Thermal and ion-mediated surface chemistry on Si(111)7x7 and modified...

37
1 1 Thermal and Low Thermal and Low - - energy Ion energy Ion - - mediated Surface Chemistry of mediated Surface Chemistry of Halocarbons on Si(111)7 Halocarbons on Si(111)7 × × 7 and 7 and SiO SiO 2 2 Zhenhua He Department of Chemistry

Transcript of Thermal and ion-mediated surface chemistry on Si(111)7x7 and modified...

  • 11

    Thermal and LowThermal and Low--energy Ionenergy Ion--mediated Surface Chemistry of mediated Surface Chemistry of

    Halocarbons on Si(111)7Halocarbons on Si(111)7××7 and 7 and SiOSiO22Zhenhua He

    Department of Chemistry

  • 22

    OutlineOutlineIntroduction

    • Si(111) surface• Experimental• Motivation• Halocarbons

    • Present work• Modification of Si(111)7x7 and SiO2 surfaces by low-energy

    Ion-mediated surface reactions of three fluorocarbons

    • Formation of novel adstructures and functionalization of Si(111) surfaces using thermal evolutions of six-member family of chloroethylenes

    Summary & Outlook

  • 33

    Introduction Introduction –– Si(111) substrateSi(111) substrate• Diamond structure of Si

    • Si(111)7x7 surface

    Reconstruction

    7x7

    • Silicon is the predominant material in the semiconductor industry

    • Ideal platform for studying site-specific surface reactions on Si(111)7x7 template

    1x1

  • 44

    Present work Present work -- ProcedureProcedureIon-mediated surface reactions• Low-energy (50 eV) fluorocarbon ionsChemisorption at RT• A family of six chloroethylenes• Adsorption Properties (by vibrational EELS)• Surface structure (by LEED)Thermal desorption• Adsorption Energy & geometry (by DFT)• Surface chemistry (by temperature dependent

    EELS, TDS)Surface condition• Si(111)7x7• Vitreous SiO2• Ar+ sputtered Si (more defects)

  • 55

    IntroductionIntroductionExperimental & theoretical methodsExperimental & theoretical methods

    Experimental• UHV chamber (P

  • 66

    Experimental: EELSExperimental: EELSPrinciple:∆E = hω = E impact – E scattered

    MonochromatorAnalyzer

    Monoenergeticelectron beam

    Overall energy resolution

    FWHM ∆E1/2 =

    Sqrt [(∆E1/2M)2+ (∆E1/2A)2+ (∆E1/2non-ideal)2]

    Great efforts are needed to get better resolution

    Tuning the EELS system very time-consuming

  • 77

    Experimental: EELSExperimental: EELS

    820

    150

    2900

    (b) H2C=CF2 10000 L

    1201360 (c) H2C=CH2

    1000 L

    Cou

    nts

    of S

    catte

    red

    Ele

    ctro

    ns

    Si(111)7x7x50

    1070

    0 1000 2000 3000 4000 5000

    135 1510

    2980

    1050

    510

    (a) H2C=CCl2 100 L

    Energy Loss (cm-1)

    Principle: Energy Loss∆E = hω = E impact – E scattered

    Three frequency ranges

    Dipole Scattering Selection Rules

    Active Inactive

    Scattering Modes:• Dipole mode--dominated at specular direction• Impact mode--better resolved at off-specular

    direction

  • 88

    Experimental: TDS setupExperimental: TDS setup

    20 30 40 50 60 70 80 90 100 1100

    20

    40

    60

    80

    100

    Rel

    ativ

    e In

    tens

    ity

    m/z

    Wepil NIST

    Cracking pattern H2C=CCl2

    0 100 200 300 400 500 6000

    200

    400

    600

    800

    1000

    Tem

    pera

    ture

    (K)

    Time (s)

