  starting  point  for  this  model.  From  the  second  week  onwards,  the  situation  

at  the  end  of  the  previous  week   is  the  starting  point  for  the  week  after.  However,  because  the  system  

starts  in  an  empty  state,  it  has  to  be  filled  with  products  before  a  representative  state  is  achieved  for  the  

first  week.  The  weekly  order  release  lists  from  the  previously  described  experiments  were  combined  in  

the  simulation  game  so  that  the  simulation  model  can  be  described  as  non-­‐terminating.  

In   this   case   it   is   appropriate   to   use   a   warm-­‐up   period   before   obtaining   results.   The  warm-­‐up   time   is  

defined  as  the  period  the  model  needs  to  reach  a  representative  state  (Robinson  2004).  An  appropriate  

warm-­‐up  period  is  determined  with  the  use  of  the  Welch’s  method.  The  Welch  method  is  applied  on  the  

average   lead-­‐time   obtained   from   the   first   scenario   (1D).   After   testing   several   window   sizes,   it   is  

concluded  that  a  window  size  of  5  is  best  for  this  data  as  it  smoothens  the  data  best.  After  processing  43  

products,  a  representative  state  is  reached.  This  is  equal  to  a  warm-­‐up  period  of  1  day.  See  Appendix  C  

for  a  complete  overview  of  the  Welch  method.  Furthermore,  a  run   length  of  5  weeks  (35  days)  will  be  

used,  thus  the  end-­‐time  of  the  simulation  will  be  set  to  36  days  (run  length  +  warm-­‐up).  

As   the   model   is   stochastic,   one   run   of   the   simulation   model   represents   a   single   observation   of   the  

system.  In  order  to  produce  a  better  estimate  of  mean  performance,  multiple  runs  have  to  be  done.  The  

confidence   interval  method   (CIM)  has  been  used   to  determine   the  simulation   runs   that  are  needed  to  

produce  reliable  results.  The  CIM  is  performed  on  the  average  lead-­‐time  of  products.  With  15  replicates,  

a   confidence   level   of   95%   was   achieved   (See   appendix   D).   Given   that   several   experiments   will   be  

conducted,  we  will   stay  at   the   secure   side  and  use  20   runs.  This  amount  of   replications   is  used   for  all  

experiments,  and  the  appropriateness  is  checked  after  the  experiments  have  been  performed.  There  was  

no  need  to  adjust  this;  as  for  all  experiments,  20  runs  was  enough  to  secure  a  95%  confidence  level.  

With   the   experimental   settings   used,   and   the   verification   and   validation   of   the   models   taken   into  

consideration,   we   can   conclude   that   sufficient   accuracy   is   ensured   for   the   exploratory   nature   of   this  

study.  

Page 27: Thesis Ilse Bosklopper Final s1968645

26

5 FINDINGS

In  this  section  first  a  method  for  specifying  PLTs  in  HL/MRP  is  proposed  and  tested.    This  is  necessary  to  

answer   the   first   sub   question,   but   also   to   be   able   to   effectively   use   HL/MRP   and   thus   to   answer   the  

following   sub-­‐questions.   After   this,   the   outcomes   of   various   experiments   will   be   discussed.   First,   the  

influence   of   uncertainty   on   lead-­‐times   is   examined   for   both   the   detailed   and   the   HL  MRP.   Then,   the  

influence  of  aggregation  on  lead-­‐time  performance  is  discussed.  Since  the  scenarios  relate  to  each  other,  

insights  will  originate  from  analysing  the  differences  between  the  models.  Finally,  the  observations  made  

of   the  planner  and   the   information  gathered  with   the  use  of   interviews  and  a   short  questionnaire  are  

presented.  

Several  statistical   tests  have  been  performed  with  the  use  of  SPSS.  A  significance   level  of  95%   is  being  

applied   for   all   statistical   tests.   An   important   assumption   of   the   tests   used   is   the   normality   of   data.  

Therefore,  normality  of  the  data-­‐series  used  in  these  tests  is  assessed  by  a  Shapiro-­‐Wilk  test.  This  is  an  

appropriate   test   as   the   tests   are   being  performed  on   a   rather   small   sample   (n=amount   of   runs   =   20).  

With  a  p-­‐value  above  0,05  the  samples  can  be  classified  as  normally  distributed.  A  complete  overview  of  

the  results  is  presented  in  Appendix  E.  The  assumption  of  normality  holds  for  all  data-­‐series,  except  for  

one.   In   this   case,   an  ANOVA-­‐test  was   being   applied.   This   test   is   fairly   robust   to   small   deviations   from  

normality  particularly  if  the  sample  sizes  are  the  same,  and  therefore  this  test  is  still  appropriate  (Lix  et  

al.  1996).  

5.1  Framework  for  specifying  planned  lead-­‐times  

Based  on  the  findings  from  both  practice  and  theory,  in  this  part  a  method  for  specifying  PLTs  in  HL/MRP  

will   be   proposed.   This  method   is   based   on   the   literature   presented   before   about   planned   and   actual  

lead-­‐times,  and  interviews  within  the  case  company.  In  this  method,  the  usability  and  intelligibility  for  a  

human  scheduler   is   taken   into  consideration.  Finally,   the  proposed  method  will  be  compared  with   the  

current  way  of  specifying  PLTs  that  is  used  in  the  case  company,  but  then  applied  to  the  HL/MRP.    

5.1.1  Design  of  the  framework  

Based  on  literature,  we  have  established  that  the  PLT  should  incorporate  the  estimated  processing  time,  

the   waiting   time   and   an   appropriate   buffer.   Furthermore,   It   should   take   into   account   the   stochastic  

nature  of  the  real  world.  However,  how  this  should  be  done  in  a  HL/MRP  in  a  MTO/ETO  organization  is  

Page 28: Thesis Ilse Bosklopper Final s1968645

27

not  yet  discussed  in  literature.  In  fact,  there  is  not  even  an  agreement  among  scholars  what  method  for  

specifying  PLTs  works  best  in  MTO/ETO  environments.  Before  proposing  a  method  for  specifying  PLTs  in  

HL/MRP,   the  objective  of  PLTs  should  be  clear;  estimating   the   time  the   job  will   take   in  such  a  manner  

that  the  goals  in  terms  of  service  level  and  FGI  are  reached.  

Interviews  within  the  case  company  made  clear  that  no  real  method  for  specifying  PLTs  was  in  use,  and  

that  it  was  based  solely  on  the  feeling  and  experience  of  the  scheduler.  Moreover,  discussions  about  the  

PLT  methods  proposed   in   literature  made  clear  that  using  historical  averages  was  considered  the  most  

understandable   and   simple   method.   However,   as   discussed,   using   this   method   can   have   severe  

consequences   for   the   service   level   and   FGI.   Based   on   literature,   and   interviews   the   following  

requirements   for   specifying   the   planned   lead-­‐times   for   high-­‐level   MRP   in   MTO/ETO   companies   are  

determined:  

1. In  MTO/ETO  environments,  demand  and  product  mix  can  fluctuate  quite  extensively,  which  has  a  

direct   influence  on   the  production   flow.  Therefore,   the  utilization   level  will   also   fluctuate.  This  

has  an  effect  on  the  waiting  times,  and  thus  when  utilization  shifts  happen  this  should  be  taken  

into  consideration  when  specifying  PLTs.  

