TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$...

40
The New Physics Kepler's Refutation of Aristotle's Concept of Motion Master Thesis Mihaela Rusu student number: s4161343 date: July 12, 2015 specialisation: History of Philosophy supervisor: Christoph Lüthy

Transcript of TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$...

Page 1: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

 

 

 

 

 

 

The  New  Physics  

Kepler's  Refutation  of  Aristotle's  Concept  of  Motion  

 

Master  Thesis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mihaela  Rusu  

student  number:  s4161343  

date:  July  12,  2015  

specialisation:  History  of  Philosophy  

supervisor:  Christoph  Lüthy      

Page 2: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

1    

 

 

 

 

Table  of  Contents  

1. Introduction:  the  Context                                                                                                                                                                                                      2  

 

2. The  Problem                         4  

 

3. The  Classical  View:  Aristotle’s  Concept  of  Motion           6  

3.1  First  and  Second  Argument:  Motion  and  the  Structure  of  the  Universe     6  

3.2  Third  Argument:  Celestial  versus  Terrestrial           13  

 

4. A  New  Kind  of  Argument:  Kepler’s  Physics             14     4.1  Heliocentrism                   17     4.2  The  Orbits                     24     4.3  Motion;  the  Motion  of  the  Sun  and  of  the  Planets:  the  Motor  Virtue       29                5.      The  Refutation                     31                            6.      Conclusion                       35            

Bibliography                                              37  

 

 

 

 

 

 

 

 

 

   

Page 3: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

2    

1.  Introduction:  the  Context  

In   1619   Kepler   formulated   the   last   of   his   three   laws   of   planetary   motion.1  By   that   time,   he   had   re-­‐

interpreted   the   concept   of   motion   so   that   he   could   shape   his   theories   about   the   planetary   system,  

which  constitute  the  beginnings  of  modern  astronomy.  Kepler’s  adventure  began  when,  still  a  student,  

he  was  confronted  with   the  new  Copernican   theory  of  heliocentrism,  a   theory   that  he  embraced  and  

whose  defender  he  would  be  his  whole  life,  as  he  confesses  in  the  first  part  of  his  Epitome,  in  1617:  “(…)  

I  take  it  as  my  duty  and  special  task  to  defend  it  before  the  world  (and  the  readers)  with  all  the  powers  

of  my  brain;   for   I  have  recognized   it   in  my  own  mind  as   true  and   in  contemplating   it,   I  am  filled  with  

unbelievable   delight   at   its   beauty.”2  Based   on   the   heliocentric   hypothesis,   Kepler   started   re-­‐ordening  

the  universe  on  paper.  Seen  in  reverse,  Johannes  Kepler's  trajectory  in  his  pursuit  of  the  truth  governing  

the   universe   could   be   described   as   having   been   conducted   by   pairs   of   arguments:   mathematical   /  

geometrical,   astronomical   /   astrological,   scientific   /   theological,   physical   /  metaphysical.3  Max   Caspar  

noticed   that   Kepler   "was   no   longer   willing   to   be   satisfied   with   a   kinematic   and   pure   geometric  

presentation  of  the  motions;  he  wanted  to  explain  these  by  their  causes."4  Therefore,  he  saught  not  a  

presentation  of  the  motions  of  the  planets  across  the  skies  but  a  deeper  insight  into  the  processes  that  

govern  them.  The  step  Kepler  had  to  take  in  order  to  understand  and  explain  these  motions  was  in  fact  

the  move  from  what  we  call  today  ancient  "knowledge"  or  "belief"  towards  modern  "science".    

  Kepler  was  a  man  of  words  and  arguments,  as  he  continuously  questioned  and  doubted  theories,  

formulated  hypotheses  and  worked  on  elaborated  proofs  for  them.  The  progress  he  made  through  his  

step-­‐by-­‐step  work  was   the  result  of  his   struggle  against  preconceived  theories.  That  was  not  a  simple  

task,  as  the  world  he  lived  in  was  not  encouraging  doubt.  It  was  rather  a  world  of  written  and  unwritten  

                                                                                                                         

1    The  three  laws  were  formulated  over  a  period  of  17  years:  the  first  law  was  postulated  in  1602  and  published  in  1609  in  Astronomia  Nova,  the  second  law  was  postulated  in  1605  and  published  together  with  the  first  law  in  1609  in  Astronomia  Nova,  while  the  third  law  was  published  in  1619  in  The  Harmony  of  the  World.    

2    Baumgardt,  Kepler,  121.  

3    The  dychotomy  physical/metaphysical  has  for  this  paper  a  particular  importance,  as  Kepler's  refutation  of  Aristotle's  views  on  the  universe  is  only  made  possible  by  this  pair  of  concepts.  There  lies  a  specific  difficulty  in  comparing  what  one  at  the  time  called  physical  or  metaphysical  and  what  we  denote  nowadays  as  physical  or  metaphysical.  

4    Caspar,  Kepler,  129.  

Page 4: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

3    

laws   the   validity   of  which  was   not   publicly   questioned.   And   still,   he   questioned  well-­‐settled   theories  

with   the   obstinacy   of   an   instinct.   More   than   that,   Kepler   looked   always   for   the   right   argument,  

formulation  or  set-­‐up,  as  he  did  not  only  make  observations,  calculations  and  formulate  laws,  but  also  

tried  to  "dress"  his  scientific  discoveries  in  forms  that  would  be  easier  to  understand  by  the  audience.  

Kepler  made  the  evolution  from  geometrical  description  of  the  seen  universe  to  physical  causality  of  the  

planetary  movement  possible  by  scientific  thinking,  a  process  that  embraces  both  empirical  observation  

/  mathematical  calculation  and  speculation  /  guessing  as  a  basis  for  scientific  knowledge.    

A  convinced  Copernican,  Kepler  based  his  quest  on  the  assumption  that  the  Sun  was  the  centre  of  

the   universe,   not   the   Earth,   a   belief  which   contradicted   the   simplest   observation   and   the  writings   of  

(among  others)  Aristotle.  The  assumption  that  the  Earth  was  moving  around  the  Sun  and  not  vice  versa  

proved   later  on   (after  years  of  hard  work)   to  be  more   than  a  conjecture,   it  proved   to  be   the   truth.  A  

truth  that  allowed  Kepler  to  formulate  the  three  laws  that  are  now  known  as  the  Kepler  laws.  These  laws  

describe  with  accuracy  the  movement  of  the  Earth  and  the  other  planets  within  the  solar  system,  and  

they  represented  key  knowledge  for  Newton  and  his  new  mechanics.    

Kepler’s  laws  can  be  shortly  summarized  as  follows:    

 

1. The  law  of  the  ellipse:  The  planets  move  about  the  Sun  in  elliptical  orbits,  with  the  Sun  occupying  

one  of  the  foci  of  the  ellipse;    

2. The   law  of  equal  areas:  A  line  drawn  from  the  planet  to  the  Sun  will  sweep  out  equal  areas   in  

equal  time;  

3. The  law  of  harmonies:  The  square  of  the  period  of  the  orbit  divided  by  the  cube  of  the  average  

distance  to  the  Sun  (T2/R3)  is  equal  for  all  planets.    

 

Kepler's  way  of  formulating  the  three  laws  was  neither  purely  mathematical  nor  purely  metaphysical.  He  

had  to  combat  the  Aristotelian  set  of  axioms  that  had  never  been  doubted  until  Nicolaus  Copernicus's  

book  On   the  Revolutions  of   the  Heavenly   Spheres,  which  was  published   in   1543   (Copernicus  died   the  

same  day  he   saw  a   copy  of  his  printed  book).  As  Max  Caspar  notices   in  his  biography  of  Kepler:   "Yet  

Kepler's  prodigious   step   forward  consists  precisely   in   the   fact   that  with  his  ellipse  proposition  he  had  

overthrown  for  all  time  the  two-­‐thousand-­‐year-­‐old  axiom,  according  to  which  every  motion  retrograde  

Page 5: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

4    

in   itself   must   of   necessity   be   a   uniform   circular   motion."5  Aristotelian   physics   is   (when   it   comes   to  

motion)   a   set   of   beliefs   as   the   universal   statements   that   Aristotle   formulated   were   not   checked   by  

experience  or  mathematics.  There  was  no  adept  of  the  Aristotelian  geocentric  system  that  would  allow  

discussion  of  the  laws.  Today  we  would  call  this  system  unfalsifiable:  a  set  of  beliefs  that  do  not  allow  

questioning,  that  do  not  consider  alternatives.  Beliefs  cannot  be  contradicted  by  science  as  they  have  no  

scientific  ground,  they  can  be  contradicted  by  another  belief.  Beliefs  cannot  be  empirically  proven  to  be  

true,  they  are  believed  to  be  true.  The  empirical  approach  to  astronomy  was  possible  when  observations  

of   the  movements  of   the  planets  were   thoroughly   recorded.  Kepler  used   the   records  made  by  Tycho  

Brahe   and   these   records,   together  with   Copernicus'   heliocentric   hypothesis,   allowed   him   to   question  

Aristotle's  universal  statements.  When  Aristotle  stated  that  movements  can  only  be  circular  or  linear,  or  

that  the  Earth  was  the  center  of  the  universe,  he  did  not  formulate  a  scientific  theory  based  on  empirical  

facts.   It   is   exactly   the   kind   of   arguments   that   Aristotle   used   in   formulating   his   statements   about   the  

universe  that  would  determine  Kepler's  refutation  of  Aristotle's  system:  Aristotle  built  on  appearances  

and  he  had  to  defend  them.  These  arguments  didn't  match  an  empirical  proof,  they  corresponded  with  

the  semblance  of  the  apparent  movement  of  the  celestial  bodies.  

Kepler  wrote  a  great  deal   throughout  his   life.  He  made  records  of  his  discoveries  but  also  of  his  

mistakes,  of  theories  that  after  further  inquiry  proved  false.  There  is  written  proof  of  almost  every  step  

he  took  in  his  advancing  towards  the  laws.  His  work  is  a  testimony  to  his  accuracy  and  thoroughness.  His  

writings  are  not  only  presentations  of  his  discoveries,  but  also  attempts  to  persuade  the  reader  of  the  

truth   they   contain.  His   astronomical   arguments   are  mainly  mathematical,   but   there   is   a   considerable  

amount  of  philosophical  /  metaphysical  argumentation.    

