Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and...

80
Thermal Modeling © M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson, Ph.D. Thompson Consulting, Inc. 9 Jacob Gates Road Harvard, MA 01451 Phone: (978) 456-7722 Email: [email protected] Website: http://www.thompsonrd.com Jeff W. Roblee, Ph.D. VP of Engineering Precitech, Inc. Keene, NH www.ametek.com

Transcript of Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and...

Page 1: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

1

Power Electronics Notes 29Thermal Circuit Modeling and Introduction

to Thermal System Design

Marc T. Thompson, Ph.D.

Thompson Consulting, Inc.

9 Jacob Gates Road

Harvard, MA 01451

Phone: (978) 456-7722

Email: [email protected]

Website: http://www.thompsonrd.com

Jeff W. Roblee, Ph.D.VP of EngineeringPrecitech, Inc.Keene, NHwww.ametek.com

Page 2: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

2

Summary

• Basics of heat flow, as applied to device sizing and heat sinking

• Use of thermal circuit analogies– Thermal resistance– Thermal capacitance

• Examples– Picture window examples– Magnetic brake– Plastic tube in sunlight

Page 3: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

• All components (capacitors, inductors and transformers, semiconductor devices) have maximum operating temperatures specified by manufacturer• High operating temperatures have undesirable effects on components:

Need for Component Temperature Control

Capacitors• Electrolyte evaporation rate increases significantly with temperature increases and thus shortens lifetime

Magnetic Components• Losses (at constant power input) increase above 100 °C• Winding insulation (lacquer or varnish) degrades above 100 °C

Semiconductors• Unequal power sharing in parallel or series devices• Reduction in breakdown voltage in some devices• Increase in leakage currents• Increase in switching times

3

Page 4: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

• Control voltages across and current through components via good design practices

• Snubbers may be required for semiconductor devices.• Free-wheeling diodes may be needed with magnetic

components• Maximize heat transfer via convection and radiation from component to ambient

• Short heat flow paths from interior to component surface and large component surface area.• Component user has responsibility to properly mount temperature-critical components on heat sinks.

• Apply recommended torque on mounting bolts and nuts and use thermal grease between component and heat sink.

• Properly design system layout and enclosure for adequate air flow

Temperature Control Methods

4

Page 5: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

Heat Transfer• Heat transfer (or heat exchange) is the flow of thermal

energy due to a temperature difference between two bodies

• Heat transfers from a hot body to a cold one, a result of the second law of thermodynamics

• Heat transfer is slowed when the difference in temperature between the two bodies reduces

5

Page 6: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

6

Intuitive Thinking about Thermal Modeling

• Heat (Watts) flows from an area of higher temperature to an area of lower temperature

• Heat flow is by 3 mechanisms– Conduction - transferring heat through a solid

body– Convection - heat is carried away by a moving

fluid• Free convection• Forced convection - uses fan or pump

– Radiation• Power is radiated away by electromagnetic

radiation• You can think of high- thermal conductivity

material such as copper and aluminum as an easy conduit for conductive power flow…. i.e. the power easily flows thru the material

Page 7: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

7

Thermal Circuit Analogy• Use Ohm’s law analogy to model thermal

circuits

• Thermal resistance

• k = thermal conductivity (W/(mK))• Thermal capacitance: analogy isn’t as

straightforward• cp = heat capacity of material (Joules/(kg-K))

TH

TH

CC

RR

PI

TV

kA

lR

A

lR TH

ELECTRICAL THERMAL Forcing variable Voltage (V) Temperature (K) Flow variable Current (A) Power (W) Resistance Resistance (V/A) Thermal resistance (K/W) Capacitance Capacitance (V/C) Thermal capacitance (J/K)

pTH McC

Page 8: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

8

Thermal Circuit Analogy

ELECTRICAL THERMAL

Forcing variable Voltage (V) Temperature (K)

Flow variable Current (A) Heat (W)

Resistance Resistance (V/A) Thermal resistance (K/W)

Capacitance Capacitance (V/C) Thermal capacitance (J/K)

• Heat transfer can be modeled by thermal circuits• Using Ohm’s law analogy:

Reference: M. T. Thompson, Intuitive Analog Circuit Design, Newnes, 2006.

thV R I T R P

Page 9: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

9

Thermal Circuit Analogy

• Elementary thermal network

Reference: M. T. Thompson, Intuitive Analog Circuit Design, Newnes, 2006.