2. Processing   times   are   somewhat   determined  by   the  product,   changes   in   demand   and  products  

can   thus   effect   the   processing   times.   Therefore,   the   processing   requirements   of   the   products  

should  be  taken  into  consideration  when  specifying  PLTs.  

3. As  the  safety  lead-­‐time  buffer  has  an  effect  on  both  service  level  and  FGI,  an  appropriate  buffer  

should  be  determined  per  product  that  does  not  lead  to  a  large  amount  of  FGI  or  to  a  very  low  

service  level.  

We   propose   a  method   that   uses   the   expected   processing   time   of   a   product   (2)   and   expand   it  with   a  

method  to  determine  an  appropriate  buffer  (3)  that  takes  both  waiting  times  and  uncertain  events  into  

account.  This  buffer  should  depend  on  the  group’s  utilization  level  that  is  expected  in  the  period  under  

consideration  (1).  

With   expected   processing   time   is   meant   the   expected   time   the   products   will   spend   in   processing,  

summed   for   all   tasks  performed  within   the   group.   The  buffer   should  be  determined  by   looking  at   the  

flow  times  of  the  group  (waiting  times  +  processing  times)  of  a  comparable  period  (same  utilization  level,  

and   preferable   comparable   average   processing   time).   The   standard   deviation   between   the   flow   times  

Page 29: Thesis Ilse Bosklopper Final s1968645

28

and  the  average  processing  time  of  that  period  should  then  be  determined;  this  represents  the  standard  

deviation  of   the  waiting   time.   The  buffer   to   cover  waiting   times   and  uncertain   events   should   then  be  

determined  per  product  with:  

𝐵 = 𝑧 ∗ 𝑠.𝑑  𝑜𝑓  𝑝𝑒𝑟𝑖𝑜𝑑  𝑛  

With:  

B=buffer  time    s.d  of  n=  standard  deviation  of  the  waiting  time  of  a  comparable  period  n    z=  standard  score  

The   standard   score   is   depending   on   the   desired   service   level   and   the   distribution   of   the   standard  

deviation   of   the   waiting   times.   For   reasons   of   simplicity,   in   this   research   the   deviation   between   the  

waiting  times  and  the  average  processing  times  are  all  assumed  to  be  normally  distributed.    

With   this   method   the   expected   processing   times   are   set   per   product   (type)   and   the   buffers   are   set  

depending  on  the  group  it  has  to  flow  through.  Thus  the  buffer  time  does  not  depend  on  what  kind  of  

product  is  going  through  the  group.  The  total  PLT  can  then  be  determined  per  product  with:  

PLT=  EPT  +  B  

With:  

PLT  =  planned  lead-­‐time  EPT  =  expected  processing  time      

5.1.2  Testing  of  the  framework  

A  comparison  is  done  between  the  PLTs  specified  purely  on  prior  experience  of  the  scheduler  and  PLTs  

specified  with  the  proposed  method.    Analysis  of  the  PLTs  shows  a  reduction  of  the  average  PLT.  When  

the   PLTs   are   based   on   the   planners   experience,   an   average   PLT   per   product   of   6,5   days   is   estimated.  

When  the  method  proposed  above  is  implemented  this  reduces  to  3,8  days.    

The   influences   of   these   two   methods   of   PLT   specifying   are   further   examined   with   the   use   of   the  

production  simulation.  As  uncertainty   in   routing   is  present   in   the  case  company,   this   is  also  present   in  

the  simulation.  The  results,  summarized  in  table  5.1,  indicate  a  reduction  in  average  lead-­‐time  of  almost  

35  hours  when  the  PLT  is  specified  with  the  use  of  the  proposed  method.  On  the  contrary,  the  average  

Page 30: Thesis Ilse Bosklopper Final s1968645

29

accuracy  of  the  PLT  and  the  actual  LT  has  lowered  slightly.  When  the  PLTs  were  based  on  experience,  the  

PLTs  were  on  average  0,5  hours  longer  than  the  actual  lead  times.  Using  the  proposed  method  resulted  

in  a  higher  deviation  of  1,75  hours.  Moreover,  the  service  level  increased  significantly  to  86%.  However,  

this   is   still   lower   than   the   case   company’s   desired   service   level   of   95%,   which   is   used   in   the   PLT  

calculations.  

Experimental  

settings  

Average  

Lead-­‐time  

(hours)  

Standard  

Deviation  

(hours)  

Minima                        

(hours)  

Maxima                

(hours)  

Left  

Interval  

bound  

(hours)  

Right  

Interval  

bound  

(hours)  

 

Service  

level  

(%)  

Experiment  1:    

PLT  based  on  

experience   148,13   10,04   132,94   166,88   143,43   152,83  

 

49%  

Experiment  2:    

PLT  method  

proposed   113,53   6,58   100,21   127,14   110,45   116,61  

 

86%  

TABLE 5.1 LEAD-TIME PERFORMANCE PLT METHOD  

To  test  whether  these  results  differ  significantly  from  each  other  a  one-­‐way  ANOVA  was  conducted.  This  

is   appropriate   since   we   are   comparing   the  means   of   two   independent   samples.   Results   indicate   that  

there   is   a   significant   difference   in   lead-­‐time   performance   between   the   two   experiments   (alpha<0,05).  

See  appendix  F  for  the  results  of  the  ANOVA  and  Welch  tests.  

5.2  Influence  of  uncertainty  on  lead-­‐time  

In  this  section,  the  influence  routing  uncertainty  has  on  lead-­‐times  in  the  different  scenarios  is  discussed.  

First,  an  analysis  is  done  to  assess  the  influence  uncertainty  has  on  lead-­‐time  performance  for  each  way  

of  using  the  MRP  system.  Then,  insights  will  be  gathered  by  comparing  the  systems  with  each  other.  The  

results  are  summarized  in  the  table  5.2.  

 

Page 31: Thesis Ilse Bosklopper Final s1968645

30

Scenario  

Average  

Lead-­‐time  

(hours)  

Standard  

Deviation  

(hours)  

Minima                                  

(hours)  

Maxima                    

(hours)  

Left   Interval  

bound            

(hours)  

Right  

Interval  

bound                

(hours)  

Scenario  1D   123,94   9,74   106,03   139,46   119,37   128,50  

Scenario  2D   124,63   9,53   107,07   139,82   120,17   129,09  

Scenario  1H   148,99   10,28   133,93   168,04   144,17   153,80  

Scenario  2H   148,13   10,04   132,94   166,88   143,43   152,83  

Scenario  1H-­‐PM   114,40   6,52   100,81   128,79   111,35   117,45  

Scenario  2H-­‐PM   113,53   6,58   100,21   127,14   110,45   116,61  

TABLE 5.2 INFLUENCE OF UNCERTAINTY ON LEAD-TIME PERFORMANCE  

When  the  detailed  MRP  system  is  being  used  for  determining  the  order  releases,  the  average  lead-­‐time  

increases  with  the  introduction  of  routing  uncertainty.  With  routing  uncertainty,  the  average  lead-­‐time  is  

47  minutes  longer.  When  the  HL/MRP  is  being  used,  and  the  PLTs  are  being  set  based  on  the  experience  

of   the   scheduler,   the   average   lead-­‐time   deceases   with   the   introduction   of   routing   uncertainty.   With  

routing  uncertainty,  the  average  lead-­‐time  is  51  minutes  shorter.  When  the  HL/MRP  is  being  used,  and  

the   PLTs   are   based   on   the   earlier   proposed   method,   the   average   lead-­‐time   also   decreases   with   the  

introduction   of   routing   uncertainty.   With   routing   uncertainty,   the   average   lead-­‐time   is   52   minutes  

shorter.  