2.  The  Problem  

How  did  Kepler  refer  to  Aristotle's  worldview  and  how  did  he  relate  himself   to   it?  What  are  the  main  

changes   Kepler   introduced   into   the   general   knowledge   about   the   universe   when   compared   to   pre-­‐

Copernican  natural  philosophy?  The  modern  physicist  applies  the  same  theories  and  rules  of  matter  and  

motion  to  the  Earth  as  he  does  to  the  rest  of  the  universe.  It  is  possible  that  the  concept  of  science  in  

the  modern  sense  was  formed  while  Kepler,  the  researcher,  tried  to  separate  scientific  proof  (based  on  

observations  and  mathematical  foundations)  from  metaphysical  hypothesis.                                                                                                                              

5    Caspar,  Kepler,  135.  

Page 6: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

5    

The   main   object   of   this   thesis   is   to   expose   arguments   defending   the   view   according   to   which  

Kepler   emerged   as   a   modern   physicist   by   refuting   the   Aristotelian   worldview   as   metaphysics.   A   key  

concept  in  this  quest  will  be  that  of  motion.  A  comparison  of  Aristotle’s  concept  of  motion  with  “Kepler  

motion”6    will  be  an  instrument  to  reveal  Kepler’s  worldview.  To  conclude,  another  key  concept  will  be  

used:   that   of   falsification   as   formulated   by   Karl   Raymund   Popper.   Kepler’s   rejection   of   Aristotle’s  

worldview   is   based   on   Kepler’s   refusal   of   considering   the   validity   of   a   theory   when   the   theory   in  

question  is  proven  to  be  pure  metaphysics.  A  metaphysical  hypothesis  has  no  alternative,  it  cannot  be  

refuted  or  denied  by  any  other  hypothesis,  least  by  scientific  ones.  A  metaphysical  hypothesis  (theory)  

requires  belief  while  scientific  hypotheses  (theories)  require  scientific  proof.  Therefore,  the  Aristotelian  

worldview   cannot   be,   in   Kepler’s   eyes,   falsified   by   a   scientific   theory   as   the   two   belong   to   different  

categories.  A  theory  that  is  proven  unfalsifiable  is  automatically  being  refuted.    

In  order  to  make  such  an  attempt  possible,  this  paper  needs  to  shape  Kepler-­‐the-­‐philosopher  out  

of   the  generally  known   image  of  Kepler-­‐the-­‐astronomer  or  Kepler-­‐the-­‐mathematician,  even  though  to  

speak   of   Kepler   as   a   philosopher   may   seem   fictious:   “There   is   probably   no   such   thing   as   Kepler's  

philosophy   in   any   pure   form.”7  Luckily,   Kepler’s   work   is   fully   adorned   with   philosophical   research  

speculation,  a  kind  of  discourse  that  Kepler  was  deeply  fond  of:  “Don't  sentence  me  completely  to  the  

treadmill  of  mathematical  calculations.  Leave  me  time  for  philosophical  speculations,  my  sole  delight!”8  

Kepler   faced   Aristotelian   philosophy   with   scientific   proof.   He   built   a   new   worldview   by   questioning  

assumptions  and  searching  for  new  ones  in,  until  then,  unscrutinized  corners.  This  paper  tries  to  follow  

(in   big   steps)   Kepler’s   way   to   his   worldview,   a   way   of   assumptions,   hypotheses,   mathematical  

                                                                                                                         

6    "Kepler  motion"  as  a  concept  was  formulated  by  Bruce  Stephenson  in  his  Kepler's  Physical  Astronomy  (page  140).  The  term  is  defined  as  "motion  on  an  ellipse  according  to  the  area  law."  I  allowed  myself  to  use  the  term  in  a  wider  sense  as  this  would  embrace  Kepler's  conception  of  motion  as  a  whole.  I  did  this  so  that  not  only  the  problem  of  the  ellipse  could  be  ascribed  to  "Kepler  motion",  but  also  the  one  dealing  with  the  origin  of  movement  or  with  the  question  about  which  of  the  celestial  bodies  move  and  which  are  fixed.  Kepler's  notion  of  motion  is  not  yet  enough  researched  in  the  literature  as  far  as  my  enquiries  could  go.  Therefore,  this  paper  makes  use  of  the  term  while  still  seeking  its  proper  coverage.  

7    Di  Liscia,  Daniel  A.,  Johannes  Kepler,  The  Stanford  Encyclopedia  of  Philosophy  (Summer  2014  Edition,  Edward  N.  Zalta  (ed.),  URL  =  <http://plato.stanford.edu/archives/sum2014/entries/kepler).  

8    Gingerich,  The  Eye  of  Heaven,  396.  

Page 7: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

6    

calculations   and  philosophical   speculations,   a  way   that  would   eventually   lead  him   to  deconstruct   the  

founding  pillars  of  the  Aristotelian  celestial  physics:  circular  /  uniform  motion  and  geocentrism.  

 

3.  The  Classical  View:  Aristotle’s  Concept  of  Motion  

The  cosmological  system  that  Kepler  was  taught  was  the  Aristotelian  worldview.  Truths  and  principles  

had   already   been   settled   and   defined   thousands   of   years   before.   The   changes   brought   on   by   the  

Ptolemy’s  Almagest  around  200  AD  to  the  (by  then)  classical  view  were  not  structural,  they  were  merely  

improvements   that  would   help   the   visible  movements   of   the   planets   fit   into   a  mathematically   based  

structure.  Ptolemy's  Almagest   is  a  mathematical  proof  of  the  Aristotelian  worldview.  The  step  forward  

that   Ptolemy   did  make  was   the   attempt   to   formulate   a   proto-­‐scientific   theory   for   a   hypothesis   (the  

Aristotelian  one).  But  the  main  elements  of  the  Aristotelian  worldview  were  the  same:  geocentrism  and  

the  circular  motion.    

 

3.1 First  and  Second  Argument:  Motion  and  the  Structure  of  the  Universe  

The  part  of  Aristotle's  cosmology  that  discribes  the  heavens  is  based  on  two  important  suppositions:  the  

first  one  regards  motion  (the  concept  that  ends  up  with  the  unmoved  mover),  the  second  the  structure  

of  the  universe  and  the  three  domains  (the  universe  is  divided  into  three  areas:  the  Earth,  the  sphere  of  

the  planets  and  of  the  fixed  stars  and  the  space  inbetween).    

With  Copernicus,  the  Aristotelian  concept  of  motion  is  altered  only  partly:  the  circular  movement  

is   preserved  while   the   arrangement   of   the   celestial   bodies   is   different.   In   the  Copernican   system   the  

Ptolemaic   epicycles   become   obsolete   and   the   "strange"   movement   of   the   planets   (the   apparent  

retrograde  movement)   receives  a  proper,   though  not  yet  complete,  explanation.  Copernicus   launched  

the  theory  of  heliocentrism  but  the  theory  that  would  openly  discredit  the  Aristotelian  theory  of  motion  

was  Kepler's,  by  means  of  the  three  laws  of  planetary  motion.  The  Earth  being  not  the  center  anymore,  

the  laws  conducting  the  movements  are  different,  so  different  that  the  Aristotelian  concept  of  motion  

disappears  into  irrelevance.    

Motion  is,  according  to  Aristotle,  one  of  the  two  basic  elements  of  nature:  "Nature  is  a  principle  of  

motion  and  change."9  In  other  words,  everything  that  happens  in  nature  happens  by  means  of  change,  

                                                                                                                         

9    Aristotle,  Physics,  Book  III,  200b12.  

Page 8: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

7    

and  there  is  no  change  in  the  absence  of  motion.  In  order  to  have  two  substances  or  bodies  interact,  at  

least  one  of   them  has   to  move  or  be  moved.  Motion   is   therefore  a  necessary  principle  of  nature  and  

needs  full  attention  and  thorough  description.  Things  or  bodies  fall,  rise,  grow  or  develop  because  of  the  

inner  principle  that  resides  in  all  natural  things.    

Further,   Aristotle   relies   on   the   concepts   of   potentiality   and   fulfilment:   "some   things   are   in  

fulfilment   only,   others   in   potentiality   and   in   fulfilment."10  Aristotle   formulates   a   definition   of  motion  

which   is   directly   related   to   the   idea   of   change:   "the   fulfilment   of   what   is   potentially,   as   such,   is  

motion."11  The   change   resides   in   potential   inside   the   thing:   "Motion,   we   say,   is   the   actuality   of   the  

movable  in  so  far  as  it  is  movable."12  For  Aristotle,  being  in  the  world  is  motion  between  the  two  stages:  

it  is  actualization  of  the  possible.  This  definition  seems  to  contain  two  contradictions:  motion  is  passive  

and  the  potentiality  of  a  thing  is  its  actuality.  In  order  to  resolve  this  contradiction,  motion  must  be  seen  

as  a  mixture  of  the  two:  “St.  Thomas  thus  resolves  the  apparent  contradiction  between  potentiality  and  

actuality  in  Aristotle's  definition  of  motion  by  arguing  that  in  every  motion  actuality  and  potentiality  are  

mixed  or  blended.”13    

Potentiality  and  fulfilment  are  key  concepts,  which  get  an  important  connotation  also  in  Aristotle's  

worldview,  not  only  in  his  theory  of  motion.  The  four  elements  (earth,  water,  air  and  fire)  have  each  a  

"natural   locomotion",  which   is   rectilinear  movement:   "fire  upward  and  earth  downward  and   towards  

the  middle  of  the  universe."14  These  four  elements  are  in  motion  and  they  change.  Their  movement  can  

only  be   simple   and   therefore   rectilinear   as   they  are   simple   themselves:   “An  element,  we   take   it,   is   a  

body   into  which   other   bodies  may   be   analysed,   present   in   them  potentially   or   in   actuality   (which   of  

these,  is  still  disputable)  and  not  itself  divisible  into  bodies  different  in  form.  That,  or  something  like  it,  is  

what  all  men  in  every  case  mean  by  element.”15  

                                                                                                                         

10    Aristotle,  Physics,  Book  III,  200b26.  

11   Aristotle,  Physics,  Book  III,  201a11-­‐12.  

12    Aristotle,  Physics,  Book  VIII,  251a9.  

13    Joe  Sachs,  Aristotle:  Motion  and  its  Place  in  Nature,  Internet  Encyclopedia  of  Philosophy,  http://www.iep.utm.edu/aris-­‐mot.  

14    Aristotle,  Physics,  Book  IV,  214b14-­‐15.  

15    Aristotle,  On  the  Heavens,  Book  III,  302a15-­‐19.  

Page 9: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

8    

“But   since   every   natural   body   has   its   proper   movement,   and   movements   are   either   simple   or  

mixed,  mixed  in  mixed  bodies  and  simple  in  simple,  there  must  obviously  be  simple  bodies;  for  there  are  

simple  movements.   It   is   plain,   then,   that   there   are   elements,   and  why.”16  Simplicity   seems   to   be   the  

basic   ingredient   of   this   definition   of  motion:   the  world   is   formed  by   four   simple   elements   (simplicity  

being  here  defined  as  not-­‐further-­‐divisible).  These  elements  are  in  motion  (transition)  and  this  motion  

can  also  only  be  simple,  as  simplicity   is  the  main  characteristic  of  the  elements.  Aristotle  states   in  the  

beginning  of  On  the  Heavens  that  there  are  only  two  simple  movements:  "But  all  movement  that   is   in  

place,  all  locomotion,  as  we  term  it,  is  either  straight  or  circular  or  a  combination  of  these  two  which  are  

the  only  simple  movements."17  There  are  thus  two  kinds  of  movement:  rectilinear  and  circular.  