    Cracking pattern for a specific molecule

    Temperature ramps as a linear function of time

    • Intensities for different masses →amount of desorbed species

    • Desorption temperature → bonding energy & adsorption geometry

    • Shape of TDS profiles → reaction order

    400 600 800 1000

    H2

    C2H2

    HCl

    C2H2Cl2

    100 L H2C=CCl2 on Si(111)7x7

    X 0.2

    X 0.5

    X 0.02

    Rel

    ativ

    e In

    tens

    ity

    Temperature (K)

    SiCl2

  • 99

    Experimental Experimental -- LEEDLEED

    Si(111)7x7 100 L iso-DCE/Si(111)7x7

    • Structure of the near-surface region

    • Changes of surface structure when exposed to different types/amounts gases

  • 1010

    Fluorocarbons: Objective & MotivationFluorocarbons: Objective & Motivation

    • To study the interaction of low-energy fluorocarbon ions with Si(111)7x7 and vitreous SiO2 at molecular level (mechanisms and reaction pathways)

    • Scientific reasons• Halo Silicon Surface Chemistry• Ion Surface Chemistry

    • Practical reasons• To understand the fundamental processes in plasma

    etching and film deposition. • New inter-metal dielectric films :

    • Halonated SiO2• Halocarbonated-SiO2

  • 1111

    Introduction Introduction ––Halocarbons PlasmaHalocarbons Plasma• Schematic diagram of Plasma etching system

    • Our simple ion gun

    • High aspect ratio etch

    MEMS example

    • Halocarbon gas of interest is cracked and ionized by electrons inside the ion gun• Postive halocarbon ion beam with high energy (>500 eV) is formed by the lenses • Low-energy ions are obtained by the floating voltage on the sample

  • 1212

    Vibrational frequencies (in cmVibrational frequencies (in cm--11) of reference silicon ) of reference silicon and related systemsand related systems

    Vibrational mode This work Ref. [21] Ref. [22] Ref. [23,24,25,26]

    Si−F bendSi−F2 bendSi−F3 bend 337Si−F4 bend 380

    Si−C stretch 810-850 750-950Si−F stretch 850 825

    Si−F2 stretch827,a 870a,

    920,b 965b 920

    Si−F3 stretch 838,a 1015b 965

    Si−H stretch 2080-2180 2088-2120

    C−H stretch 2860 2860-3000

    C−H2 stretch

    C−H3 stretch2879-2955

    780-885

    300340

  • Fluorocarbon ions: exposure on 7x7Fluorocarbon ions: exposure on 7x7

    0 1000 2000 3000 4000 5000

    2095

    2080

    2110

    850

    830

    (a) 1 kL (b) 2.2 kL (c) 5 kL (d) 10 kL

    180

    3710

    2130

    2860

    810

    340

    (d)(c)(b)(a)

    Si(111)7x7 CH2F2 at 50 eV

    x20

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Energy Loss (cm-1)

    0 1000 2000 3000 4000 5000

    (e) 10 kL, 50 eV 2100

    29001360

    810

    850

    (d) 5 kL, 50 eV

    x50

    120

    (a) 10 kL, 0 eV

    (b) 1 kL, 50 eV

    (c) 2 kL, 50 eV

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Energy Loss (cm-1)

    Si(111)7x7H2C=CF2

    0 500 1000 1500 2000 2500

    160

    870

    845

    780

    885340

    (d)(c)(b)(a)

    Si(111)7x7 CF4 at 50 eV

    x20(a) 1 kL (b) 2.5 kL (c) 5 kL (d) 10 kL

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Energy Loss (cm-1)

    CF4 CH2F2 C2H2F2

    νSi–Fx = 780-885νSi–C = 810-850

    cm-1

    δSi–Fx300-380 νCH

    νCHνSiH

    νSiH

    C2H2F2+ (30%)C2H2F+ (20%)CF+ (15%)CH2F+ (12%)C2HF+ (11%)

    CH2F+ (38%)CHF2+ (37%)CF+ (11%)CHF+ (4%)

    CF3+ (78%)CF2

    + (10%)CF+ (3%)