For   the   three  distinct  planning  methods,   a  paired   sample  T-­‐test   is  performed   to  assess  whether   these  

reactions   to   uncertainty   were   significant   or   not.   The   paired   samples   T-­‐test   is   appropriate   as   we   are  

comparing  the  behaviour  at  two  distinct  situations  (low  uncertainty  &  high  uncertainty).  Results  indicate  

that   the  differences   in   lead-­‐times  are   significant   (alpha<0,05)   for  all  methods.  A  complete  overview  of  

the  statistical  results  can  be  found  in  Appendix  G.  

Previous   results   indicate   a   difference   in   the   ability   to   cope  with   uncertainty.  When   the   detailed  MRP  

system   was   used   the   lead-­‐times   increased,   while   in   the   experiments   with   HL/MRP   the   lead-­‐times  

decreased.   The   ability   of   the   planning  method   to   cope  with   uncertainty   is  measured   as   the   deviation  

between  lead-­‐times  with  uncertainty  and  without  uncertainty.    Whether  there  is  a  significant  difference  

Page 32: Thesis Ilse Bosklopper Final s1968645

31

in   the   ability   to   cope   with   uncertainty   is   analysed   by   comparing   these   deviations.   The   average  

percentage  differences  in  lead-­‐time  are  presented  in  figure  5.1  

 

FIGURE 5.1 DIFFERENCE IN LEAD-TIME REACTIONS TO UNCERTAINTY  

A  one-­‐way  ANOVA   test  was   performed   to   test  whether   there   is   a   significant   difference   in   reaction   to  

uncertainty  between  the  three  options.  This   is  appropriate  since  we  are  comparing  the  means  of  three  

independent   samples.   Results   indicate   that   there   is   a   significant   difference   between   the   reaction   to  

uncertainty   between   the   detailed   MRP   and   both   experiments   using   HL/MRP   (alpha<0,05).   However,  

there   is   no   significant   difference   in   the   reaction   to   uncertainty   between   the   two   experiments   using  

HL/MRP  (alpha>0,05).  A  complete  overview  of  the  results  of  the  statistical  test  can  be  found  in  Appendix  

H.  

5.3  Influence  of  aggregation  level  on  lead-­‐time  performance  

In   this   section,   the   influence   of   the   aggregation   level   on   lead-­‐time   performance   when   routing  

uncertainty  is  present  is  discussed.  Insights  will  be  gathered  by  comparing  the  scenarios  with  each  other.  

The  results  are  summarized  in  the  table  5.3.  

 

 

-­‐1,00%  

-­‐0,80%  

-­‐0,60%  

-­‐0,40%  

-­‐0,20%  

0,00%  

0,20%  

0,40%  

0,60%  

0,80%  

Detailed  MRP   High  Level  MRP   High  Level  MRP  &  Proposed  PLT  

method  

Hours  

Average  difference  in  Lead-­‐time  

Page 33: Thesis Ilse Bosklopper Final s1968645

32

Scenario  

Average   Lead-­‐

time  (hours)  

Standard  

Deviation  

(hours)  

Minima                                  

(hours)  

Maxima                    

(hours)  

Average  

time  in  FGI            

(hours)  

Service  

level                

(%)  

Scenario  2D   124,63   9,53   107,07   139,82   51,94   49%  

Scenario  2H   148,13   10,04   132,94   166,88   66,27   49%  

Scenario  2H-­‐PM   113,53   6,58   100,21   127,14   25,60   86%  

TABLE 5.3 INFLUENCE OF AGGREGATION ON LEAD-TIME PERFORMANCE  

In  the  table  above  we  can  observe  that  when  the  HL/MRP  is  used,  and  the  PLTs  are  specified  based  on  

the  experience  of   the  planner   the  average   lead-­‐time   is  almost  a   full  day  more   than  when  the  detailed  

MRP   is   used.   Furthermore,   these   two   scenarios  do  not  notably  differ   from  each  other   in   the   sense  of  

service  level  and  average  time  spent  in  FGI.  

It  also  visible  that  the  average  lead-­‐time  in  the  scenario  with  the  use  of  HL/MRP  and  the  proposed  PLT  

method   is   performing   best   on   both   average   lead-­‐times   and   service   level.  Moreover,   in   the   other   two  

scenarios  products  spend  on  average  more  time  in  FGI.  Furthermore,  in  scenario  2H-­‐PM  product  were  on  

average  a  little  more  than  1  day  too  early,  while  in  the  other  two  scenarios  products  were  on  average  2  

days  too  late.    

To  assess  whether   the  scenarios,   significantly  differ   from  each  other  a  one-­‐way  anova  was  performed.  

This   is   appropriate   since  we  are   comparing   the  means  of   three   independent   samples.  Results   indicate  

that   the   three   scenarios   all   significantly   differ   from   each   other   in   average   lead-­‐times.   A   complete  

overview  of  the  results  of  the  statistical  test  can  be  found  in  Appendix  I.  

5.4  Human-­‐system  interaction  

In   this  section  the  perceived  human-­‐system   interaction   is  discussed   for   the  detailed  and  the  high-­‐level  

MRP.   The   results   gathered   with   the   use   of   observations,   interviews   and   a   short   questionnaire   are  

presented  below.  

First   of   all,   it   was   observed   that   less   time  was   needed   for   composing   an   order   release   list   when   the  

HL/MRP  tool  was  used.  Furthermore,  observing  the  planner   in  determining  the  order  release   list  made  

visible   that  while   the  planner   tried  different  options   in   the  HL/MRP,  he  did  not  do   this   in   the  detailed  

Page 34: Thesis Ilse Bosklopper Final s1968645

33

MRP.   Questioning   the   planner   about   this,   led   to   the   insight   that   in   the   detailed  MRP   system   he  was  

afraid  that  when  he  changed  one  setting,  a  lot  of  things  would  change  in  the  system  and  he  would  lose  

the   overview.   Observations   also   presented   a   clear   difference   in   the   amount   of   manual   changes   the  

planner  made  to  the  system  and  the  order  release  list.  In  the  detailed  MRP  system,  the  planner  felt  the  

necessity  to  bring  forward  the  start  date  by  manually  adjusting  this  date  more  often  than  in  an  HL/MRP.  

These  adjustments  were  made  to  spread  the  capacity  requirement.  In  the  HL/MRP  tool,  the  planner  felt  

this   necessity   less,   he   said   about   this:   “I   assume   that   a   lot   of   the   capacity   problems   observed   on   the  

detailed  level,  are  not  a  problem  in  reality  due  to  the  flexibility  in  routing  of  the  job  shop.  In  the  HL/MRP  I  

am  better  able  to  estimate  whether  this  is  true  in  specific  cases”.  