Movements   can   also   be   classified   into   natural   and   unnatural   or   forced   or   violent   movements,  

according  to  where  the  things  derive  their  movement  from:    

 

      Of   things   which   move   in   their   own   right,   some   derive   their   motion   from  themselves,   others   from   something   else:   and   in   some   cases   their   motion   is   natural   in   others  violent  and  unnatural.  Thus   in  things  that  derive  their  motion  from  themselves,  e.g.,  all  animals,  the  motion  is  natural.  (...)  And  the  motions  of  things  that  derive  their  motion  from  something  else  is   in  some  cases  natural,   in  other  unnatural:  e.g.  upward  motion  of  earthy  things  and  downward  motion  of  fire  are  unnatural.18    

 

It  seems  Aristotle  needed  to  make  the  distinction  between  natural  and  unnatural  movements  in  order  

to  resolve  the  problem  of  the  origin  of  motion,  first  the  origin  of  motion  of  things  in  general,  afterwards  

the  theory  of  motion  of  the  celestial  bodies.  Who  (or  what)  is  moving  the  celestial  bodies  (or  how  do  the  

celestial   bodies   get   into  motion)   is   actually   a   key  question:   in  order   to   give   an  answer,   one  needs   to  

choose   between   a   metaphysical   or   a   non-­‐metaphysical   one,   an   answer   that   is   based   on   scientific  

attempts  to  explaining  the  phenomenon  in  question.  Of  course,  the  scientific  knowledge  of  the  time  was  

limited   as   not   much   had   up   to   that   date   been   mathematically   proven.   The   solution   formulated   by  

Aristotle  was  just  a  hypothesis  that  turned  into  a  pre-­‐conception.  As  an  undiscussable  pre-­‐conception  it                                                                                                                            

16    Aristotle,  On  the  Heavens,  Book  III,  302b5-­‐8.  

17    Aristotle,  On  the  Heavens,  Book  I,  268b16-­‐19.  

18    Aristotle,  Physics,  Book  VIII,  254b12-­‐23.  

Page 10: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

9    

was,  in  Kepler’s  time,  still  part  of  a  generally  accepted  worldview.    

The  concept  of  motion  ends  up  with  the  problem  of  the  origin  of  motion.  Do  motion  and  change  

occur   continuously,   do   they   occur   now   and   then?   Is   there   a   beginning   of   change   and   motion?   The  

Stanford  Encyclopedia  of  Philosophy  (SEP)  formulates  Aristotle's  view  on  the  origin  of  motion  as  follows:  

"Aristotle  argues  at  the  opening  of  Physics  Book  VIII  that  motion  and  change  in  the  universe  can  have  no  

beginning,  because  the  occurrence  of  change  presupposes  a  previous  process  of  change."19    

The   idea   of   a   beginning   of   motion   is   therefore   overruled,   as   any   beginning   is   the   result   of   a  

change,  any  change  is  the  result  of  a  change.  The  beginning  of  change  and  motion  takes  us  backwards  

into  an  infinite  regress.  A  conceptual  impossibility  which  Aristotle  believes  to  resolve:  

 

If  then  everything  that  is  in  motion  must  be  moved  by  something,  and  by  something  either  moved  by  something  else  or  not,  and  in  the  former  case  there  must  be  some  first  mover  that  is  not  itself  moved  by  anything  else,  while  in  the  case  of  the  first  mover  being  of  this  kind  there  is  no  need  of  another  (for  it  is  impossible  that  there  should  be  an  infinite  series  of  movers,  each  of  which  is  itself  moved  by  something  else,  since  in  an  infinite  series  there  is  no  first  term)  -­‐  if  then  everything  that  is  in  motion  is  moved  by  something,  and  the  first  mover  is  moved  but  not  by  anything  else,  it  must  be  moved  by  itself.20    

 

In  Physics,  Book  III,  Aristotle  exposes  the  idea  of  the  unmoved  mover:    

The  same  thing  can  be  both  potential  and  fulfilled,  not  indeed  at  the  same  time  or  not  in  the  same  respect,  but  potentially  hot  and  actually  cold.  Hence  such  things  will  act  and  be  acted  on  by  one  another  in  many  ways:  each  of  them  will  be  capable  at  the  same  time  of  acting  and  of  being  acted  upon.  Hence,  too,  what  effects  motion  as  a  natural  agent  can  be  moved:  when  a  thing  of  this  kind  causes  motion,   it   is   itself   also  moved.   This,   indeed,   has   led   some  people   to   suppose   that   every  mover   is  moved.  But   this   question  depends  on  another   set  of   arguments,   and   the   truth  will   be  made  clear   later.   It   is  possible   for  a   thing   to  cause  motion,   though   it   is   itself   incapable  of  being  moved.21  

                                                                                                                         

19    Bodnar,  Istvan,  Aristotle's  Natural  Philosophy,  The  Stanford  Encyclopedia  of  Philosophy  (Spring  2012  Edition),  Edward  N.  Zalta  (ed.)  URL=,http://plato.stanford.edu/archives/spr2012/entries/aristotle-­‐natphil/.  

20    Aristotle,  Physics,  Book  VIII,  256a13-­‐21.  

21    Aristotle,  Physics,  Book  III,  201a20-­‐28.  

Page 11: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

10    

 

Aristotle’s  solution  to  the  problem  of  the  origin  of  movement  is  the  unmoved  mover.  There  is  a  physical  

need  for   the  unmoved  mover:   the   impossibility  of   infinite  regression.  The  chain  of  violent  /  unnatural  

movement   has   to   begin   somewhere   and   so   there   is   a   physical   need   for   the   metaphysical   unmoved  

mover:  

“If   there   is   no   ultimate   natural   cause   of  movement   and   each   preceding   term   in   the   series   is   always  

moved  by  constraint,  we  shall  have  an   infinite  process.”22  An   infinite  process   is,  according  to  Aristotle,  

impossible.  Therefore,   the  beginning  of  motion,  the  cause  of  the  movement  of  the  heavenly  bodies   is  

the  metaphysical  concept  of  a  bodyless  unmoved  mover,  more  resembling  an  intellect  than  a  physical,  

material  wheel.    

When  addressing  the  problem  of  the  daily  rotation  of  the  sky  from  east  to  west  in  On  the  Heavens,  

Book   II,  Aristotle   shows  how   the   celestial   bodies  move  even   if   he   cannot  explain  why   the  movement  

follows  one  direction  and  not  the  opposite,  it  just  "seems  to  be  the  case"  (as  he  himself  puts  it):  

 

Now  there  are  two  ways  of  moving  along  a  circle,  from  A  to  B  or  from  A  to  C,  and  we  have  already  explained  that  these  movements  are  not  contrary  to  one  another.  But  nothing  which  concerns  the  eternal   can   be   a  matter   of   chance   or   spontaneity,   and   the   heaven   and   its   circular  motion   are  eternal.  We  must  therefore  ask  why  this  motion  takes  one  direction  and  not  the  other.  Either  this  is   itself   a   principle   or   there   is   a   principle   behind   it.   It  may   seem   evidence   of   excessive   folly   or  excessive   zeal   to   try   to   provide   an   explanation   of   some   things,   or   of   everything,   admitting   no  exception.  The  criticism,  however,  is  not  always  just:  one  should  first  consider  what  reason  there  is  for  speaking,  and  also  what  kind  of  certainty   is   looked  for,  whether  human  merely  or  of  a  more  cogent  kind.  When  any  one  shall  succeed  in  finding  proofs  of  greater  precision,  gratitude  will  be  due   to   him   for   the   discovery23  but   at   present  we  must   be   content  with  what   seems   to   be   the  case.24    

 

                                                                                                                         

22    Aristotle,  On  the  Heavens,  Book  III,  300b15-­‐17.  

23    Ironically  enough,  Aristotle  seems  to  have  been  waiting  himself  for  Kepler.  Kepler  is  the  one  to  bring  proofs  of  greater  precision  in  the  form  of  the  mathematical  calculations  of  the  movements  of  the  planets.  Ignorant  of  his  dogmatic  future,  Aristotle  expresses  here  his  gratitude  to  the  very  one  that  would  refute  his  views.  

24    Aristotle,  On  the  Heavens,  Book  II,  287b22-­‐288a2.  

Page 12: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

11    

Aristotle  makes   an   interesting   point   here  when   attempting   to   find   a   /   the   principle   behind   the   daily  

rotation   of   the   celestial   bodies.   Is   the   question   about   “the   eternal”   allowed   and,   if   it   is   allowed,  will  

humanity  ever  get  the  chance  to  answer  it?  It  seems  there  is  a  difference  between  certainties,  they  can  

be  human  or  of  a  more  cogent  kind,   the  difference  residing   in  the  fact  that  human  certainty   is  merely  

conjectural  (the  human  certainty  is  merely  believed  to  be  true)  while  the  cogent  kind  has  the  attribute  

of  being  definite  and  invariably  true.  The  future  that  Aristotle  proclaims  here  is  indeed  open:  he  uses  the  

phrase  “at  present”  as  an  encouragement   for   future  researchers  to  try  to  break  through  and  discover  

the  principle  that  conducts  the  apparent  movement  of  the  celestial  vault.  

The   heavens   and   their   characteristic   movement   are   eternal   and   circular   and   not   a   matter   of  

chance  so  there  must  be  a  principle  behind  this  movement.  Seeking  for  the  principle,  the  human  has  but  

little   data   he   can   rely   on:   “On   these   questions   it   is   well   that   we   should   seek   to   increase   our  

understanding,   though  we  have  but   little   to   go  upon,   and  are  placed  at   so  great   a  distance   from   the  

facts  in  question.”25  Circularity  is  not  something  that  we  can  question,  it  is  a  given  feature  of  heavens  as  

the  heavens  belong   to   the  gods.  The  circular  motion   (as  opposite   to   the   rectilinear  movement   that   is  

specific  to  the  four  elements)  is  the  perfect  motion  and  perfection  is  the  attribute  of  the  gods.    