Page 10: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

10

Thermal Resistance

• Thermal resistance quantifies the rate of heat transfer for a given temperature difference

• k = thermal coefficient (W/(mK))• A = cross section (m2)• l = length (m)

TH

l l KR ( ) R

A kA W

T 2T 1

Area A

l

P cond

Page 11: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

11

Thermal Capacitance

• Thermal capacitance is an indication of how well a material stores thermal energy

• It is used when transient phenomena are considered• Analogy isn’t as straightforward• M = mass (kg)• cp = heat capacity of material (Joules/(kg-K))

pTH McC TH

dTP C

dt

Page 12: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

12

Heat Flow Mechanisms

• Heat flows by 3 mechanisms; the driving force for heat transfer is the difference in temperature

1. Conduction

2. Convection • Free convection• Forced convection

3. Radiation

Reference: R. E. Sonntag and C. Borgnakke, Introduction to Engineering Thermodinamics, John Wiley, 2007

Page 13: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

13

Conduction• Heat is transferred through a solid from an area of

higher temperature to lower temperature

• To have good heat conduction, you need large area, short length and high thermal conductivity

• Example: aluminum plate, l = 10 cm, A=1 cm2, T2 = 25C (298K), T1 = 75C (348K), k = 230 W/(m-K)

condTH

cond R

TT

kA

lTT

P,

2121

WattCkA

lR o

condTH /35.4)10(230

)1.0(4,

WattsPcond 5.11

35.4

50

T 2T 1

Area A

l

P cond

Page 14: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

14

Thermal Conductivity of Selected Materials

Material Thermal conductivity @ 300K k, W/(m-K)

Copper 400 Aluminum 200

Iron 25-75 Steel (1008) 50

Stainless steel 12-35 Brick 0.4-0.5 Cork 0.04

Epoxies 0.16-1.4 Glass-epoxy 3

Window glass 0.78 Still air 0.027

References: 1. B. V. Karlekar and R. M. Desmond, Engineering Heat Transfer, pp. 8, West Publishing, 1977

2. Burr Brown, Inc., “Thermal and Electrical Properties of Selected Packaging Materials”

Page 15: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

Thermal Equivalent Circuits

• Heat flow through a structure composed of layers of different materials

• Thermal equivalent circuit simplifies calculation of temperatures in various parts of structure.

P

R sacsR

jcR

Junction Case Sink Ambient

jT cT sT aT++++

----

Chip T j

Case Tc

Isolation pad

Heat sink T s

Ambient Temperature T a

• Ti = Pd (Rjc+ Rcs + Rsa) + Ta

• If there parallel heat flow paths, then thermal resistances combine as do electrical resistors in parallel.

15

Page 16: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

16

Thermal Conductivity of Selected Materials

Reference: International Rectifier, Application note N-1057, “Heatsink Characteristics”

Page 17: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

17

Heat Capacity of Selected Materials

Reference: B. V. Karlekar and R. M. Desmond, Engineering Heat Transfer, West Publishing, 1977

• Heat capacity is an indication of how well a material stores thermal energy

Page 18: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

18

Heat Capacity of Alloys

Reference: http://www.engineeringtoolbox.com/specific-heat-metal-alloys-d_153.html

Page 19: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

19

Convection

Reference: International Rectifier, Application note N-1057, “Heatsink Characteristics”

• Convection can be free (without a fan) or forced (with a fan)

Page 20: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

20

Free Convection

Reference: http://www.freestudy.co.uk/heat%20transfer/convrad.pdf

Page 21: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

21

Heat Transfer Coefficient for Convection

• Heat is transferred via a moving fluid• Convection can be described by a heat transfer

coefficient h and Newton’s Law of Cooling:

• Heat transfer coefficient depends on properties of the fluid, flow rate of the fluid, and the shape and size of the surfaces involved, and is nonlinear

• Equivalent thermal resistance:

)( as TThAP

hAR convTH

1,

Test condition h, W/m2oC Air, free convection 5-15

Air, forced convection 15-50 Water, forced convection 300-12,000

Water, boiling 5,500-100,000

Reference: B. V. Karlekar and R. M. Desmond, Engineering Heat Transfer, pp. 14, West Publishing, 1977