After   all   experiments  were   conducted,   the   general   opinion  of   the   scheduler  was   asked  about   the   two  

planning   tools.  About   the  detailed  MRP   system,   the  planner   said:   “It   doesn’t  matter   how  much   time   I  

spend  on  perfecting  this  tool,  it  will  never  be  perfect  nor  will  it  be  exactly  correct”.  And    “Designing  and  

implementing  a  detailed  MRP  system  is  very  time  consuming,  keeping  the  MRP  system  up  to  date  is  even  

more  time  consuming”.  His  opinion  about  the  HL/MRP  is  illustrated  in  the  following  statements.  “While  I  

could  still  react  to  for  example  capacity  problems  in  the  future,  I  was  less  distracted  by  small  details  and  

could   focus   more   on   giving   a   feasible   production   schedule   for   the   whole   factory”.   And   “Estimating  

appropriate  planned  lead-­‐times  is  hard  at  first,  though  it  gets  easier  after  some  rounds.  In  the  end,  it   is  

easier  as  it  is  more  averaged  out  than  in  a  detailed  MRP.  However,  you  do  need  some  time  to  adjust.”  

To   support   the   interview   and   observations   with   more   quantitative   data,   the   results   of   the   short  

questionnaire  are  presented  in  table  5.4.  The  planner  was  asked  to  rank  each  factor  on  a  scale  of  1  to  5.  

It  is  visible,  that  the  HL/MRP  scores  slightly  better  on  all  factors  considered  

Human-­‐System  interaction  

Factor   Detailed  MRP   HL/MRP  

Ease  to  use   3   4  

Ease  to  understand   3   4  

Level  of  overview   3   4  

Satisfaction   2   4  

TABLE 5.4 RESULTS QUESTIONNAIRE  

 

Page 35: Thesis Ilse Bosklopper Final s1968645

34

6 DISCUSSION

As   this   is   an   explorative   case   study   we   will   discuss   the   most   remarkable   findings.   Starting   with   the  

influence   of   using   an   HL/MRP   on   planned   lead-­‐times.   Then,   we  will   continue   the   discussion  with   the  

influence  of  uncertainty  and  aggregation  level  on  lead-­‐time  performance.  After  that,  we  will  discuss  the  

implications  high-­‐level  MRP  has  on  the  human  scheduler.  

6.1  Planned  lead-­‐times  

This  research  provides  evidence  suggesting  that  PLTs  influences  actual  lead-­‐times  and  supports  previous  

research   done   in   this   area.   A   literature   study  made   clear   that   there   is   no   agreement   among   scholars  

about  how  PLTs  should  be  set.  Based  on   the   relation  between  PLTs  and   lead-­‐time  performance,   it  has  

become   clear   that   it   should   cover   processing   times   and   waiting   times.   Furthermore,   the   amount   of  

buffering   should   be   considered   as   a  management   decision   as   it   is   concerned  with   the   desired   service  

level.   In  HL/  MRP,  a   lower  buffer   is  needed   to  attain   the   same  service   level  due   to  variability  pooling.  

Based  on  these  insights  a  method  to  specify  PLTs  in  HL/MRP  systems  is  proposed.  The  outcomes  of  the  

experiments  indicate  that  the  proposed  PLT  specifying  method  has  a  better  lead-­‐time  performance  than  

an  experienced  based  PLT  method.  The  experience  based  PLT  method  leads  to  higher  PLTs,  resulting  in  

longer  lead-­‐times.  These  results  support  the  theory  of  a  self-­‐fulfilling  prophecy,  as  described  by  various  

scholars   (Karmarkar   1989;   Pahl   et   al.   2007;   Selçuk   et   al.   2006;  Wedel  &   Lumsden   1995).   The  method  

proposed  for  specifying  PLTs  should  be  seen  as  a  starting  point  for  further  research  in  this  area.    

6.2  Lead-­‐time  performance  

Results   indicate   that   routing   uncertainty   has   a   negative   influence   on   lead-­‐time   performance   when  

detailed  MRP  systems  are  used.  These  results  support  literature  suggesting  that  uncertainty  can  be  seen  

as  an  amplifier  that  negatively  affects  lead-­‐time  (Van  Nieuwenhuyse  et  al.  2011).  However,  our  findings  

suggest  that  routing  uncertainty  has  a  significant  positive  effect  when  high-­‐level  MRP  is  used.  

Furthermore,   experimental   results   show   that   MRP   aggregation   affects   lead-­‐time   performance,   but   it  

depends  heavily  on  the  way  PLTs  are  specified.  The  detailed  MRP  outperforms  the  high-­‐level  MRP  when  

the  same  method  for  specifying  PLTs  is  applied.  Using  the  high-­‐level  MRP  together  with  the  PLT  method  

that  is  proposed  in  this  paper,  results  in  a  significant  better  lead-­‐time  performance.    

Page 36: Thesis Ilse Bosklopper Final s1968645

35

6.3  Implications  for  human  scheduler  

Even  though  only  one  planner  has  been  observed,   this   research  shows  that   it   is   important   to  consider  

the   role   of   the   planner   in   research   on   lead-­‐time   performance.   The   role   of   the   planner   is   especially  

important   because   MTO/ETO   environments   involve   a   complexity   that   cannot   be   fully   captured   by  

planning  systems.  Moreover,  aggregating  the  MRP  system,  has  a  positive  effect  on  the  system-­‐planner  

interaction,  and  increases  the  ease  of  planning.    

 

 

 

 

 

Page 37: Thesis Ilse Bosklopper Final s1968645

36

7 CONCLUSION

This   study   shows   that   the  aggregation   level  of  MRP  positively   influences   the   relation  between   routing  

uncertainty   and   lead-­‐times.  While   routing   uncertainty   disrupts   the  performance  of   systems   controlled  

with  a  detailed  MRP,  it  enhances  the  lead-­‐time  performance  when  high-­‐level  MRP  is  used.  Furthermore,  

the   results   show   that   the  method   of   specifying   PLTs   is   of   high   influence   on   the   performance   of  MRP  

systems,  and  should  not  be   ignored   in   research.  Based  on   these   findings  we  cannot  conclude  whether  

HL/MRP   is   better   than   detailed  MRP  when   uncertainty   is   present   because   that  would   require   testing  

more  differing  PLT  settings.  The  final  conclusion  is  that  the  scheduler  who  participated  in  this  simulation  

experiments   favoured   HL/MRP.   It   was   easier   to   keep   overview   and   the   HL/MRP   system   was   better  

adjustable,  a  useful  characteristic  in  an  ever  changing  environment.    

7.1  Theoretical  implication  

This  paper  adds  to  current  research  on  MRP  systems  in  MTO/ETO  environments  because  it  is  not  focused  

on  trying  to  capture  the  complexity  with  ever  more  complex  algorithms.  On  the  contrary  this  study  tries  

to  reduce  that  complexity  by  planning  on  an  aggregated  level.  This  paper  has  shown  that  the  concept  of  

HL/MRP  is  very  promising  both  from  a  lead-­‐time  performance  as  human-­‐system  interaction  perspective.  

This  study  could  be  a  starting  point  for  more  research  that  examines  the  possibilities  of  high-­‐level  MRP.  

Moreover,  this  study  contributes  to  the  theory  by  providing  insights  in  the  relation  between  uncertainty  

and   lead-­‐time   performance.  While   existing   literature   suggests   that   uncertainty   always   has   a   negative  

effect  on   lead-­‐time  performance,  this  study  shows  that  under  the  right  conditions  uncertainty  can  also  

have  positive  effects  on  lead-­‐time  performance.    