  • Fluorocarbon ions: Si(111) Fluorocarbon ions: Si(111) vs.vs. SiOSiO22

    0 500 1000 1500 2000 2500

    950

    385

    385 710

    (e) sample (c) annealed to 900 K

    (d) sample (c) annealed to 700 K

    (c) 10 kL CF4 at 50 eV

    (b) 5 kL CF4 at 50 eV

    (a) Vitreous SiO2180

    960

    1040

    1040

    840

    385

    Vitreous SiO2

    x10

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Energy Loss (cm-1)

    0 500 1000 1500 2000 2500

    180

    810

    865

    885

    810

    340

    (d)

    (c)

    (b)

    (a)

    Si(111)7x7

    x5 (a) 10 kL CF4 at 50 eV(b) annealed to 700 K(c) annealed to 900 K(d) annealed to 1100 K

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Energy Loss (cm-1)

    CF3+ incident on 7x7 CF3+ incident on SiO2

    νSiC

    δSi–Fx

    νSi-O-SiSymmetric 710Asymmetric 1040

    δSi–O-Si

    • More SiFx, and fewer SiC on SiO2

  • Fluorocarbon ions: CHFluorocarbon ions: CH22FF22 vs.vs. CC22HH22FF22the effect of C=C bondthe effect of C=C bond

    0 1000 2000 3000 4000 5000

    850

    385710

    1040

    (f) 900 K

    (e) 830 K

    (d) 780 K

    (c) 700 K

    (b) 10 kL CH2F2 at 50 eV

    (a) Vitreous SiO2

    2180

    180

    1040

    920

    2860

    790

    385

    Vitreous SiO2

    x10

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Energy Loss (cm-1)0 1000 2000 3000 4000 5000

    2185

    1050

    770

    385

    690

    840

    2920

    (g) 900 K

    (f) 810 K

    (e) 730 K

    (d) 20 kL

    (c) 10 kL

    (b) 2 kL

    (a) SiO2

    x20

    160

    Vitreous SiO2H2C=CF2 at 50 eV

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Energy Loss (cm-1)

    νSi-O-Si

    • Fewer SiFx on SiO2 produced by ion-irradiation in C2H2F2

  • Fluorocarbon ions: TDSFluorocarbon ions: TDSCF4 and CH2F2 C2H2F2

    300 400 500 600 700 800 900 1000 1100

    0

    1

    2

    0

    1

    2

    3

    4

    5

    6

    (a) mass 66

    Temperature (K)

    Si(111)7x7 Vitreous SiO2

    10 kL C2H2F2 at 50 eV(b) mass 85

    10 kL C2H2F2 Si(111)7x7 Vitreous SiO2

    Rel

    ativ

    e In

    tens

    ity0

    1

    2

    300 400 500 600 700 800 900 10000

    1

    2

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    (b) mass 66

    (a) mass 47

    Temperature (K)

    Si(111)7x7 Vitreous SiO2

    10 kL CH2F2 at 50 eV

    (c) mass 85

    10 kL CF4 at 50 eV Si(111)7x7 Vitreous SiO2

    Rel

    ativ

    e In

    tens

    ity

    • Fewer desorption of SiF2 and SiF4from SiO2 ion-irradiated in C2H2F2than from si(111)7x7

    • More desorption of SiF2 and SiF4from SiO2 ion-irradiated in CF4 or CH2F2

  • 1717

    Fluorocarbon ions (50 eV): SummaryFluorocarbon ions (50 eV): Summary

    Carbon state transition plus

    Reaction layer = SiFx and

    carbonaceous layer

    SiC alloyand/or

    Hydrocarbonfragments

    SiF2 and/or H2

    Bombardment...