Page 22: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

22

Free Convection• Heat is drawn away from a surface by a free gas

or fluid• Buoyancy of fluid creates movement• For vertical fin:

• A in m2, dvert in m• Example: square aluminum plate, A=1 cm2, Ta =

25C (298K), Ts = 75C (348K)

asvert

asconv TThA

d

TTAP

25.0

25.1

34.1T sT a

Area A

d vert

)/(2.11

56)01.0(

50)10(34.1

2

25.0

25.14

KmWh

mWP

eq

conv

Page 23: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

23

Free Convection Heat Transfer Coefficient (h)• For vertical fin:

• Area A in m2, fin vertical height dvert in m

T sT a

Area A

d vert

25.0

35.1

vert

As

d

TTh

Page 24: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

24

Forced Convection• With a fan

Reference: International Rectifier, Application note N-1057, “Heatsink Characteristics”

Page 25: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

25

Forced Convection

• In many cases, heat sinks can not dissipate sufficient power by natural convection and radiation

• In forced convection, heat is carried away by a forced fluid (moving air from a fan, or pumped water, etc.)

• Forced air cooling can provide typically 3-5 increase in heat transfer and 3-5 reduction in heat sink volume– In extreme cases you can do 10x better by using big

fans, convoluted heat sink fin patterns, etc.

Page 26: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

26

Thermal Performance Graphs for Heat Sinks

Reference: http://electronics-cooling.com/articles/1995/jun/jun95_01.php

• Curve #1: natural convection (P vs. Tsa)• Curve #2: forced convection curve (Rsa vs. airflow)

12

Page 27: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

27

Radiation

• Energy is transferred through electromagnetic radiation

Reference: International Rectifier, Application note N-1057, “Heatsink Characteristics”

Page 28: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

28

Radiation

• Energy is lost to the universe through electromagnetic radiation

• = emissivity (0 for ideal reflector, 1 for ideal

radiator “blackbody”); = Stefan-Boltzmann constant = 5.6810-8 W/(m2K4)

• Example: anodized aluminum plate, = 0.8, A=1 cm2, Ta = 25C (298K), Ts = 75C (348K)

P rad

T s

T a

Area A

Material Emissivity Aluminum

Polished Oxidized Anodized

0.04-0.06 0.2-0.33 0.7-0.9

Copper Polished Dull

0.02 0.15

Glass 0.8-0.95

44asrad TTAP

mWPrad 31)298348)(10)(107.5)(8.0( 4448

Page 29: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

29

Radiation

• Incident, reflected and emitted radiation; e.g. body in sunlight

Reference: http://www.energyideas.org/documents/factsheets/PTR/HeatTransfer.pdf

Page 30: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

30

Emissivity

Reference: International Rectifier, Application note N-1057, “Heatsink Characteristics”

Page 31: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

31

Emissivity

Reference: International Rectifier, Application note N-1057, “Heatsink Characteristics”

Page 32: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

32

Comments on Radiation• In multiple-fin heat sinks with modest temperature

rise, radiation usually isn’t an important effect– Ignoring radiation results in a more conservative

design• Effective heat transfer coefficient due to radiation for

ideal blackbody ( = 1) at with surface temperature 350K radiating to ambient at 300K is hrad = 6.1 W/(m2K), which is comparable to free convection heat transfer coefficient– However, radiation between heat sink fins is

usually negligible (generally they are very close in temperature)

Page 33: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

33

IC Mounted to Heat Sink

• Interfaces– Heat sink-ambient: convection (free or forced)– Heat sink-case of IC: conduction– Case – junction: conduction

Page 34: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

Multiple Fin Heat Sink

Reference: http://www.oldcrows.net/~patchell/AudioDIY/AudioDIY.html

34

Page 35: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

35

IC Mounted to Heat Sink

Reference: International Rectifier, Application Note AN-997

Page 36: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

36

IC Mounted to Heat Sink --- Close-up

Reference: International Rectifier, Application Note AN-997

• Thermal compound is often used to fill in the airgap voids

Page 37: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

37

IC Mounted to Heat Sink --- Contact Resistance vs. Torque (TO-247)

Reference: International Rectifier, Application Note AN-997

Page 38: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

38

IC Mounted to Heat Sink --- Contact Resistance vs. Interface Material (TO-247)

Reference: International Rectifier, Application Note AN-997

Page 39: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

39

IC Mounted to Heat Sink --- Contact Resistance vs. Interface Material (TO-247)

Reference: International Rectifier, Application Note AN-997

• Dry vs. thermal compound vs. electrically-insulating pad

Page 40: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

40

Thermal Grease

Page 41: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

41

Heat Sink Pad

Page 42: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

Transient Thermal Impedance

• Heat capacity per unit volume Cv = dQ/dT [Joules /oC] prevents short duration high power dissipation surges from raising component temperature beyond operating limits.