7.2  Practical  implications  

The   insights   of   this   study   have   implications   for  MTO/ETO   schedulers.   Practitioners   are   investing  more  

and   more   resources   in   the   development   of   MRP   and   MES   systems   to   perfectly   plan   and   re-­‐plan  

production.  This  study  indicates  that  there  are  other  simpler  and  most  importantly  cheaper  solutions  to  

these  problems.  The  proposed  solution,  even  though  underdeveloped,  allows  schedulers  to  attain  more  

control  over  the  production  process  since  it  omits  ‘black  box’  planning.      

 

Page 38: Thesis Ilse Bosklopper Final s1968645

37

8 LIMITATIONS AND FURTHER RESEARCH

It   has   to   be   noted   that   this   research   contains   a   number   of   limitations,   which   have   to   be   taken   into  

account  when   assessing   the   findings   and   the   conclusions   of   this   research.  A   limitation   that   negatively  

influences  the  generalizability  of  the  conclusions  is  the  fact  that  this  paper  concerns  a  single  case  study.  

The   problem  with   a   single   case   study   is   that   these   findings  may   only   be   true   for   this   case.   However,  

simulating   the   production   and   planning   system   of   one   company   was   extremely   time   consuming,  

therefore   a  multiple   case   study   was   impossible.   So   we   chose   to   perform   an   in-­‐depth   analysis   over   a  

broad   analysis   at   multiple   cases.   However,   it   is   suggested   that   this   study   should   be   replicated   with  

multiple  MTO/ETO  companies.    

We  deliberately  left  lot-­‐sizes  out  of  the  scope  for  this  research.  This  is  valid  as  lot-­‐for-­‐lot  production  is  a  

frequent   configuration   within   MTO/ETO   companies.   However,   lot   sizes   do   influence   lead-­‐times(Enns  

2001).  Therefore,  we  suggest  the  inclusion  of  lot  sizes  in  future  research  endeavors.  

Moreover,  we   left   the   tasks  performed  before  production  out  of   the  scope.  For  simplicity   reasons   it   is  

assumed  that  front-­‐end  development  is  never  the  bottleneck,  and  can  always  be  performed  on  time.  In  

reality   front-­‐end   development   should   be   taken   into   consideration   when   a   planning   is   created.   We  

suggest  including  factors  like  this  when  more  is  known  on  the  potential  of  HL/  MRP.  

In   this   paper   we   have   explored   the   influences   of   the   MRP   aggregation   level   on   the   actual   planning  

performance.   However,   we   have  merely   compared   the   current   level   against   an   aggregated   level.  We  

believe   that   there  must   be   an   optimal   aggregation   level   at   which   to   perform   the   planning.   Research  

about  that  optimal  aggregation,  and  how  this  depends  on  contextual   factors  could  really  contribute  to  

the  overall  understanding  of  the  phenomena.  

Furthermore,   disadvantages   of   a   simulation   study   are   the   lack   of   exact/optimal   results,   the   bounded  

generalizability   and   the   big   amount   of   data   that   is   needed  (Robinson   2004).   Furthermore,   model  

development   is   time  consuming.  However,  given  the  research  objectives  and  the  exploratory  nature  of  

this   study,   the   advantages   outweigh   the   disadvantages   associated   with   simulation   methodology.   For  

future  studies  we  suggest  testing  HL/MRP  with  pilots.   In  retrospect  we  spent  a   lot  of  time  building  the  

simulation  models,  so  there  was  relatively  little  time  available  to  perform  the  experiments.  Simulating  an  

MTO/ETO   environment   poses   considerable   problems   to   a   researcher   because   of   the   high   variety   that  

characterizes  these  environments.  

Page 39: Thesis Ilse Bosklopper Final s1968645

38

9 REFERENCES

Alfieri,  A.,  Tolio,  T.  &  Urgo,  M.,  2012.  A  two-­‐stage  stochastic  programming  project  scheduling  approach  to  production  planning.  The  International  Journal  of  Advanced  Manufacturing  Technology,  62(1-­‐4),  pp.279–290.  

AMR,  1995.  A  Brief  History  of  Manufacturing  Systems,  Boston:  Advanced  Manufacturing  Research.  

Aslan,  B.,  Stevenson,  M.  &  Hendry,  L.C.,  2012.  Enterprise  Resource  Planning  systems:  An  assessment  of  applicability  to  Make-­‐To-­‐Order  companies.  Computers  in  Industry,  63(7),  pp.692–705.  Available  at:  http://linkinghub.elsevier.com/retrieve/pii/S0166361512000887  [Accessed  March  2,  2013].  

Bangsow,   S.,   2010.   Manufacturing   Simulation   with   Plant   Simulation   and   Simtalk:   Usage   and  Programming  with  Examples  and  Solutions,  Berlin:  Springer-­‐Verlag.  

Bertrand,   J.W.M.  &  Muntslag,   D.R.,   1993.   Production   control   in   engineer-­‐to-­‐order   firms.   International  Journal  of  Production  Economics,  30-­‐31,  pp.3–22.  

Burbidge,  J..,  1996.  Period  Batch  Control,  Oxford:  Oxford  University  Press,  Clarendon  Press.  

Dolgui,  A.  &  Prodhon,  C.,  2007.  Supply  planning  under  uncertainties  in  MRP  environments:  A  state  of  the  art.   Annual   Reviews   in   Control,   31(2),   pp.269–279.   Available   at:  http://linkinghub.elsevier.com/retrieve/pii/S1367578807000429  [Accessed  June  21,  2012].  

Enns,  S.T.,  2001.  MRP  performance  effects  due  to  lot  size  and  planned  lead  time  settings.  International  Journal  of  Production  Research,  39(4),  pp.461–480.  

Fabrycky,   W..   &   Onur,   L.,   1987.   An   input/output   control   system   for   the   synamic   job   shop.   IEEE  Transactions,  March,  pp.88–97.  

Fernandes,   N.O.   &   do   Carmo-­‐Silva,   S.,   2006.   Generic   POLCA-­‐A   production   and   materials   flow   control  mechanism  for  quick  response  manufacturing.   International  Journal  of  Production  Economics,  104,  pp.74–84.  

Hendry,   L.   &   Muda,   S.,   2003.   The   Shen   model   for   MTO   SME’s:   a   performance   improvement   tool.  International   Journal   of   Operations   &   Production  Management,   23(5),   pp.470–486.   Available   at:  http://eprints.lancs.ac.uk/28998/.  

Hicks,   C.   &   McGovern,   T.,   2009.   Product   life   cycle   management   in   engineer-­‐to-­‐order   industries.  International  Journal  of  Technology  Management,  48(2),  p.153.  

Ho,   J.C.   &   Chang,   Y.L.,   2001a.   An   integrated   MRP   and   JIT   framework.   Computers   and   Industrial  Engineering,  41(2),  pp.173–185.  

Ho,   J.C.   &   Chang,   Y.L.,   2001b.   An   integrated   MRP   and   JIT   framework.   Computers   and   Industrial  Engineering.  

Page 40: Thesis Ilse Bosklopper Final s1968645

39

Hong,  K.K.  &  Kim,  Y.G.,  2002.  The  critical   success   factors   for  ERP   implementation:  An  organizational   fit  perspective.  Information  and  Management,  40(1),  pp.25–40.  

Hopp,  W..  &  Spearman,  M.L.,  2011.  Factory  Physics  2nd  ed.,  Boston:  McGraw-­‐Hill  Education.  