    350-700 K

    SiF4

    desorption

    700-1000 K

    Silicon carbideCarbon diffusion

    into bulk

    CHxFy+ or C2HxFy+

    • CFx layer is only formed at sufficiently high dose of CF3+ ion incidence (>3x1016cm-2, H. Toyoda, H. Morishima, R. Fukute, Y. Hori, I. Murakami, and H. Sugai, J. Appl. Phys. 95 (2004) 5172)

    • In our case, the estimated dose of CF3+ ion incident on the sample surface is ~1016 cm-2 for 10,000 L exposure of CF3+ ions

    • Ion current ~ 200nAcm-2 at 1x10-6 Torr ion dose ~ 1x1016cm-2 for 10,000 L of CF3+ ions

  • 1818

    Fluorocarbon ions (50 eV): SummaryFluorocarbon ions (50 eV): Summary• The resulting surface products on Si(111)7x7 and

    vitreous SiO2 obtained by the irradiation of low-energy fluorocarbon ions from three fluorocarbons with different F-to-C ratio have been examined systematically

    • On Si(111)7x7, the ion-irradiation in the three fluorocarbons produced similar reaction layer: fluorosilyl (SiFx) and carbonaceous cluster (SiC and/or hydrocarbon fragments)

    • On vitreous SiO2, more fluorosilyl (SiFx) formed than on 7x7 surface when the surfaces exposed to the same dose of ion-irradiation generated in CF4 or CH2F2

    • But, the same dose of ion-irradiation generated in C2H2F2 produced a smaller amount of fluorosilyl (SiFx) on Si(111)7x7 than on vitreous SiO2

    • The presence or absence of a C=C bond in the sputtering gas and the F-to-C ratio of a sputtering gas are found to play important roles

  • 1919

    Introduction Introduction –– ChloroethylenesChloroethylenes

    • Adsorbates of interest

    • Common industrial chemicals for processing and treatment of silicon wafers

    • An ideal platform for studying geometric isometric effects and the effects of halogen substitution on organosilicon chemistry

    • Competition among several plausible reaction mechanisms: cycloaddition to “diradical” on surface, and formation of surface vinyl via cleavage of C–Cl bonds as well as dative bonding resulting from the inductive effect of Cl atoms

    MCE PCETCE

    iso- trans- cis-DCE

    • Cl content• isometric • Si9H12 cluster

    • diradical

    4.6 Å

    4.3 Å

    2.4 Å

    2.9

    Å

    3.3 Å

  • 2020

    Si(111)7x7Si(111)7x7

  • 2121

    Chloroethylene chemisorption: Cl content effectChloroethylene chemisorption: Cl content effect

    820

    150

    2900510

    (b) H2C=CHCl

    820

    1201360

    (c) H2C=CH2

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Si(111)7x7x50

    1070

    0 1000 2000 3000 4000 5000

    135 1510

    29801050

    510

    (a) H2C=CCl2

    Energy Loss (cm-1)

    •• DechlorinationDechlorinationPrimary channel for 2 and Primary channel for 2 and

    more Cl substitutionmore Cl substitution

    •• CycloadditionCycloaddition

    νC=C

    νCH2

    C sp3

    C sp2

    νSi–Cl = 510 cm-1

  • 2222

    Chloroethylene Chloroethylene -- isometric effectisometric effect

    AA

    Different adstructuresChlorovinyl and vinylidene

    Low saturation exposure for molecules with =CCl2 group

    Steric effect between cis-DCE and trans-DCE

    0 1000 2000 3000 4000 5000

    115082

    010

    5078

    074

    0

    1510

    160

    120

    135

    130

    x50

    1360

    2980

    510

    (d) trans - C2H2Cl2

    (c) cis-C2H2Cl2

    (b) iso-C2H2Cl2

    (a) C2HCl3

    Si(111)7x7

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Energy Loss (cm-1)

    1150

    0 200 400 600 800 10000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    TCE

    iso-DCE

    cis-DCE

    trans-DCE

    Rel

    ativ

    e In

    tens

    ity

    Nor

    mal

    ized

    to th

    e El

    astic

    Pea

    k (%

    )

    Exposure (L)

    C−H stretch2980 cm-1

    the relative intensity of EELS feature →Saturation exposure

    ClH

    Si

    H

    Cl

    H

    Si

    H

    HCl

    Si

    HH

    SiSi

    H

    ClCl

    Si

    H

    HCl

    Si

    Cl

    νSi–Cl = 510 νC=C=1510 νCH=2980Si

    Cl

  • 2323

    Chloroethylene: thermal desorptionChloroethylene: thermal desorption

    H300 K

    2

    Cl

    HCl Si

    +

    Cl

    Si

    ClH

    (V)