• Transient thermal equivalent circuit. Cs = CvV where V is the volume of the component.

P(t)R

jT (t)

aT

Cs

P(t)

t

RPo

tSlope = 0.5

log Z (t)

• Transient thermal impedance Z(t) = [Tj(t) - Ta]/P(t) •= π R Cs /4 =

thermal time constant

• Tj(t = ) = 0.833 Po R

42

Page 43: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

Use of Transient Thermal Impedance• Response for a rectangular power dissipation pulse P(t) = Po {u(t) - u(t - t1)}.

P(t)

t

RPo

tt1 t1

Z (t)

1-Z (t - t )

net response

-R

• Tj(t) = Po { Z(t) - Z(t - t1) }

• Symbolic solution for half sine power dissipation pulse.

•P(t) = Po {u(t - T/8) - u(t - 3T/8)} ; area under two curves identical.

•Tj(t) = Po { Z(t - T/8) - Z (t - 3T/8) }T/8 3T/8

T/2

Po

t

P(t)

Equivalent rectangular pulse

Half sine pulse

43

Page 44: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

Multilayer StructuresP(t)

Silicon

Copper mountHeat sink

Tj

CuT

cT

aT

• Multilayer geometry

• Transient thermal equivalent circuit

Tj CuTcT

aT

C (Si)s C (Cu)sC (sink)sP(t)

R (sink)R (Cu)R (Si)

R (Si)

R (Cu)R (Si)

+

R (sink)R (Cu)R (Si)

+ +

log(t)

log[Z (t)]

(Si) (sink) (Cu)

• Transient thermal impedance (asymptotic) of multilayer structure assuming widely separated thermal time constants.

44

Page 45: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

Heat Sinks• Aluminum heat sinks of various shapes and sizes widely available for cooling components.

• Often anodized with black oxide coating to reduce thermal resistance by up to 25%.

• Sinks cooled by natural convection have thermal time constants of 4 - 15 minutes.

• Forced-air cooled sinks have substantially smaller thermal time constants, typically less than one minute.

• Choice of heat sink depends on required thermal resistance, Rsa, which is determined by several factors.

• Maximum power, Pdiss, dissipated in the component mounted on the heat sink.

• Component's maximum internal temperature, Tj,max

• Component's junction-to-case thermal resistance, Rjc. • Maximum ambient temperature, Ta,max.

• Rsa = {Tj,max - Ta,max}Pdiss - Rjc • Pdiss and Ta,max determined by particular application.• Tj,max and Rjc set by component manufacturer.

45

Page 46: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

Heat Conduction Thermal Resistance

• Generic geometry of heat flow via conduction

Pcond

Temperature = T1Temperature = T2

d

h

b

T > T12

heat flow direction

• Heat flow Pcond [W/m2] =kA (T2 - T1) / d = (T2 - T1) / R cond

• Thermal resistance R cond = d / [k A]

• Cross-sectional area A = hb

• k = Thermal conductivity has units of W-m-1-oC-1 (kAl = 220 W-m-1-oC-1 ).• Units of thermal resistance are oC/W

46

Page 47: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

Radiative Thermal Resistance

• Stefan-Boltzmann law describes radiative heat transfer.

• Prad = 5.7x10-8 EA [( Ts)4 -( Ta)4 ] ; [Prad] = [Watts]

• E = emissivity; black anodized aluminum E = 0.9 ; polished aluminum E = 0.05

• A = surface area [m2] through which heat radiation emerges.

• Ts = surface temperature [K] of component. Ta = ambient temperature [K].

• (Ts - Ta )/Prad = R ,rad = [Ts - Ta][5.7x10-8EA {( Ts/100)4 -( Ta/100)4 }]-1

• Example - black anodized cube of aluminum 10 cm on a side. Ts = 120 C and Ta = 20 C

• R,rad = [393 - 293][(5.7) (0.9)(6x10-2){(393/100)4 - (293/100)4 }]-1

• R,rad = 2.2 C/W

47

Page 48: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

Convective Thermal Resistance

• Pconv = convective heat loss to surrounding air from a vertical surface at sea level having height dvert [in meters] less than one meter.