The   three   bodily   domains   that   for   Aristotle   form   the   universe   are   the   Earth,   the   sphere   of   the  

heavenly  bodies  and  the  intermediary  space  in  between  these  two.  Each  of  the  planets  moves  inside  a  

crystal   sphere   that  keeps   the  planet   in   its   specific  orbit.   The  moving  bodies   that  we  see   in   the   sky  at  

night  are  therefore  the  planets,  which  move,  and  the  fixed  stars,  which  do  not  move,  as  they  are  being  

stuck  on  a  crystal  sphere  and  move  altogether  in  one  day-­‐time.    

The   universe   is   ordered   with   the   Earth   in   the  middle.   According   to   Aristotle’s   geocentrism,   all  

other   celestial   bodies   (including   the   Sun)   move   around   the   Earth   inside   the   crystal   spheres.   The  

trajectory  of  the    movement  of  the  bodies   in  space  was  also  not  following  a  plane  (a  two-­‐dimensional  

flat  surface  as  it  is  now  known  that  is  the  case),  but  was  wandering  across  the  surface  of  the  sphere.  The  

image   in   Figure   1   represents   Aristotle’s   universe   and   the   order   of   the   crystal   spheres:   Aristotle’s  

worldview  was  turned  into  a  real  astronomical  model  by  Ptolemy.  Ptolemy  was  mainly  concerned  with  

matching  the  Aristotelian  model  with  the  astronomical  observations.  He  managed  to  do  this,  partly  (e.g.,  

he  succeded  in  describing  the  retrograde  movement  of  the  planets).    

                                                                                                                         

25    Aristotle,  On  the  Heavens,  Book  II,  292a14-­‐16.  

Page 13: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

12    

 

 Figure  1:  Aristotle's  universe  of  spheres26  

 

Aristotle’s  universe  was  therefore  following  ideal  and  unaltered  shapes.  A  universe  made  by  gods  could  

only  contain  perfect  forms  (spherical)  and  simple  motions  (straight,  circular):  the  shape  of  the  heavenly  

bodies,   their   trajectory,   their  motion.  The   last  sphere,   the  sphere  of   the  fixed  stars,   is   the   limit  of   the  

material  universe.  In  On  the  Heavens,  Aristotle  argues  for  the  sphere  as  the  only  form  possible  for  the  

heavenly  bodies:    

 

With  regard  to  the  shape  of  each  star,  the  most  reasonable  view  is  that  they  are  spherical.  It  has  been   shown   that   it   is   not   in   their   nature   to  move   themselves,   and,   since   nature   does   nothing  without  reason  or  in  vain,  clearly  she  will  have  given  things  which  possess  no  movement  a  shape  particularly  unadapted  to  movement.  Such  a  shape  is  the  sphere,  since  it  possesses  no  instrument  of  movement.  Clearly   then   their  mass  will  have   the   form  of  a   sphere.  Again,  what  holds  of  one  holds  of  all,  and  the  evidence  of  our  eyes  shows  us  that  the  moon  is  spherical.  For  how  else  should  the  moon  as  it  waxes  and  wanes  show  for  the  most  part  a  crescent-­‐shape  or  gibbous  figure,  and  only  at  one  moment  a  half-­‐moon?  And  astronomical  arguments  give  further  confirmation;  for  no  other  hypothesis  accounts  for  the  crescent  shape  of  the  Sun’s  eclipses.  One,  then,  of  the  heavenly  bodies  being  spherical,  clearly  the  rest  will  be  spherical  too.27    

                                                                                                                         

26    Source:  http://mitu-­‐bobs.blogspot.nl/2011/02/ss-­‐fn-­‐flat-­‐earth.html.  

27    Aristotle,  On  the  Heavens,  Book  II,  291b11-­‐23.  

Page 14: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

13    

 

Aristotle   brings   in   two   arguments   to   prove   that   all   heavenly   bodies   have   a   spherical   shape.   The   first  

argument   is   based   on   “the  most   reasonable   view”   that   says   that   they   are   all   spherical   because   this  

shape  is  the  most  unadapted  to  movement,  and  is  therefore  most  likely  to  belong  to  bodies  that  do  not  

move   (“[the   sphere]   possesses   no   instrument   of  movement”).   The   second   argument   is   based   on   the  

analogy  between  the  Moon  (a  heavenly  object  whose  shape  is  confirmed  by  the  senses  as  its  shape  can  

be  easily  seen)  and  the  stars  (heavenly  objects  that  are  too  far  from  the  eye,  their  shape  is  subject  to  

speculation  as  their  shape  cannot  be  seen).  The  Moon  is  round,  therefore  all  the  other  heavenly  bodies  

are   also   spherical   (“what  holds  of   one  holds  of   all”).   This  Aristotelian   argumentation,   even   though  of  

speculative  nature,  proved  to  be  right.  Because  of  the  strength  of  this  argument  he  made  a  step  forward  

and  assumed  that  all  movements  must  be  circular.  The  path  of  the  movement  of  the  heavenly  bodies  

can  only  be  circular.    

 

3.2 Third  Argument:  Celestial  versus  Terrestrial  

In  Book  I  of  Parts  of  Animals,  Aristotle  makes  the  distinction  between  substances  that  are  generated  and  

those  that  are  not  generated,  the  world  at  hand  and  the  eternal:  

 

On   substances   constituted   by   nature   some   are   ungenerated,   imperishable,   and   eternal,   while  others   are   subject   to   generation   and   decay.   The   former   are   excellent   and   divine,   but   less  accessible  to  knowledge.  The  evidence  that  might  throw  light  on  them,  and  on  the  problems  which  we   long   to   solve   respecting   them,   is   furnished   but   scantily   by   sensation;   whereas   respecting  perishable  plants  and  animals  we  have  abundant  information,   living  as  we  do  in  their  midst,  and  ample   data   may   be   collected   concerning   all   their   various   kinds,   if   only   we   are   willing   to   take  sufficient  pains.  (...)  The  scanty  conceptions  to  which  we  can  attain  of  celestial  things  give  us,  from  their  excellence,  more  pleasure  than  all  our  knowledge  of  the  world  in  which  we  live;  (...).28    

 

According  to  Aristotle,  the  celestial  world  cannot  be  measured  with  terrestrial  scales.  The  planets,  the  

sphere   of   the   fixed   stars   and   the   universe   are   all   parts   of   a   different   entity   than   the   Earth.   Human  

cognitive  possibilities  are  limited,  we  can  reach  no  more  than  “scanty  conceptions”  about  the  universe                                                                                                                            

28    Aristotle,  Parts  of  Animals,  Book  I,  644b21-­‐31.    

Page 15: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

14    

(the  celestial   things).  Physics  studies  the  terrestrial  world  that   is  visible  to  us  and  which  we  can  reach  

with   our   senses,   unlike   the   heavens,   which   seem   to   remain   unresearcheable.   The   heavens   are   of   a  

different  nature.  When,  in  Book  2  of  On  the  Heavens,  Aristotle  discusses  the  nature  of  the  heavens  (he  

also  calls  them  “the  upper  regions”),  he  acknowledges  the  existence  of  a  fifth  element  “whose  natural  

movement   is   circular.”29  This   is   the   element   the   stars   are   made   of.   An   element   that   is   therefore   in  

contrast   with   the   four   terrestrial   elements.   Notions   and   concepts   that   we   use   to   know   plants   and  

animals  on  Earth  cannot  be  applied  on  the  heavens.    

 

To   conclude   our   section   on   Aristotle's   notions   of   theory   of   motion,   these   can   be   reduced   to   some  

principles.30  Those  that  are  relevant  for  the  current  discussion  are  summarized  here:  

 

1. The  Earth  is  in  the  center  of  the  universe  

2. All  bodies  move  towards  or  away  from  or  around  the  center  of  the  universe  

3. The  celestial  bodies  move  in  circular  orbits  with  uniform  speed    

4. Celestial  physics  is  different  than  terrestrial  physics    

5. There  is  an  unmoved  mover  that  moves  the  heavenly  bodies.  

 

4.  A  New  Kind  of  Argument:  Kepler’s  Physics  

The   main   object   of   Aristotle’s   physics   is   the   terrestrial,   and   the   movement   of   terrestrial   elements.  

Nature  on  Earth  is  indeed  one  easily  researched,  observed,  described.  For  Aristotle,  the  heavens  are  the  

opposite:   they   are  more   subject   to   philosophical   speculation   than   empirical   description.   As   we   have  

already  seen  in  the  previous  chapter,  the  heavens  are  for  Aristotle  situated  too  far  from  us,  the  “scanty  

conceptions”   we   can   formulate   about   them   can   barely   provide   enough   information   to   attain   real  

knowledge.   With   Kepler,   the   epistemological   attitude   changed:   with   the   right   hypothesis   (i.e.,  

heliocentrism),   measure,   observe   and   calculate   (Kepler   used   Tycho   Brahe’s   observations   of   the  

movements   of   the   planets  well),   and   the   heavens  will   come   closer.   Even  when   busy  with   a   piece   of  

                                                                                                                         

29    Aristotle,  On  the  Heavens,  Book  I,  270b5-­‐7.  

30    These  principles  are  formulated  for  the  sake  of  this  paper  as  they  are  needed  to  mirror  Kepler's  view  on  motion.  

Page 16: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

15    

earthly  natural  object  (the  snowflake),  what  Kepler  looked  for  was  the  same  as  what  he  was  looking  for  

in   the   skies,   the   archtype   of   which   mathemathics   was   a     foremost   representative:   “where   there   is  

matter,   there   is   symmetry.”   He   assumed,   he   conjectured   and   he   went   for   the   proof.   What   in   the  

beginning   was   a   (more   or   less   philosophical)   assumption,   namely   the   hypothesis   of   heliocentrism,  

proved  to  be,   together  with  the  hypothesis  of   inertia,   the  right  epistemological  package,  which  would  

later  allow  Newton  to  intuit  gravity.  In  a  letter  to  David  Fabricius  of  October  11,  1605,  Kepler  writes:  “If  

one  would  place  a  stone  behind  the  Earth  and  would  assume  that  both  are  free  from  any  other  motion,  

then   not   only  would   the   stone   hurry   to   the   Earth   but   also   the   Earth  would   hurry   to   the   stone;   they  

would  divide  the  space  lying  between  in  inverse  proportion  to  their  weights.”31    

What   Kepler   did   change  when   starting   on   a   new  worldview  was   (1)   the   hypothesis   and   (2)   the  

point  of  view.  The  hypothesis  he  assumed  and  on  which  he  started  building,  was  heliocentrism.  Kepler  

did  not  adopt  much  else  from  the  Copernican  worldview,  for  Copernicus  the  center  of  the  universe  was  

not  the  Sun  but  a  point  near  the  Sun:  “(…)  he  places  that  common  node  of  the  planets  very  near  to  the  

Sun,  but  not  in  the  Sun  itself.”32  But  anyway,  with  the  move  to  the  Sun,  the  main  step  had  been  taken.  