    Si

    H

    H300 K

    2

    +

    ClCl Si

    +Cl

    Si

    ClH

    Si

    H

    (IV)

    H

    2

    >450 K

    Si

    >450 KCl

    SiH

    H+ 2

    Cl

    2 Si

    H

    SiSi

    H

    (VI)

    >580 K

    hydrocarbonfragmentsor SiC

    +

    H

    Si2

    2 + H

    HSi

    400 600 800 1000 1200

    x 0.2

    (f) mass 98

    (e) mass 96

    x 0.05

    (d) mass 63

    (c) mass 36

    (b) mass 26

    (a) mass 2

    1000 L cis-C2H2Cl2 on Si(111)7x7

    x 0.02

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Temperature (K)

    IIIII

    SiCl2

    HCl

    H2

    350 K

    +

    +

    +300 K

    (VI)

    H

    ClCl

    H

    Si

    H

    ClCl

    H

    SiSi

    Si

    Si

    Si

    Cl

    Si

    Cl

    Si H

    Cl

    H

    Cl

    H

    H I

    Three states of acetylene desorption

    • Desorption from di-σ bonded vinylene

    • Low temperature desorption• Resulting from β-Cl elimination of 2-chlorovinyl

  • 2424

    Novel adstructure Novel adstructure -- vinylidenevinylidene• First observation of vinylidene

    on semiconductor surface produced by RT adsorption of iso-dichloroethylene on Si(111)7x7• The presence of the νC=C EELS

    feature• Supported by DFT calculations

    D2

    0 1000 2000 3000 4000 5000

    880

    x25

    (i) 950 K

    (h) 890 K

    (g) 840 K

    (f) 770 K1360

    1050

    2080

    2980

    510

    1510

    135

    (e) 720 K

    (d) 670 K

    (c) 580 K

    (b) 450 K

    (a) 100 L

    Si(111)7x7H2C=CCl2

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Energy Loss (cm-1)

    820

    νC=C

    νCH2

    δ ρCH2νSi–Cl = 510 cm-1 ΔE=- 510.2 kJ mol-1

  • 2525

    Trichloroethylene Trichloroethylene –– thermal evolutionthermal evolution• First observation of acetylide on

    semiconductor surface produced by RT adsorption of iso-dichloroethylene on Si(111)7x7• The presence of the νCH EELS

    feature at 3300 cm-1

    0 1000 2000 3000 4000 5000

    (i ) 970 K

    (h) 920 K

    820

    1150

    2080 2900

    510

    1510

    120

    (g) 850 K

    (f ) 700 K

    (e) 580 K(d) 450 K

    (a) 100 L

    Si(111)7x7Cl2C=CHCl

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Energy Loss (cm-1)

    (b) 350 K

    (c) 400 K

    3300

    2980

    x25

    Mono-σ bonded Si-C≡CH

    (d)

    H

    HCl

    2

    +

    300 K

    2

    hydrocarbonfragmentsand/or SiC

    2 +

    2

    3

    +

    + Si

    H

    >580 K

    Cl

    Cl

    Cl

    Si

    Cl H

    Si

    Cl

    Si

    Si

    Cl

    H

    Si Si

    Cl

    Si

    Si

    (VII) (X)

    + (IX)

    Cl

    Si32

    +Cl

    >450 KSi

    ClCl

    Si

    H

    Si(VI)

    Cl

    Si

    Cl

    >450 K

    +

    H

    Si

    Cl

    SiSi

    (VIII)

    di-σ bonded chlorovinylene (Hċ=ċCl)mono-σ bonded chlorovinyl (Clċ=CHCl)

    νCH2

    νC=C

  • 2626

    Cycloaddition, dechlorination and dative adsorptionCycloaddition, dechlorination and dative adsorption