• Pconv = 1.34 A [Ts - Ta]1.25 dvert-0.25

• A = total surface area in [m2]

• Ts = surface temperature [K] of component. Ta = ambient temperature [K].

• [Ts - Ta ]/Pconv = R,conv = [Ts - Ta ] [dvert]0.25[1.34 A (Ts - Ta )1.25]-1

• R,conv = [dvert]0.25 {1.34 A [Ts - Ta]0.25}-1

• Example - black anodized cube of aluminum 10 cm on a side. Ts = 120C and Ta = 20 C.

• R,conv = [10-1]0.25([1.34] [6x10-2] [120 - 20]0.25)-1

• R,conv = 2.2 C/W

48

Page 49: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

Combined Effects of Convection and Radiation

• Heat loss via convection and radiation occur in parallel.

• Steady-state thermal equivalent circuit

• R,sink = R,rad R,conv / [R,rad + R,conv]

• Example - black anodized aluminum cube 10 cm per side

• R,rad = 2.2 C/W and R,conv = 2.2 C/W

• R,sink = (2.2) (2.2) /(2.2 + 2.2) = 1.1 C/W

P R,conv,rad

R

sT

aT

49

Page 50: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

50

Cost for Various Heat Sink Systems

Reference: http://www.electronics-cooling.com/Resources/EC_Articles/JUN95/jun95_01.htm

• Note: heat pipe and liquid systems require eventual heat sink

Page 51: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

51

Comparison of Heat Sinks

Reference: http://www.ednmag.com/reg/1995/101295/21df3.htm

STAMPED EXTRUDED “CONVOLUTED” FAN

Page 52: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

52

2N3904 Static Thermal Model

Page 53: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

53

Liquid Cooling

• Advantages– Best performance per unit volume– Typical thermal resistance 0.01-0.1 C/W

• Disadvantages– Need a pump– Heat exchanger– Possibility of leaks – Cost

Page 54: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

54

Heat Pipe

• Heat pipe consists of a sealed container whose inner surfaces have a capillary wicking material

• Boiling heat transfer moves heat from the input to the output end of the heat pipe

• Heat pipes have an effective thermal conductivity much higher than that of copper

Page 55: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

55

Thermoelectric (TE) Cooler

• “Cooler” is a misnomer; a TE cooler is a heat pump• Peltier effect: uses current flow to pump heat from

cold side to warm side• Pumping is typically 25% efficient; to pump 2 Watts

of waste heat takes 8 Watts or more of electrical power

• However, device cooled device can be at a lower temperature than ambient

• TE coolers can heat or cool, depending on current flow

Page 56: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

56

Thermoelectric (TE) Cooler

Page 57: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

57

Fan

Page 58: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

58

Example 1: Picture Window

• Consider picture window with A = 1 m2, 2.5 mm thick

• Ti = 70F (25C); Approximate To = 32F (0C) for 6 months (long winter !)

• What is total cost for heat loss at $0.10/kW-hr

T iT o

wR iw R w R ow

glass

P

T i T o

Page 59: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

59

Example 1: Picture Window

• Assumptions:– Window glass k = 0.78 W/(m-K)– Inside and outside window, heat

transfer dominated by free convection; h = 10 W/(m2K)

• Riw = Row = 1/(hA) = 0.1 C/Watt• Rw = w/(kA) =0.0025/(0.78)(1) = 0.0032

C/Watt• Rtotal = 0.2032 C/Watt• P = DT/Rtotal = 25C/0.2032C/Watt =

123 Watts• E = 3 kW-hr/day or 539 kW-hr for winter• Cost = $53.9

T iT o

wR iw R w R ow

glass

P

T i T o

Page 60: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

60

Example 2: Picture Window with Double Pane

• Assumptions:– Still air in airgap k = 0.027

W/(m-K)– Ignore radiation

• 1 cm airgap: Rairgap = g/(kA) =0.01/(0.027)(1) = 0.37 C/Watt

• Rtotal = 0.58 C/Watt• P = DT/Rtotal = 25C/0.58C/Watt =

43 W• E = 1 kW-hr/day or 188 kW-hr for

winter• Cost = $18.80

– Cost will be lower if gap has vacuum

T i T airgap

wR iw R w R ow

P

T i T o

g

glass glass T o

R wR airgap

Page 61: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

61

Example 3: Temperature Rise in Magnetic Brake

Aluminum reaction rail (4 mm thick)

Steel back plate (11 mm thick)v

N

S

N

S

N

S

N

S

• Train mass M = 12,300 kg• Initial speed = 16 meters/second• Brake aluminum fin length 10 meters• Stopping time: a few seconds• Cycle time: 1200 seconds• What is temperature rise in aluminum fin and in

steel ?