Hoyt,  J.,  1978.  Dynamic  lead  times  that  fit  today’s  dynamic  planning  (Q.U.O.A.T.  lead  times).  Production  and  Inventory  Management,  19,  pp.63–72.  

Ioannou,  G.  &  Dimitriou,   S.,   2012.   Lead   time  estimation   in  MRP/ERP   for  make-­‐to-­‐order  manufacturing  systems.   International   Journal   of   Production   Economics,   139(2),   pp.551–563.   Available   at:  http://linkinghub.elsevier.com/retrieve/pii/S0925527312002216  [Accessed  November  25,  2012].  

Ioannou,  G.  &  Dimitriou,  S.,  Lead  time  estimation  in  MRP/ERP  for  make-­‐to-­‐order  manufacturing  systems.  International   Journal   of   Production   Economics,   139(2),   pp.551–563.   Available   at:  http://linkinghub.elsevier.com/retrieve/pii/S0925527312002216  [Accessed  November  25,  2012].  

Jodlbauer,  H.  &  Reitner,  S.,  2012.  Material  and  capacity  requirements  planning  with  dynamic  lead  times.  International  Journal  of  Production  Research,  50(16),  pp.4477–4492.  

Jonsson,   P.   &   Mattsson,   S.-­‐A.,   2006.   A   longitudinal   study   of   material   planning   applications   in  manufacturing   companies.   International   Journal   of  Operations  &   Production  Management,   26(9),  pp.971–995.   Available   at:   http://www.emeraldinsight.com/10.1108/01443570610682599  [Accessed  January  18,  2013].  

Karmarkar,  U.S.,  1989.  Getting  Control  of  Just-­‐in-­‐Time:  Manufacturers  need  kanban  for  daily  operations  and  MRP||  for  long-­‐term  planning.  Harvard  Business  Review,  67(5),  pp.122–131.  

Koh,   S.C.L.   &   Saad,   S.M.,   2002.   Development   of   a   business   model   for   diagnosing   uncertainty   in   ERP  environments.  Available  at:  http://shura.shu.ac.uk/1723/.  

Koh,   S.C.L.   &   Saad,   S.M.,   2003.  MRP-­‐controlled  manufacturing   environment   disturbed   by   uncertainty.  Robotics  and  Computer-­‐Integrated  Manufacturing,  19(1-­‐2),  pp.157–171.  

Lix,   L..,   Keselman,   J..   &   Keselman,   H..,   1996.   Consequences   of   Assumption   Violations   Revisited:   A  quantitative   review   of   Alternatives   of   the   one-­‐way   Analysis   of   varience   F   Test.   Review   of  Educational  Research,  66(4),  pp.579–619.  

Mabert,   V.A.,   2007.   The   early   road   to   material   requirements   planning.   Journal   of   Operations  Management,   25(2),   pp.346–356.   Available   at:  http://linkinghub.elsevier.com/retrieve/pii/S0272696306000301  [Accessed  June  4,  2013].  

MacCarthy,  B.L.L.,  Wilson,  J.R.J.R.  &  Crawford,  S.,  2001.  Human  performance  in   industrial  scheduling:  A  framework   for   understanding.  Human   Factors   and   Ergonomics   in  Manufacturing,   11(4),   pp.299–320.  Available  at:  http://doi.wiley.com/10.1002/hfm.1016.  

Melnyk,  S.  &  Piper,  C.,  1981.  Implementation  of  material  requirements  planning.  International  journal  of  production  and  Operations  Management,  2,  pp.52–60.  

Page 41: Thesis Ilse Bosklopper Final s1968645

40

Murthy,   D.N.P.   &   Ma,   L.,   1991.   MRP   with   uncertainty:   a   review   and   some   extensions.   International  Journal  of  Production  Economics.  

Van  Nieuwenhuyse,   I.   et   al.,   2011.  Advanced   resource  planning  as  a  decision   support  module   for  ERP.  Computers   in   Industry,   62(1),   pp.1–8.   Available   at:  http://linkinghub.elsevier.com/retrieve/pii/S0166361510000904  [Accessed  December  5,  2012].  

Orlicky,   J.,   1975.  Material   Requirements   Planning:   The   New  Way   of   Life   in   Production   and   Inventory  Management,  New  York:  McGraw-­‐Hill.  

Ou-­‐Yang,  C.  &  Pei,  H.N.,  1999.  Developing  a  STEP-­‐based  integration  environment  to  evaluate  the  impact  of   an  engineering   change  on  MRP.   International   Journal   of  Advanced  Manufacturing   Technology,  15(11),  pp.769–779.  

Pahl,  J.,  Voss,  S.  &  Woodruff,  D.L.,  2007.  Production  planning  with  load  dependent  lead  times:  an  update  of   research,   Available   at:   http://www.springerlink.com/index/10.1007/s10479-­‐007-­‐0173-­‐5  [Accessed  August  23,  2011].  

Pandey,   P..,   Yenradee,   P.  &  Archariyapruek,   S.,   2000.  A   finite   capacity  material   requirements  planning  system.  Production  Planning  &  Control,  11(2),  pp.113–121.  

Powell,   D.,   Riezebos,   J.   &   Strandhagen,   J.O.,   2013.   Lean   production   and   ERP   systems   in   small-­‐   and  medium-­‐sized   enterprises:   ERP   support   for   pull   production.   International   Journal   of   Production  Research,   51(2),   pp.395–409.   Available   at:  http://www.tandfonline.com/doi/abs/10.1080/00207543.2011.645954  [Accessed  April  29,  2012].  

Riezebos,   J.,   2001.   Design   of   a   Period   Batch   Control   Planning   System   for   Cellular   Manufacturing,  Groningen:   PhD   Thesis   University   of   Groningen.   Available   at:  http://dissertations.ub.rug.nl/faculties/management/2001/j.riezebos/?pLanguage=en&pFullItemRecord=ON.  

Riezebos,  J.  et  al.,  2011.  Design  of  Scheduling  Algorithms:  Applications.  In  J.  C.  Fransoo,  T.  Waefler,  &  J.  R.  Wilson,  eds.  Behavioral  Operations  in  Planning  and  Scheduling.  Springer,  pp.  371–412.  Available  at:  http://www.springerlink.com/index/X2311L03VJ454Q6X.pdf  [Accessed  October  10,  2011].  

Riezebos,  J.,  2013.  Shop  Floor  Planning  and  Control  in  Team-­‐based  Work  Processes.  International  Journal  of   Industrial  Engineering  and  Management,   4(2),  pp.51–5Riezebos,   J.   (2013).   Shop  Floor  Planning  and  C.  Available  at:  http://www.iim.ftn.uns.ac.rs/casopis/ijiem_vol4_issue2.php.  

Robinson,  K.R.  &  Moses,  S.A.,  2006.  Effect  of  granularity  of  resource  availability  on  the  accuracy  of  due  date  assignment.  International  Journal  of  Production  Research,  44(24),  pp.5391–5414.  Available  at:  http://www.tandfonline.com/doi/abs/10.1080/00207540600665810  [Accessed  October  8,  2011].  

Robinson,  S.,  2004.  Simulation,  the  practice  of  Model  Development  and  Use,  Chichester:  Wiley.  