    Summary of geometries found in the room-temperature adsorption of Chloroethylenes

    300 K+

    SiSi

    Cl

    ClCl

    ClCl

    ClCl

    Cl

    SiSi

    • Dechlorination occurs for all the chloroethylenes

    • [2+2] cycloaddition found in monochloroethylene on Si(111)7x7

    • Dative adsorption involving the chlorine (Cl) for all chloroethylenes on Si(111)

    H 2 +Cl

    Cl

    H

    Si

    ClH

    +H

    Si

    ClCl

    Si

    H

    SiSi

    H

    300 K

    2 Si 2 Si

    H

    H

    +

    300 K

    2H

    Cl

    Si

    Cl

    Si

    Si

    H

    HH

    HH

    SiSi

    H

    Cl

    (I)

    (II)

  • 2727

    Summary Summary • First systematic study of thermal evolution of a family of

    chloroethylenes on Si(111)7x7 surface• Dechlorination occurs for all the chloroethylenes; [2+2]

    cycloaddition found monochloroethylene/Si(111); Dative adsorption involving the Cl for all chloroethylenes/Si(111)

    • First observation of novel adstructures formed by chemisorption of chloroethylenes: in particular, di-σbonded vinylidene on semiconductor surface

    • First comprehensive study of the interactions of low fluorocarbon ions with Si(111) and SiO2 surfaces using more-surface sensitive technique: vibrational EELS

    • The presence or absence of a C=C bond in the sputtering gas and the F-to-C ratio of a sputtering gas are found to play important roles on the resulting surface products obtained by the irradiation of low-energy fluorocarbon ions

  • 2828

    Outlook Outlook • Further studies of surface chemistry mediated

    by the low-energy fluorocarbons ions using more chemical-sensitive techniques (e.g. AES, electronic EELS, XPS)

    • Extend the current study of chloroethylenes on Si(111)7x7 to bromoethylenes and iodoethylenes on Si(111)7x7 to explore the site-specific surface reactions of Si(111)7x7 surface

    • Study post adsorption of lager hydrocarbons with unsaturated bonds (e.g. styrene) on silicon surface with the vinyl and vinylidene to explore the further functionalization of silicon surface for molecular electronics

  • 2929

    Thank youThank you• Dr. K.T. Leung

    • Dr. Dan Thomas, Dr. Pu Chen and Dr. Qing-Bin Lu

    • Dr. Qiang Li and Xiaojin Zhou • Xiang Yang and Sergey Mitlin• Dr. Michael Thiam, Dr. Nina Heinig• Dr. Hui Yu

    • Entire staff of the Science Shops

    We, the willingLed by the unknowing

    Are doing the impossibleFor the ungrateful

    We have done so muchfor so long

    With so littleWe are now qualified

    To do anythingWith nothing

  • 3030

    Chemisorption theory: searching an elephantChemisorption theory: searching an elephant

    E. Shustorovich, Accounts of Chemical Research, 21 (1988)183.

  • 3131

    Si(111)7x7: DAS modelSi(111)7x7: DAS model

  • 3232

    Trichloroethylene Trichloroethylene –– thermal evolutionthermal evolution• First observation of acetylide on

    semiconductor surface produced by RT adsorption of iso-dichloroethylene on Si(111)7x7• The presence of the νCH EELS

    feature at 3300 cm-1

    0 1000 2000 3000 4000 5000

    (i ) 970 K

    (h) 920 K

    820

    1150

    2080 2900

    510

    1510

    120

    (g) 850 K

    (f ) 700 K

    (e) 580 K(d) 450 K

    (a) 100 L

    Si(111)7x7Cl2C=CHCl

    Rel

    ativ

    e In

    tens

    ity (a

    rbitr

    ary

    units

    )

    Energy Loss (cm-1)

    (b) 350 K

    (c) 400 K

    3300

    2980

    x25

    Si-C≡CH

    (c)

    H

    Cl

    Cl

    350 K

    +

    + Cl

    +300 K

    (V)