Copernicus   gave   better   explanations   for   the   irregularities   of   the  movements   of   the   planets   (e.g.,   the  

apparent  retrograde  movements  of  Mars).  Kepler  took  over  the  idea  that  the  Sun  is  in  the  center  of  the  

orbits   of   the   planets,   displacing   the   Earth   from   its   fixed   location   as   described   by   geocentrism   and  

investing  the  Sun  with  the  attribute  of  immobility.      

But   this   was   not   enough   to   get   to   the   truth   about   the   motion   of   the   celestial   bodies.   Kepler  

needed  a  different  point  of  view,  too.  He  imagined  brave  thought  experiments  that  would  help  him  (and  

us)  get  a  better  view  on  the  universe.  He  imagined  travelling  to  the  Moon  (in  his  Somnium)  and  he  also  

imagined  himself  being  placed  on  another  planet  than  the  Earth  in  order  to  see  the  remote  movement  

of  the  other  planets:    

 

                                                                                                                         

31    Caspar,  Kepler,  138.  

32    Kepler,  Epitome,  71.  

Page 17: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

16    

Even   if   the   whole   of   Levania   has   the   appearence   of   fixed   stars   in   common   with   us,   yet   one  observes  very  many  movements  and  numbers  of  planets  different  from  those  which  we  see  from  Earth  so  that  all  of  their  astronomy  has  another  meaning.33    

 

Koyré  also  notes  that:    

 

Kepler   used   an   extremely   ingenious   and   original   procedure,   which   consists   in   transporting  ourselves  to  the  planet  Mars  and  observing  the  motion  of  the  Earth  from  that  standpoint  in  order,  first  of  all,  to  ascertain  several  positions  of  the  Earth  on  its  orbit,  and  from  them  to  find  the  orbit  itself.34    

 

The  originality  of  this  kind  of  thought  experiment  is  extreme:  Kepler’s  mind  was  far  superior  to  that  of  

his  contemporaries,  both  in  imagination  and  boldness.    

In  the  beginning  of  Chapter  39  of  Astronomia  Nova,  Kepler  resumes  his  axioms  for  motion.  These  

axioms  are  formulated  as  axioms  for  the  motion  of  the  bodies  of  the  planets,  but  some  of  them  have  a  

strong  generalizing  character  of  the  concept  of  motion.  To  resume  them:  

• “the  body  of  a  planet  is  inclined  by  nature  to  rest  in  every  place  where  it  is  put  by  itself”;  

• (the  body  of  a  planet)  “is  transported  from  one   longitudinal  position  to  another  by  that  power  

that  originates  in  the  Sun”;  

• “if  the  distance  of  the  planet  to  the  Sun  were  not  altered,  a  circular  path  would  result  from  this  

motion”;  

• “the  periodic  times  will  be  in  the  duplicate  ratio  of  the  distances  or  magnitudes  of  the  circle”;  

• “the   bare   and   solitary   power   residing   in   the   body   of   a   planet   itself   is   not   sufficient   for  

transporting   its   body   from   place   to   place,   since   it   lacks   feet,   wings,   and   feathers   by   which   it  

might  press  upon  the  aethereal  air”;  

• “the   approach   and   recession   of   a   planet   to   and   from   the   Sun   arises   from   that   power   that   is  

                                                                                                                         

33    Kepler,  Somnium,  11.  

34    Koyré,  The  Astronomical  Revolution,  181.  

Page 18: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

17    

proper  to  the  planet.”35  

 

The  fourth  axiom  regards  the  proportion  between  the  speed  of  motion  and  the  distances  of  the  planets  

from   the   Sun.   This   axiom   is   a   consequence   of   the   Copernican   law   that   states   that   “the   speed   at  

perihelion  and  slowness  at  aphelion  are  very  closely  proportional  to  the  lines  drawn  from  the  center  of  

the  world  to  the  planet.”36  Kepler  gives  this  variation  in  motion  a  name:  libration.  Libration  is  therefore,  

the   variation   of   a   planet’s   speed   along   its   orbit   (the   word   originates   in   the   latin   libra,   meaning  

“balance”;  see  Epitome,  130,  for  Kepler’s  comparison  with  the  balance).  Alexandre  Koyré  has  formulated  

this   law   in  a   simpler  way:   “the  velocity  of  a  planet   in   its  orbit   is   inversely  proportional   to   its  distance  

from  the  body  about  which  it  revolves.”37  This  axiom  has  a  key  relevance  for  Kepler’s  advance  towards  

his  second  law  and  it  is  further  discussed  in  4.2.    

It  is  at  this  point  interesting  to  notice  the  manner  in  which  Kepler  formulates  his  axioms  of  motion.  

The   word   power,   which   Newton   would   later   turn   into   force,   is   almost   everywhere   present,   and   it  

denotes   interaction   of   a   physical   nature   between   the   Sun   and   the   planets.   Animism,   in   what   form  

whatsoever,   is  absent.   It  shows  up  though  when  Kepler  cannot  resolve  the  origin  of  the  movement  of  

the  Sun  and,  only  temporarily,  when  he  tries  to  explain  the  libration.  Kepler’s  celestial  physics  separates  

here  from  his  celestial  dynamics,  which  is  still  Aristotelian:  “Kepler’s  celestial  dynamics  is  (almost)  purely  

Aristotelian:   velocity   is   proportional   to   the   motive   force,   and   in   the   absence   of   any   such   force   the  

motion  changes  to  rest.”38    

These  axioms  are  the  basis  of  Kepler’s  worldview.  Heliocentrism,  the  elipse  and  the  motive  force  

are  the  key  concepts  that  Kepler  used  to  reform  our  view  on  the  universe.  The  following  chapters  try  (in  

a  manner  that  is  not  too  elaborated)  to  overview  Kepler’s  way  from  conjecture  to  physical  truth.      

                                                                                                                         

35    Kepler,  AN,  407  (Chapter  39:  "By  what  path  and  by  what  means  do  the  powers  seated  in  the  planets  need  to  move  them  in  order  to  produce  a  planetary  orbit  through  the  ethereal  air  that  is  circular,  as  it  is  commonly  thought  to  be.")  

36    Kepler,  AN,  373  (Chapter  32:  "The  power  that  moves  the  planet  in  a  circle  diminishes  with  removal  from  its  source.")  

37    Koyré,  The  Astronomical  Revolution,  185.  

38    Koyré,  The  Astronomical  Revolution,  405,  footnote  3.  

Page 19: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

18    

 

4.1  Heliocentrism  

Kepler   was   still   young   when   he   learned   about   the   new   Copernican   theory   from   his   mathematics  

professor  in  Tübingen,  Michael  Maestlin.39  Heliocentrism  was  taught  on  the  side,  it  was  still  an  unofficial  

alternative  to  the  Ptolemaic  theory,  which  some  teachers,   in  spite  of  the  mainsteam  theory,  taught  at  

universities.   Kepler   adopted   it   immediately   as   a   valid  hypothesis,   and  he  believed   in   it   from   the   very  

beginning:    

 

Already   in  Tübingen  when   I   followed  attentively   the   instruction  of   the   famous  Magister  Michael  Maestlin,   I   perceived   how   clumsy   in   many   respects   is   the   hitherto   customary   notion   of   the  structure  of   the  universe.  Hence   I  was   so   very  delighted  by  Copernicus,  whom  my   teacher   very  often  mentioned  in  his  lectures,  that  I  not  only  repeatedly  advocated  his  views  in  the  disputations  of  the  candidates,  but  also  made  a  careful  disputation  about  the  thesis  that  the  first  motion  (the  revolution  of  the  heaven  of  the  fixed  stars)  results  from  the  rotation  of  the  Earth.  I  already  set  to  work  also  to  ascribe  to  the  Earth  on  physical,  or,  if  one  prefers,  metaphysical,  grounds  the  motion  of  the  Sun,  as  Copernicus  does  on  mathematical  grounds.40    

 

All  his  subsequent  discoveries  are  based  on  this  assumption.41    

In  the  Epitome,  Kepler’s  most  elaborate  work,  both  astronomically  and  philosophically,  he  proves  

with  more  arguments  that  the  Earth  moves  and  that  the  Sun  is  fixed  (even  if  the  idea  is  the  same,  Kepler  

builds  different  arguments  based  on  the  movement  of  the  Earth  and  on  the  immobility  of  the  Sun).   In  

developing  these  arguments,  Kepler  starts  by  discussing  and  comparing  the  Ptolemaic  system  to  that  of  

                                                                                                                         

39    Kepler's  acquintance  with  Copernicanism  was  made  exclusively  through  Maestlin's  lectures.  Later  on  he  owned  a  copy  of  Copernicus'  De  Revolutionibus.  This  copy  is  still  preserved  in  the  library  of  the  University  of  Leipzig.  Kepler  was  also  not  familiar  with  Joachim  Rheticus's  Narratio  Prima,  the  first  account  on  heliocentrism  that  Rheticus  had  written  and  published  after  visiting  Copernicus  (1539,  respectively  1540).  

40    Caspar,  Kepler,  47.  

41    The  first  theoretical  construction  of  Kepler’s  worldview,  The  Cosmographic  Mystery,  is  based  on    heliocentrism;  the  calculations  Kepler  made  using  the  five  Platonic  solids  (tetrahedron,  cube,  octahedron,  dodecahedron  and  icosahedron)  were  later  proven  to  fit  reality,  the  distances  between  the  planets  of  the  solar  system  coincide  almost  exactly  to  Kepler’s  ratios.  This  was  only  possible  in  a  world  where  the  Sun  stands  at  the  middle  of  everything.  

Page 20: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

19    

Copernicus  and  of  Tycho  Brahe.  Even  though  there  is  quite  a  big  difference  between  Ptolemy  and  Brahe  

and  an  even  bigger  difference  between  Ptolemy  and  Copernicus,  for  Kepler,  eventually,  both  Brahe  and  

Copernicus  seem  to  have  made  too  large  concessions  to  Ptolemy:    

 

Finally,  the  reason  why  Copernicus  and  Brahe  make  these  two  centres  different  [the  center  of  the  Sun  and  the  center  of  the  orbit  of  the  planets,  m.n.]  is  not  sufficient  nor  astronomical  enough.  For  they  were  led  to  that  by  the  fact  that  they  wished  in  the  forms  of  their  hypotheses  to  express  their  everyway   equipollence   to   the   Ptolemaic   form.   But   it   was   not   necessary   that   they   should   step  exactly  in  Ptolemy’s  foot-­‐prints.  For  indeed  Ptolemy  did  not  build  up  all  the  parts  of  his  hypothesis  from  observations,  but  he  based  many  things  upon  the  preconceived  and  false  opinion  that   it   is  necessary   to   presuppose   that   the  movements   of   the   planets   are   regular   throughout   the  whole  circle  –  and  that  is  demonstrated  by  observations  to  be  false.42    

 

Copernicus   and   Brahe   altered   Ptolemy’s   model   from   geo-­‐centric   to   heliocentric   in   different   ways.  