Page 42: Thesis Ilse Bosklopper Final s1968645

41

Saenz  de  Ugarte,  B.,  Artiba,  A.  &  Pellerin,  R.,  2009.  Manufacturing  execution  system  –  a  literature  review.  Production   Planning   &   Control,   20(6),   pp.525–539.   Available   at:  http://www.tandfonline.com/doi/abs/10.1080/09537280902938613  [Accessed  October  8,  2011].  

Sargent,   R.G.,   2013.   Verification   and   validation   of   simulation  models.   Journal   of   simulation,   pp.12–24.  Available  at:  http://dx.doi.org/10.1057/jos.2012.20.  

Selçuk,  B.,  Fransoo,  J.C.  &  De  Kok,  A.G.,  2006.  The  effect  of  updating  lead  times  on  the  performance  of  hierarchical  planning  systems.  International  Journal  of  Production  Economics.  

Soepenberg,  G.D.,  Land,  M.J.  &  Gaalman,  G.J.C.,  2012.  Adapting  workload  control  for  job  shops  with  high  routing   complexity.   International   Journal   of   Production   Economics,   140(2),   pp.681–690.   Available  at:  http://dx.doi.org/10.1016/j.ijpe.2012.03.018.  

Stevenson,  M.,   Hendry,   L.   &   Kingsman,   B.G.,   2005.   A   review   of   production   planning   and   control:   the  applicability   of   key   concepts   to   the   make-­‐to-­‐order   industry.   ,   54(5).   Available   at:  http://dx.doi.org/10.1080/0020754042000298520.  

Stevenson,  M.,  Hendry,  L.C.  &  Kingsman,  B.G.,  2005.  A   review  of  Production  Planning  and  Control:   the  applicability   of   key   concepts   to   the  Make   to   Order   industry.   International   Journal   of   Production  Research,  43(5),  pp.869–898.  Available  at:  http://eprints.lancs.ac.uk/30655/.  

Suri,  R.,  2010.  It’s  About  Time,  the  Competitive  Advantage  of  Quick  Response  Manufacturing,  New  York:  Taylow  &  Francis  Group.  

Taal,  M.  &  Wortmann,   J.C.,   1997.   Integrating  MRP  and   finite   capacity  planning.  Production  Planning  &  Control,  8(3),  pp.245–254.  

Vandaele,   N.   &   De   Boeck,   L.,   2003.   Advanced   Resource   Planning.   Robotics   and   Computer-­‐Integrated  Manufacturing,   19(1-­‐2),   pp.211–218.   Available   at:  http://linkinghub.elsevier.com/retrieve/pii/S0736584502000819  [Accessed  March  20,  2015].  

Vandaele,  N.J.  et  al.,  2008.  Load-­‐Based  POLCA:  An  Integrated  Material  Control  System  for  Multiproduct,  Multimachine   Job   Shops.  Manufacturing   &   Service   Operations  Management,   10(2),   pp.181–197.  Available  at:  http://msom.journal.informs.org/cgi/doi/10.1287/msom.1070.0174  [Accessed  July  19,  2011].  

Wedel,   J.   &   Lumsden,   K.,   1995.   The   influence   of   lead-­‐time   reductions   on   decisions   and   rules   in   the  production  planning  process.  International  Journal  of  Production  Economics,  41,  pp.399–404.  

Wight,  O.,  1984.  MRP||:  Unlocking  America’s  Productivity  Potential,  Boston:  CBI  Publishin.  

Yücesan,   E.   &   de   Groote,   X.,   2000.   Lead   times,   order   release   mechanisms,   and   customer   service.  European   Journal   of   Operational   Research,   120(1),   pp.118–130.   Available   at:  http://linkinghub.elsevier.com/retrieve/pii/S0377221798003932.  

Page 43: Thesis Ilse Bosklopper Final s1968645

42

 

APPENDIX A: PRODUCTION SIMULATION MODEL

Page 44: Thesis Ilse Bosklopper Final s1968645

43

APPENDIX B: WORKSTATION SETTINGS Process  parameters  (variable)  

Source  of  unpredictable  variability   Distribution   Parameters  

Processing  time  P1:  Extrusion  large  

(Unit:  hours)   Lognormal  

• Mu=1,1,  Sigma=2,9  • Based  on  data  extracted  from  

enterprise  management  system  for  96  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P31:   Press   machine   (unit:  

hours)  

Negative  

exponential  

• Beta  =  3,2  • Based  on  data  extracted  from  

enterprise  management  system  for  100  jobs  

• Data  is  negative  exponential  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P32:   Press   machine   (unit:  

hours)   Lognormal  

• Mu=3,9,  Sigma=4,8  • Based  on  data  extracted  from  

enterprise  management  system  for  34  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P33:   Press   machine   (unit:  

hours)   Lognormal  

• Mu=1,3,  Sigma=0,2  • Based  on  data  extracted  from  

enterprise  management  system  for  100  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P34:   Press   machine   (unit:  

hours)   Erlang  

• Alpha=3,4,  Beta=0,46  • Based  on  data  extracted  from  

enterprise  management  system  for  100  jobs  

• Data  is  Erlang  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P35:   Press   machine   (unit:  

hours)   Lognormal  

• Mu=2,2,  Sigma=2,3  • Based  on  data  extracted  from  

enterprise  management  system  

Page 45: Thesis Ilse Bosklopper Final s1968645

44

for  25  jobs  • Data  is  Lognormal  distributed  as  

assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P36:   Press   machine   (unit:  

hours)   Lognormal  

• Mu=6,2,  Sigma=17  • Based  on  data  extracted  from  

enterprise  management  system  for  50  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P37:   Press   machine   (unit:  

hours)   Normal  

• Mu=49,  Sigma=21  • Based  on  data  extracted  from  

enterprise  management  system  for  25  jobs  

• Data  is  Normal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P39:   Press   machine   (unit:  

hours)   Lognormal  

• Mu=1,9,  Sigma=1,2  • Based  on  data  extracted  from  

enterprise  management  system  for  89  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P40:   Press   machine   (unit:  

hours)   Uniform  

• Min=0,5,  Max=2,2  • Based  on  data  extracted  from  

enterprise  management  system  for  30  jobs  

• Data  is  Uniform  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P42:   Press   machine   (unit:  

hours)   Normal  

• Mu=1,1,  Sigma=0,6  • Based  on  data  extracted  from  

enterprise  management  system  for  92  jobs  

• Data  is  Normal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P45:   Press   machine   (unit:  

hours)  

Negative  

exponential  

• Beta  =  3,8  • Based  on  data  extracted  from  

enterprise  management  system  for  25  jobs  

Page 46: Thesis Ilse Bosklopper Final s1968645

45

• Data  is  negative  exponential  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P47:   Press   machine   (unit:  

hours)   Lognormal   • Same  distribution  as  P39  

Processing   time   P48:   Press   machine   (unit:  

hours)   Erlang  

• Mu=1,9,  Sigma=0,46  • Based  on  data  extracted  from  

enterprise  management  system  for  79  jobs  

• Data  is  Erlang  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P51:   Press   machine   (unit:  

hours)   Erlang  

• Mu=0,91,  Sigma=0,2  • Based  on  data  extracted  from  

enterprise  management  system  for  25  jobs  

• Data  is  Erlang  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P55:   Press   machine   (unit:  

hours)   Erlang  

• Mu=139,2,  Sigma=139,1  • Based  on  data  extracted  from  

enterprise  management  system  for  25  jobs  

• Data  is  Erlang  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing  time  P511:  Extrusie  small  