    SiH

    ClCl

    Cl

    Si

    H

    ClCl

    Cl

    SiSi

    Si

    Cl

    Cl

    H

    Si

    SiSi

    Cl

    (d)

    H

    HCl

    2

    +

    300 K

    2

    hydrocarbonfragmentsand/or SiC

    2 +

    2

    3

    +

    + Si

    H

    >580 K

    Cl

    Cl

    Cl

    Si

    Cl H

    Si

    Cl

    Si

    Si

    Cl

    H

    Si Si

    Cl

    Si

    Si

    (VII) (X)

    + (IX)

    Cl

    Si32

    +Cl

    >450 KSi

    ClCl

    Si

    H

    Si(VI)

    Cl

    Si

    Cl

    >450 K

    +

    H

    Si

    Cl

    SiSi

    (VIII)

  • 3333

    Si(111)7x7Si(111)7x7

  • 3434

    • In our case, the estimated dose of CF3+ ion incident on the sample surface is ~1016 cm-2 for 10,000 L exposure of CF3+ ions

    • Ion current ~ 200nAcm-2 at 1x10-6 Torr ion flux ~ (2x10-7 Cs-1cm-2)/(1.6x10-19 C) =1.25x1012cm-2s-1ion dose ~ 1.25x1012cm-2 for 1L of exposure of CF3+ ions ion dose ~ 1x1016cm-2 for 10,000 L of CF3+ ions

  • 3535

    Fluorocarbon ions (100 eV): A related workFluorocarbon ions (100 eV): A related work• At the small dose of CF3+ ions (3x1016cm-2 ), a balance between the C atom supplied by CF3+incidence and the C atom lost by CFx radical desorption is established, while F atoms on the surface approach a steady state determined by CF3+ ion incidence and the SiFx radical desorption.

    • CFx layer is only formed at sufficiently high dose of CF3+ ion incidence

    • In our case, the estimated dose of CF3+ ion incident on the sample surface is ~1016 cm-2

    • H. Toyoda, H. Morishima, R. Fukute, Y. Hori, I. Murakami, and H. Sugai, J. Appl. Phys. 95 (2004) 5172.

  • Surface analysis techniquesSurface analysis techniques

  • 3737

    Low Energy Electron DiffractionAuger Electron Spectroscopy

    Electro

    n Ener

    gy Loss

    Spectr

    oscopy

    Thermal Desorption Spectrometry

    Ion Gun

    Electron gun• In our case, the estimated dose of CF3+ ion incident on the sample surface is ~1016 cm-2 for 10,000 L exposure of CF3+ ions

    • Ion current ~ 200nAcm-2 at 1x10-6 Torr ion flux ~ (2x10-7 Cs-1cm-2)/(1.6x10-19 C) =1.25x1012cm-2s-1ion dose ~ 1.25x1012cm-2 for 1L of exposure of CF3+ ions ion dose ~ 1x1016cm-2 for 10,000 L of CF3+ ions

    Diamond structure of SiPresent work - ProcedureIntroduction Experimental & theoretical methodsExperimental: EELSExperimental: EELSExperimental: TDS setupExperimental - LEEDFluorocarbons: Objective & MotivationIntroduction –Halocarbons PlasmaVibrational frequencies (in cm-1) of reference silicon and related systemsFluorocarbon ions: exposure on 7x7Fluorocarbon ions: Si(111) vs. SiO2Fluorocarbon ions: CH2F2 vs. C2H2F2 the effect of C=C bondFluorocarbon ions: TDSFluorocarbon ions (50 eV): SummaryIntroduction – ChloroethylenesSi(111)7x7Chloroethylene chemisorption: Cl content effectChloroethylene - isometric effectChloroethylene: thermal desorptionNovel adstructure - vinylideneTrichloroethylene – thermal evolutionCycloaddition, dechlorination and dative adsorptionSummaryOutlookThank youChemisorption theory: searching an elephantSi(111)7x7: DAS modelTrichloroethylene – thermal evolutionSi(111)7x7Fluorocarbon ions (100 eV): A related workSurface analysis techniques