Copernicus  placed  the  Sun  in  the  center  of  the  planetary  system  but  he  didn’t  also  place  the  center  of  

the  movement  of   the   rotating  planets   in   the   Sun   (this   center   is   situated   in   a  point   close   to   the   Sun).  

Brahe’s  solar  system  looks  somewhat  different:  the  Sun  and  the  Moon  revolve  around  the  Earth  while  all  

the   other   planets   (Mercury,   Venus,   Mars,   Jupiter   and   Saturn)   revolve   around   the   Sun.43  These   two  

systems,   Copernicus’   and   Brahe’s,   are  mathematically   almost   identical   and   they   correspond  with   the  

observations   of   the   planetary   movements.   The   two   astronomers   needed   to   place   the   center   of   the  

movement   away   from   the   Sun   because   of   the   variation   in   movement   of   the   planets:   the   circular  

movement  did  not  fit  the  observations  unless  the  center  was  displaced  from  the  Sun.  Altering  circularity  

was  not  yet  an  option.  So,  the  reason  why  Copernicus  and  Brahe  did  not  set  the  Sun  in  the  very  center  of  

the  movement  was  just  a  compromise  so  that  the  new  theory  would  not  definitely  contradict  Ptolemy,  

who  was  also  just  repeating  what  Aristotle  had  spoken,  that  the  movements  of  the  planets  “are  regular  

throughout  the  whole  circle.”  Kepler  calls  this  opinion  “preconceived  and  false”  as  no  one  did  measure  

the  movements  before  Brahe  did.  He  had   the  observations,   the   calculations,   and   the   scientific  proof.  

                                                                                                                         

42    Kepler,  Epitome,  71.  

43    This  system  is  still  geocentric,  or  rather  geo-­‐heliocentric,  as  the  Sun  together  with  the  other  planets  move,  in  a  bunch,  around  the  Earth.  

Page 21: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

20    

The  attack  is  clear:  the  validity  of  the  ancient  idea  of  uniform  movement  is  openly  criticised.  But  more  

about  this  in  the  next  subchapter,  about  the  orbits.  

Following   Copernicus   and   Tycho   Brahe,   Kepler   further   argued   for   heliocentrism,   formulating  

arguments  of  different  nature.  These  arguments  are  conceived  and  discussed  in  Part  II  of  the  Epitome  of  

Copernican   Astronomy   using   a   combination   of   scientific   proof,   philosophical   arguments   and   pure  

common  sense.44    I  will  only  name  some  and  will  end  with  a  summary  of  them.  

The   simplest   argument   is   the   first  one,  which   stipulates   that   the  Earth   shares   the  main   characteristic  

with  the  other  five  planets,  namely  motion.  All  planets  move  around  the  Sun  in  a  “line  very  close  to  a  

circle.”  This  argument  is  also  presented  in  Astronomia  Nova,  Chapter  33,  where  Kepler  wants  to  prove  

Brahe  wrong   in  his  belief  that  the  Sun  rotates  around  the  Earth,  eliminating  even  alternative  forms  of  

geocentrism.  Kepler’s  position  is  pretty  simple,  he  sets  a  choice  before  the  reader:    

 

(…)   From   this   it   follows   that  motion  of   the   Sun   itself   (if   it   is  moved)   is   intensified   and   remitted  according  as  it  is  nearer  or  farther  from  the  Earth,  and  hence  that  the  Sun  is  moved  by  the  Earth.  But  if,  on  the  other  hand,  the  Earth  is  in  motion,  it  too  will  be  moved  by  the  Sun  with  greater  or  less   velocity   according   as   it   is   nearer   or   farther   from   it   (…).   Between   these   two   possibilities,  therefore,  there  is  no  intermediate.  I  myself  agree  with  Copernicus,  and  allow  that  the  Earth  is  one  of  the  planets.45    

 

The  argument  is  not  strong  enough  to  stand  alone  in  a  debate,  indeed.  It  needs  the  upcoming  series  of  

arguments  to  be  able  to  defeat  the  opposite.  But  the  interesting  point  here  is  the  fact  that  Kepler  wants  

his     reader   to   accept   the   option   that   common   sense   tends   to   validate:   it   is  more   difficult   to  move   a  

heavier  body  than  a  lighter  body.  It  is  an  argument  that  needs  rather  to  be  felt  than  reasoned.    

  The  third  argument  Kepler  brings  forward  discusses  the  “diurnal  movement  of  incalculable  speed  

of   the   fixed  stars.”  Kepler  asserts   that   it   is  much  easier   to  believe  that   the  moving  of   the  Earth   is   the  

cause  of  us  seeing  the  fixed  stars  moving  than  to  attribute  movement  to  such  an  immense  body:    

 

                                                                                                                         

44    Kepler,  Epitome,  [542]-­‐[549].  

45    Kepler,  AN,  379.  

Page 22: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

21    

(…);  so  now,  an  annual  movement  being  granted  to  this  same  Earth  after  the  model  of  the  other  planets,  we  have  ended  that  very  slow  movement  of  the  fixed  stars,  which  is  called  by  Copernicus  the   procession   of   the   equinoxes.   (…)   For   it   is   much   more   believable   to   attribute   them   (these  things)  to  the  axis  of  the  Earth,  a  very  small  body,  than  to  such  a  great  bulk.46  

 

Again   the   same  simplicity  of   reasoning   that   implies   that  a   small  body   can  be  moved  more  easily:   the  

difference   in   size   between   the   Earth   and   the   sphere   of   the   fixed   stars   is   too   significant   to   accept   a  

different   conclusion.  The  Earth  must   therefore  be  moving  and   this   is   the  cause  of  us   seeing   the   stars  

slowly  rotating  around  the  Earth,  rather  than  the  other  way  around.    

The  next  argument  (the  fourth)  is  connected  to  the  sixth  and  they  both  deal  with  the  revolution  of  

smaller   bodies   around   the   bigger   bodies:   “For   it   is  more   believable   that   the   body   around  which   the  

smaller  bodies  revolve  should  be  great.”47  Kepler  makes  an  analogy  between  the  Earth  and  the  Moon  

revolving   around   it,   and   the   Sun   and   the   planets:   the  Moon   is   smaller   than   the   Earth   and   it   moves  

around  the  Earth,  the  planets  are  all  smaller  than  the  Sun,  therefore  they  have  to  move  around  the  Sun.  

Kepler  often  uses  this  kind  of  argument:  there  is  no  physical  or  metaphysical  explanation  given  for  the  

process   in   question,   there   is   again   just   the   common   sense   logic   that   conducts   the   reasoning.  When  

compared  to  Aristotle’s  same  type  of  argument  (i.e.,  how  the  elements  move  in  the  following  directions:  

earth   downwards   towards   the   centre   of   the   universe   as   being   heavy,   fire   upwards   as   being   light),  

Kepler’s   reasoning   has   obviously   evolved,   not   necessarily   by   its   use   of   scientific   observations   and  

arguments  (he  does  not  always  do  that)  but  simply  in  its  approach  to  natural  laws.  Kepler’s  thinking  is  

modern,   his   mind   operates   differently   than   the   Aristotelian:   the   heavenly   bodies   interact   with   each  

other   in  a  physical  way.  This  specific  argument   in  the  Epitome   is  also  not  discussing  the  causes  of   the  

movement,  it  only  describes  how  the  heavy  interacts  with  the  light  (Earth  /  Moon,  Sun  /  planets).    

Kepler’s  eighth  argument  for  heliocentrism  stands  out,  for  it  is  of  a  special  nature:  it  brings  us  back  

to   the  Harmonies   of   the  World,   where   Kepler  made   an   attempt   to   find   the   physical   harmonies   that  

conduct   the   movement   of   the   planets   (a   theory   he   always   tried   to   sustain   with   mathematical  

arguments):   “Eightly,   the   same   things   are   to   be   said   concerning   the   harmony   of   the   celestial  

                                                                                                                         

46    Kepler,  Epitome,  72.  

47    Ibid.,  73.  

Page 23: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

22    

movements,   which   are   made   up   of   the   same   numbers   and   proportions   as   our   musical   scale.”48  The  

Earth’s   semitone   is   needed   for   the   harmony   of   the   universe   and   its   place   is   determined   by   the  

difference  between  the  maximum  and  the  minimum  of  its  angular  speed  in  its  orbit  around  the  Sun.  This  

difference   varies   by   about   a   semitone   (a   ratio   of   16:15),   from  mi   to   fa.   Needless   to   say   that   this  

argument   does   not  weigh  much   in   the   present   refutation   of   Aristoteles’s  motion   theory.   It   is   still   an  

argument  that  reveals  Kepler  as  a  scientist  who  needs  to  find  mathematical  proof  (the  musical  scale  is  

mathematical)  for  his  assumptions  and  hypotheses.  Accordig  to  this  argument,  there  is  a  mathematical  

need  for  the  Earth  to  be  situated  inbetween  Venus  and  Mars.    

Directly   connected   to   the   previous   argument,   Kepler   formulates   the   tenth   argument   for  

heliocentrism,   which   is   an   argument   “taken   from   the   periodic   times”:   each   planet   needs   a   specific  

amount  of   time   (number  of  days)   to   revolve  around   the  Sun;  according   to   this   scale  of  numbers,   the  

planets  can  be  arranged  following  an  order.   In   this  order,   the  Earth   finds   its  natural  place   in  between  

Venus  and  Mars:    

 

The  tenth  argument,  taken  from  the  periodic  time,   is  as   follows:  the  apparent  movement  of  the  Sun   has   365   days,   which   is   the  mean  measure   between   Venus’   period   of   225   days   and  Mars’  period  of  687  days.  Therefore  does  not  the  nature  of  things  shout  out  loud  that  the  circuit  in  which  those  365  days  are   taken  up  has   the  mean  position  between   the   circuits  of  Mars  and  of  Venus  around  the  Sun:  and  thus  this  is  not  the  circuit  of  the  Sun  around  the  Earth  (…)  but  the  circuit  of  the  Earth  around  the  resting  Sun  (…)?49    

 

This  argument  resides  on  Tycho  Brahe’s  model  of  the  solar  system,  where  the  five  planets  move  around  

the  Sun,  while  the  Sun  and  the  Moon  move  around  the  Earth.  Kepler  uses  it:  if  the  number  of  days  that  

the   Earth   and   the   Sun   complete   a   rotation   fits   perfectly   in   between   the   numbers   representing   the  

periodic   times  of  Venus  and  of  Mars,   it  must  be  concluded   from  here   that   the  Earth  moves,   together  

with  the  other  planets,  around  the  Sun.    