(Unit:  hours)    Lognormal  

• Mu=0,73,  Sigma=4,6  • Based  on  100  measurements  of  

individual  products  extracted  from  the  ERP  system  

• Data  is  Lognormal  distributed  as  assessed  by  Kolmogorov-­‐Smirnov  test  

Processing  time  P528:  Hakken  en  Boren  

(Unit:  hours)    Lognormal  

• Mu=2,3,  Sigma=4,8  • Based  on  100  measurements  of  

individual  products  extracted  from  the  ERP  system  

• Data  is  Lognormal  distributed  as  assessed  by  Kolmogorov-­‐Smirnov  test  

Page 47: Thesis Ilse Bosklopper Final s1968645

46

Processing  time  P530:  Stralen  

(Unit:  hours)    Uniform  

• Min=0,5,  Max=2,0  per  batch  of  20  • Based  on  observations  and  

interviews  with  the  production  manager  and  operators  

Processing  time  P531:  Smeren  

(Unit:  hours)   Uniform  

• Min=2,0  Max=3,0  per  batch  of  20  • Based  on  observations  and  

interviews  with  the  production  manager  and  operators  

Processing  time  P535:  Kalander  

(Unit:  hours)  

 Negative  

Exponential  

• Beta  =  0,21  • Based  on  data  extracted  from  

enterprise  management  system  for  50  jobs  

• Data  is  negative  exponential  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing  time  P557:  Bekleding  

(Unit:  hours)   Lognormal  

• Mu=56,  Sigma=554  • Based  on  data  extracted  from  

enterprise  management  system  for  100  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing   time   P558:   After   processing  

press  machines  

(Unit:  hours)   Lognormal  

• Mu=3,6,  Sigma=5,1  • Based  on  data  extracted  from  

enterprise  management  system  for  100  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing  time  P559:  Pre-­‐processing  

(Unit:  hours)   Lognormal  

• Mu=1,1,  Sigma=2  • Based  on  data  extracted  from  

enterprise  management  system  for  100  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing  time  P561:  Bouwwikkel  

(Unit:  hours)   Lognormal    

• Mu=7,3,  Sigma=21  • Based  on  data  extracted  from  

enterprise  management  system  for  100  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Page 48: Thesis Ilse Bosklopper Final s1968645

47

Processing   time  P563:   Pre/after   processing  

extrusion  

(Unit:  hours)  

Negative  

Exponential  

• Beta  =  0,21  • Based  on  data  extracted  from  

enterprise  management  system  for  25  jobs  

• Data  is  negative  exponential  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing  time  P564:  Bouwwikkel2  

(Unit:  hours)   Lognormal  

• Mu=3,  Sigma=4,7  • Based  on  data  extracted  from  

enterprise  management  system  for  96  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Processing  time  P565:  After  processing  

(Unit:  hours)   Lognormal  

• Mu=3,7,  Sigma=1,1  • Based  on  data  extracted  from  

enterprise  management  system  for  96  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

P567:  Afwerken  en  testen  

(Unit:  hours)   Weibull  

• Beta  =  0,21  • Based  on  data  extracted  from  

enterprise  management  system  for  25  jobs  

• Data  is  negative  exponential  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

P579:  Quality  Check  

(Unit:  hours)   Lognormal  

• Mu=8,5,  Sigma=24  • Based  on  data  extracted  from  

enterprise  management  system  for  100  jobs  

• Data  is  Lognormal  distributed  as  assessed  by  the  Kolmogorov-­‐Smirnov  test  

Process  parameters  (constant)  

Parameter   Distribution   Parameters  

 Setup  time  P1:  Extrusie  large  

(Unit:  hours)    Constant  

• 0,5  hour  per  product  ‘batch’    • Based  on  observations  and  

interviews  with  the  production  manager  and  operators  

Page 49: Thesis Ilse Bosklopper Final s1968645

48

Recovery  time  P1:  Extrusion  large   Constant  

• 0,5  hour  per  product  ‘batch’    • Based  on  observations  and  

interviews  with  the  production  manager  and  operators  

Setup  time  P31  –  P55:  all  pressing  machines  

(unit:  hours)   Constant  

• 0,25  hours  per  product  • Based  on  observations  and  

interviews  with  the  production  manager  and  operators  

Processing  time  P65:  Robot  (unit:  hours)   Constant  

• 1,13  hours  per  product  • Based  on  observations  and  

interviews  with  the  production  manager  and  operators  

Setup  time  P65:  Robot  

(Unit:  hours)   Constant  

• 0,10  hour  per  product  • Based  on  observations  and  

interviews  with  the  production  manager  and  operators  

 Setup  time  P530:  Stralen  

(Unit:  hours)    Constant  

• 0,5  hours  per  batch  of  20  products  

• Based  on  observations  and  interviews  with  the  production  manager  and  operators  

Setup  time  P531:  Smeren  

(Unit:  hours)   Constant  

• 0,5  hours  per  batch  of  20  products  

• Based  on  observations  and  interviews  with  the  production  manager  and  operators  

 Setup  time  P535:  Kalander  

(Unit:  hours)    Constant  

• 0,25  hours  per  product  ‘batch’  • Based  on  observations  and  

interviews  with  the  production  manager  and  operators  

Setup  time  P557:  Bekleding  

(Unit:  hours)   Constant  

• 0,25  hours  per  product    • Based  on  observations  and  

interviews  with  the  production  manager  and  operators  

Setup  time  P561:    

(Unit:  hours)   Constant  

• 0,1  hours  per  product  • Based  on  observations  and  

interviews  with  the  production  manager  and  operators  

Setup  time  P564:    

(Unit:  hours)   Constant  

• 0,25  hours  per  product  • Based  on  observations  and  

interviews  with  the  production  manager  and  operators  

Page 50: Thesis Ilse Bosklopper Final s1968645

49

 Processing  time  Ketels  

(Unit:  hours)    Constant  

• The  caldron  is  heated  once  a  day,  during  the  night.  Products  remain  inside  the  whole  night  (21.00  till  09.00).    

APPENDIX C: WELCH’S METHOD

APPENDIX D: CONFIDENCE INTERVAL METHOD

!"100.000,00!!!"!!!!

!100.000,00!!!200.000,00!!!300.000,00!!!400.000,00!!!500.000,00!!!600.000,00!!!700.000,00!!!800.000,00!!!900.000,00!!

1! 5! 9! 13!17!21!25!29!33!37!41!45!49!53!57!61!65!69!73!77!81!85!89!93!97!

Cumula&

ve)m

ean)

Number)of)runs)

CIM,)S1D)

cumula4ve!mean!

Lower!Interval!

Upper!Interval!

Page 51: Thesis Ilse Bosklopper Final s1968645

50

APPENDIX E: NORMALLITY TESTS

Page 52: Thesis Ilse Bosklopper Final s1968645

51

APPENDIX F: INFLUENCE OF PLT METHOD

APPENDIX G: INFLUENCE OF UNCERTAINTY ON LEAD-TIMES

Page 53: Thesis Ilse Bosklopper Final s1968645

52

APPENDIX H: AVERAGE DIFFERENCE IN LEAD-TIME

Page 54: Thesis Ilse Bosklopper Final s1968645

53

APPENDIX I: INFLUENCE OF AGGREGATION ON LEAD-TIMES