Page 62: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

62

Example 3: Magnetic Brake Thermal Model

• Model for 1 meter long section of brake• Guesstimated dominant time constant = 4,500

seconds (0.5 x 9000 F) based on thermal model above

Page 63: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

63

Example 3: Magnetic Brake Temperature Profile

• PSPICE simulation

Page 64: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

64

Example 4: White Pipe in the Hot Sun

• How hot does the surface of a white pipe get? Assume R = 0.565 m, pipe length = 1m, sunlight = 1200 W/m2, h = 8 W/m2-K, = 0.9 and solar absorption coeff. solar = 0.26

• Assume no conductive heat transfer

Page 65: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

65

Example 4: Pipe in the Hot Sun

convradreflsun QQQQ

Qsun = 1356 WQrefl = (1-solar)Qsun = 1003 W

• Therefore, 353 Watts is absorbed by the pipe, then dissipated via radiation and convection

Page 66: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

66

Example 4: Pipe in the Hot Sun

• Given these assumptions, temperature rise above ambient (Ts – TA) 7 degrees C with Qconv = 195 W and Qrad = 158 W

For radiation:

)( 44Asrad TTAQ

with = 0.9, = 5.6810-8 W/(m2K4) and surface area A = 1.0 m2 .

For free convection:

Asconv TThA

Q

1

with free convection heat transfer coefficient estimated as h 8 W/(m2-K).

Page 67: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

67

Example 5: What Happens if Pipe is Black?

Qrefl goes way down (solar energy absorption goes up, as solar = 0.9)

Page 68: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

68

Other Important Thermal Design Issues• Contact resistance

– How to estimate it– How to reduce it

• Thermal pads, thermal grease, etc.• Proper torque for mounting screws

• Geometry effects– Vertical vs. horizontal fins– Fin efficiency (how close together can you put

heat sink fins ?)

Page 69: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

69

Some Heat Sinks

• TO-92 (small transistor package)

Reference: Aavid-Thermalloy

Page 70: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

70

Some Heat Sinks• TO-220

Reference: Aavid-Thermalloy

Page 71: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

71

Some Heat Sinks

• TO-247

Reference: Aavid-Thermalloy

Page 72: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

72

Some Heat Sinks

• Vicor power brick

Reference: Aavid-Thermalloy

Page 73: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

73

Some Heat Sinks

• Liquid cooled plate

Reference: Aavid-Thermalloy

Page 74: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

74

Extrusions

Reference: Aavid-Thermalloy

Page 75: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

75

Cooling Fins

References: J H. Lienhard IV and J H. Lienhard V, “A Heat Transfer Textbook,” 3 rd edition, Phlogiston Press, Cambridge, MA 2008

Page 76: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

76

Improving Conductive Heat Transfer

References: International Rectifier, Application note N-1057, “Heatsink Characteristics”

Page 77: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

77

Improving Forced Convection Heat Transfer

References: International Rectifier, Application note N-1057, “Heatsink Characteristics”

Page 78: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

78

Improving Forced Convection Heat Transfer

References: International Rectifier, Application note N-1057, “Heatsink Characteristics”

Page 79: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

79

Improving Radiation Heat Transfer

References: International Rectifier, Application note N-1057, “Heatsink Characteristics”

Page 80: Thermal Modeling© M. T. Thompson, 2009 1 Power Electronics Notes 29 Thermal Circuit Modeling and Introduction to Thermal System Design Marc T. Thompson,

Thermal Modeling

© M. T. Thompson, 2009

80

Conversion Factors

References: J H. Lienhard IV and J H. Lienhard V, “A Heat Transfer Textbook,” 3 rd edition, Phlogiston Press, Cambridge, MA 2008