Kepler  formulates  the  fifteenth  argument  using  libration:    

                                                                                                                           

48    Kepler,  Epitome,  74.  

49    Ibid.,  75.  

Page 24: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

23    

It  has  already  been  said  in  part,  and  it  will  be  demonstrated  below  more  fully,  that  all  the  planets  have  a  movement  of  libration  in  a  straight  line,  which  proceeds  towards  the  Sun  and  by  means  of  this  libration  obey  the  laws  of  their  speed  and  slowness  in  any  position  on  the  eccentric  circle.  And  thus  it  is  certain  that  the  Sun  is  the  cause  of  this  variation  in  all  five  planets.50  

 

The   variation   in   speed   of   the   movement   of   the   planets   could   not   be   explained   by   any   of   the  

astronomers  before  Kepler.  Kepler  uses  it  to  argue  for  heliocentrism:  if  the  Sun  (“which  is  the  source  of  

movement  of  the  five  planets  and  is  many  times  greater  than  the  Earth”51)  is  moving  the  other  planets  

(as  in  the  Brahe  model),  then  with  what  kind  of  logic  should  we  imply  that  the  Earth  is  the  moving  cause  

of  the  Sun?    

The   Earth   moves   and   the   Sun   is   “necessarily   at   rest.”   In   several   arguments,   Kepler   sketches  

heliocentrism  as  described  by  Copernicus  and  denies  Brahe’s  model  as  well  as  that  of  Ptolemy.    

Also   the   Aristotelian   idea   of   the   crystal   spheres   is   refuted,   with   the   help   of   Tycho   Brahe’s  

observations.  In  the  Epitome,  Kepler  names  the  three  reasons  that  made  Brahe  reject  the  spheres:  “Are  

there  solid  spheres   [orbes]  whereon  the  planets  are  carried?  And  are  there  empty  spaces  between  the  

spheres?   Tycho   Brahe   disproved   the   solidity   of   the   spheres   by   the   following   reasons:   first   from   the  

movement  of  comets;  the  second  from  the  fact  that  the  light  is  not  refracted;  the  third  from  the  ratio  of  

the  spheres.”52  Tycho  Brahe  was   the   first   to  measure   the   location  of  a  comet  crossing   the  heavens,  a  

fact  that  allowed  him  to  conclude  that  the  spheres  were  not  existing  (he  observed  the  Great  Comet  of  

1577  on  November  13   in  Prague  and  compared  his   records  with   the   records  of  other  observers   from  

other  places  on  the  world),  and  even  if  he  could  not  precisely  tell  its  distance  from  the  Earth,  he  could  

still  state  that  the  comet  travels  through  the  space  between  the  planets.  Another  argument  is  based  on  

observations  of  the  movement  of  the  planet  Mars  relatively  to  the  Earth:  the  observations  tell  that  Mars  

travels  sometimes  closer  to  the  Earth  than  the  Sun,  movement  that  would  not  be  possible  if  the  spheres  

existed.   Nevertheless,   Kepler   played   himself   with   the   idea   of   the   spheres   in   his   Mysterium  

Cosmographicum,  which  he  wrote  when  young  (published  in  1596)  and  in  which  he  demonstrates  that  

                                                                                                                         

50    Kepler,  Epitome,  75.  

51    Ibid.  

52    Kepler,  Epitome,  16.  

Page 25: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

24    

the  five  planets  are  aranged  in  space,  around  the  Sun,  inside  spheres  that  are  positioned  towards  each  

other  at  specific  distances:  the  distances  are  determined  by  the  five  Platonic  solids.  Strangely  enough,  

the  distance  between  the  five  planets  proved  to  match  reality.  A  model  is  shown  in  Figure  2.  

 Figure  2:  The  planet's  orbitals  within  the  Platonic  solids  53  

 

 

4.2  The  orbits  

When   Kepler   met   Tycho   Brahe   for   the   first   time   and   they   started   working   together,   a   happy  

circumstance   occured   (Caspar   calls   it   “a  most   propitious   piece   of   good   luck”)   that   brought   Kepler   to  

working  on  the  theory  of  the  planet  Mars54:  another  co-­‐worker  of  Brahe,  Christen  Sorensen  Longberg,  or  

Longomontanus,  who  was  assigned  the  difficult  task  of  solving  the  special  issues  of  Mars,  got  stuck  in  his  

work   and   was   assigned   the   theory   of   the   Moon   instead.   “At   his   own   wish,”   Kepler   was   allowed   to  

further   study   the  movements  of   the  planet.   It  was   this   circumstantial   turn   that  would   lead  Kepler   to  

formulate   the   laws   of   the   planets.   Brahe’s   observations   together   with   trigonometry   and   Euclid’s  

                                                                                                                         

53    Source:  http://cs.cas.cz/portal/algomath/geometry/spatialgeometry/polyhedra/polyhedraindex.htm.  

54    It  is  maybe  interesting  and  useful  to  explain  briefly  why  the  study  of  the  orbit  of  the  planet  Mars  was  the  only  one  that  could  bring  Kepler  to  his  “new  astronomy”.  Out  of  the  six  Copernican  planets,  “Mars  en  Mercurius  are  the  only  planets  whose  orbits  differ  enough  from  circles  for  that  difference  to  have  an  effect  observable  by  Tycho’s  instruments.  Mercury  is  too  near  the  Sun  to  afford  reliable  observations  of  its  entire  orbit”  (Donahue,  AN,  43).  

Page 26: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

25    

geometry   enabled   Kepler’s   computational   abilities   to   unfold   the   shape   of   the   orbit   of   Mars.   At   this  

moment,  an  important  change  occurs  in  Kepler’s  view  on  the  universe:  when  busy  with  describing  the  

movements   of   planet  Mars   (with   the   question   “how   does   the   planet   move?”)   and   proceeding   from  

Copernicus’s  mean  Sun  to  the  true  Sun,  Kepler  realized  that  it  was  the  body  of  the  Sun  that  made  the  

planets  move.  It  was  the  idea  of  the  Sun  as  a  physical  object  that  overshadowed  the  mathematical  Sun  

in  its  representational  form  of  a  point.  The  thinking  turned  from  being  descriptive  to  searching  causality.  

Later   this   thought  was   to   give   birth   to   one   of   his   arguments   for   heliocentrism:   the   planets   (celestial  

bodies)   do   not   revolve   around   a   geometrical   point   but   around   another   celestial   body55.   There   is  

interaction  between  the  planets.  Together  with  the  Copernican  axiom  that  states  that  the  planets  move  

faster  when  closer  to  the  Sun  and  slower  when  further  away56,  Kepler  deduced  that  there  must  be  a  sort  

of   interaction   between   the   planets   and   the   Sun   the   nature   of  which   he   had   to   study.   As  mentioned  

before,  Kepler  called  this  variation  in  distance  to  the  Sun  (and  speed)  libration,  which  is  the  variation  in  

altitude.   For   the   sake   of   clarity:   the   other   variation   that   movement   of   the   planet   presents   was   the  

variation  in  latitude,  which  means  that  each  planet  deviates  from  the  equatorial  plane  of  the  Sun  where  

they  are  all  suppose  to  move  within.    

Kepler’s   research   of   planet   Mars’s   orbit   followed   a   long   and   troubled   path.   The   “critical  

phenomenon”  in  the  movement  of  planet  Mars  was  the  fact  “that  the  planet  moved  swiftly  when  near  

the  Sun  and  slowly  when  distant  from  it,”57  thus  faster  at  perigee  than  at  apogee,  and  this  phenomenon  

was   far   from   having   been   explained   properly.   Kepler’s   inventivity   had   to   come   up   with   ways   to  

overview,   formulate   and,   if   possible,   solve   the   problem.   Therefore,   he   used   what   he   had   at   hand:  

geometry  and  trigonometry,  techniques  of  Archimedes  to  calculate  the  area  of  a  circle  and  Copernicus’  

                                                                                                                         

55    The  three  systems  that  preceded  Kepler’s  (Ptolemy’s,  Brahe’s  and  Copernicus’)  were  all  exclusively  geometrically  conceived.  For  the  three  of  them  the  center  of  the  orbits  of  the  planets  were  virtual  points  of  virtual  circles.  Kepler  is  the  first  one  to  treat  the  center  of  the  orbit  in  a  different  way.  

56    Kepler  was  able  to  reach  this  conclusion  by  mixing  Ptolemaic,  Braheic  and  Copernican  descriptions  of  the  movements  of  the  planets  and  their  positions  with  reference  to  the  Sun.  For  further  information  see  Kepler's  Astronomia  Nova,  Chapters  39  and  45,  and  Bruce  Stephenson's  Kepler's  Physical  Astronomy  (Chapter  3,  especially  the  chapter  Conquest  of  Mars).  

57    Stephenson,  Kepler,  29.  

Page 27: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

26    

eccentric  system  (the  Sun  is  not  situated  at  the  center  of  the  orbit  but  somewhere  near  it).58  

At  this  point  of  his  inquiry,  Kepler  needed  again  to  speculate,  this  time  on  the  nature  (or  cause)  of  

the  libration,  the  irregularity  that  disorders  the  speed  of  the  planets  on  the  orbit,  an  axiom  taken  over  

from  Copernicus.  What  (or  who)  is  actually  controlling  and  dictating  the  libration?  In  Kepler’s  words:  “By  

what  means  or  measure  may  a  planet  grasp  its  distance  from  the  Sun?”59    

Kepler  tries  (in  Chapter  39  of  Astronomia  Nova)  to  find  the  answer  to  this  question  by  formulating  

suppositions  and  eliminating  those  that  prove  non-­‐valid  (using  a  “trial  and  error”  method).  Allusions  to  

Aristotelianism  are  obvious:  those  who  are    

 

so  attracted  to  the  supposition  of  a  perfectly  circular  orbit  as  to  associate  a  mind  with  the  planet  

(…)  can  say  only  this:  that  this  planetary  mind  observes  the  increasing  and  decreasing  size  of  the  

solar  diameter,  and  understands,  using  this  as  an  indication,  what  distances  from  the  Sun  it  should  

arrive  at  at  any  given  time.60    

 

The  mind   in   the  planet  observes,  understands  and   lets   the  planet   take   the   right  position,   the  planets  

receive  thus  anthropomophic  features;  this  seems  indeed  a  reasonable  solution  to  the  problem,  it  would  

resove   libration.  But   then,  Kepler  uses   the  comparison  with   the   sailors  on   the   seas   that   cannot  know  

their  exact  position  from  the  sea   itself  as  the  sea  has  by   itself  no  system  of  reference.  The  sailors  can  

observe  and  measure  time,  the  direction  of  the  wind  and  other  quantifiable  circumstances.   In  just  the  

same  way,  Kepler  sums  up  some  alternatives  that  allow  the  mind  of  a  planet  to  change  its  own  position  

relatively  to  the  Sun:  (a)  the  mind  of  the  planet  can  (just  like  the  sailor)  observe  and  measure  and  direct  

the  movement,   (b)   the   planet   is  moved   by   a   physical  machine   or   (c)   it  makes   use   of   “some   suitable  

                                                                                                                         

58    Kepler  switches  actually  often  between  the  two  models:  the  model  that  makes  use  of  epicycles  (both  Ptolemy’s  and  Tycho  Brahe’s)  and  the  Copernican  model  –  where  the  centre  of  the  orbits  of  the  planets  is  not  the  Sun  but  a  point  in  its  vicinity;  this  was  not  an  accident,  he  allowed  himself  this  approach  because  the  two  models  can  be  similar  in  specific  circumstances.  But  the  switching  can  make  the  reading  of  Kepler’s  work  difficult  for  a  non-­‐astronomer.  

59    Donahue,  AN,  73.  

60    Donahue,  AN,  73.  

Page 28: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

27    

means  of  indication  that  varies  with  the  distance  of  the  planet  from  the  Sun.”61  As  the  only  observable  

and  measurable  reference  in  space  is  the  Sun’s  apparent  diameter,  this  third  alternative  seems  to  be  the  

only   left   to   be   considered.   The   idea   of   the  mind   is   just   too   simple   a   solution   to   the   problem   of   the  

libration.  As  Donahue  observes  referring  to  the  “mind  of  the  planet”:  “this  was  the  standard  view  of  the  

day.”62  At   the   time,   natural   movements   were   considered   regular   and   it   was   thought   that   anomalies  

could  only  belong  to  forces   like  the  intellect:  only  a  mind  can  determinate  a  position  in  space,  objects  

cannot  do  that.  To  discredit  the  idea  of  a  mind  conducting  the  planets  through  the  universe  definitely,  

some  lines  later  Kepler  writes:  “So  then,  Kepler,  would  you  give  each  of  the  planets  a  pair  of  eyes?  By  no  

means,   nor   is   this   necessary,   no   more   than   that   they   need   feet   or   wings   in   order   to   move.”63  The  

solution  Kepler  gives   to   the   irregularity   in   the  movement  of  planets   is   the  vis   insita   (an  own   inherent  

force):  “Kepler  concluded  that  each  planet  required  its  own  innate  force,  a  vis  insita  to  move  it  or  stir  it  –  

he  was  not  certain  which  –  through  its  wandering  course.”64  The  way  Kepler  balances  here  between  a  

mechanistic  view  and  an  animistic  one  seems  to  cover  a  certain  uncertainty:  he  has  not  yet  decided  on  

which  side  he  should  be  as  he  was  aware  that  he  could  not  give  all  the  observed  physical  phenomena  a  

good   explanation.   The   solution   he   reached   eventually   is   indeed   close   to   the   idea   of   inertia,   but   the  

argumention  lacks  the  strength  of  Kepler’s  usual  heuristic.  So  much  concerning  the  “mind  of  the  planet”  

as  (temporary)  explanation  for  libration.  

  Kepler’s  idea  of  the  inherent  force  of  the  planet  that  causes  the  irregularities  in  motion  about  the  

Sun  returns  in  the  Epitome.  Here  Kepler  rediscusses  the  issue  and  formulates  the  theory  of  inertia:    

 

(…)  it  has  already  been  pointed  out  that,  in  addition  to  the  rotating  force  of  the  Sun,  there  is  in  the  planets  themselves  a  natural   inertia  [opposing]  this  motion,  through  which  they  are  constrained,  

                                                                                                                         

61    Donahue,  AN,  74.  

62    "This  was  the  standard  view  of  the  day,  included  in  all  the  introductory  university  textbooks  in  natural  philosophy.  The  planetary  mind  was  usually  identified  with  the  biblical  angels,  thus  bringing  Aristotle  into  harmony  with  scripture.  However,  some  theorists  believe  that  the  mind  is  united  with  the  planet  as  soul  is  with  body.  This  view  was  widely  regarded  as  heretical,  as  it  suggested  that  the  Prime  Mover  is  the  soul  of  the  world  (anima  mundi),  and  thus  that  the  universe  is  somehow  God’s  body”  (Donahue,  AN,  74,  footnote  5).  

63    Donahue,  AN,  75.  

64    Stephenson,  Kepler,  76.  

Page 29: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

28    

by  reason  of  their  material  substance,  to  remain  in  their  place.  Consequently,  the  vectorial  power  of  the  Sun,  and  the  weakness  or  material  inertia  of  the  planet  vie  with  each  other.  Each  shares  its  victory;  the  former  displaces  the  planet  from  its  position;  the  latter  releases  part  of  its  body,  i.e.  of  the  planet,  from  the  chains  which  bound  it  to  the  Sun.65    

 

Kepler  could  use  the  equation  of  proportion  between  the  planet’s  speed  and  its  distance  from  the  Sun:  

“the  delay,  or  time,  required  to  traverse  a  small  arc  was  proportional  to  the  planet’s  distance  from  the  

Sun.”66  Planets  moved  irregularly  in  two  ways:  (a)  sometimes  closer  to  the  Sun,  sometimes  further  away  

and  as  a  consequence,  their  speed  “varied,  in  inverse  proportion  to  distance;”67  (b)  the  planets  did  not  

always  follow  the  Sun’s  equatorial  plane,  small  oscillations  occurred  at  times.  The  myth  of  the  uniform  

motion  was  at  stake.  Mars’  movement  was  not  uniform  at  all   in   fact.  None  of   the  planets  moved   in  a  

uniform  way.  Ptolemy’s  mission  to  save  the  appearances  of  the  observable  movements  of  the  celestial  

bodies  was  about  to  be  annihilated  by  the  evidence  of  the  observations:  Kepler’s  calculations,  based  on  

three   known  positions  of  Mars68  (he  only  needed   the   coordinates  of   three  positions   to   represent   the  

circle   of   the   orbit),   ended   up   in   a   conclusion   that  would   change   astronomy   for   good.   Eventually   the  

results  of  his  calculations  were  confronted  with  the  observed  positions  of  Mars:  they  didn’t  correspond.  

The   tendency  was   to   blame   the   records   of   the   planet’s   positions,   as   such   observations  were   always  

subject   to   human  mistake.   Especially   when   the   error   was   only   a   difference   of   eight  minutes   of   arch  

between  the  orbit  described  by  the  actual  observations  and  mathematical  calculations:    

 

For  if  I  had  thought  I  could  ignore  eight  minutes  of  longitude,  in  bisecting  the  eccentricity  I  would  already  have  made  enough  of  a  correction  in  the  [vicarious]  hypothesis  found  in  Chapter  16.    Now,  because  they  could  not  have  been  ignored,  these  eight  minutes  alone  will  have  led  the  way  to  the  

                                                                                                                         

65    Kepler,  Epitome,  106.  

66    Stephenson,  Kepler,  80.  

67    Ibid.  

68    Kepler  took  over  the  known  positions  of  Mars  on  its  orbiting  the  Sun  from  Aristotle’s  and  Ptolemy’s  old  records.  As  he  himself  relates  in  Chapter  69  of  Astronomia  Nova,“(…)  there  have  survived  no  more  than  five  observations  of  the  star  Mars,  as  well  as  one  of  extreme  antiquity  noted  by  Aristotle,  who  saw  Mars  occulted  by  the  dark  part  of  the  half  moon.  (…)  The  other  four  were  by  Ptolemy  himself,  using  an  astrolabe  to  measure  Mars’s  distances  from  fixed  stars”  (AN,  642-­‐643).  

Page 30: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

29    

reformation  of  all  of  astronomy,  and  have  constituted  the  material  for  a  great  part  of  the  present  work.69    

 

Kepler’s  accuracy   is  remarkable,  as   it  was  generally  known  that  even  Ptolemy  himself  knew  he  should  

not  go  below  10'  [minutes  in  accuracy]  in  his  observations.  At  this  point  it  becomes  obvious  that  there  

was  an  error  in  the  setup  of  the  problem:  either  the  orbit  of  Mars  was  not  a  circle  or  Ptolemy’s  theory  of  

the  equant  was  not  valid.  Kepler  had  to  choose  between  these  two  possibilities  or  accept   them  both.  

Max  Caspar  opiniates  that  the  choice  that  Kepler  made  at  this  point  of  his  research  was  conducted  by  

logic:  “Logic  decided:  there  must  be  an  error  in  the  suppositions  regarding  the  form  of  the  orbit  and  the  

form   of   the   motion.”70  The   problematic   eight   minutes   could   only   be   explained   therefore   by   a   slight  

alteration   of   the   curves   of   the   orbit   describing   the  movement.   The   orbit   must   be   “an   oval   of   some  

kind.”71  In  Chapter  44  of  Astronomia  Nova,  Kepler  formulates  his  first  law:  “Clearly,  then,  [what  is  to  be  

said]  is  this:  the  orbit  of  the  planet  is  not  a  circle,  but  comes  in  gradually  on  both  sides  and  returns  again  

to  the  circle’s  distance  at  perigee72.  They  are  accustomed  to  call  the  shape  of  this  sort  of  path  oval.”73    

 

4.3  Motion;  the  Motion  of  the  Sun  and  of  the  Planets:  the  Motor  Virtue    

In   Kepler’s   theory   of   motion,   the   starting   point   is   the   differentiation   between   geometry   (as   part   of  

mathematics)  and  physics.  Motion  of  bodies  follows  different  principles  than  when  motion  is  dealt  with  

as   an   abstract   notion.   In   the   Introduction   to   his  Astronomia  Nova,   by  means   of   several   propositions,  

Kepler  states  the  difference  between  mathematics  and  physics:    

 

A  mathematical  point,  whether  or  not  it  is  the  center  of  the  world,  can  neither  effect  the  motion  of  heavy  bodies  nor  act  as  an  object  towards  which  they  tend.  (…)  It  is  impossible  that,  in  moving  its  body,   the   form  of  a   stone   seek  out  a  mathematical  point   (in   this   instance,   the   center  of   the  

                                                                                                                         

69    Kepler,  AN,  286.  

70    Caspar,  Kepler,  128.  

71    Stephenson,  Kepler,  90.  

72    Perigee  is  the  point  closest  to  the  orbited  body  that  the  orbiting  body  can  reach.  

73    Donahue,  AN,  86.  

Page 31: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

30    

world),  without   respect   to   the  body   in  which   this   point   is   located.   Let   the  physicists   prove   that  natural  things  have  a  sympathy  for  that  which  is  nothing.74    

 

This  is  in  accordance  with  the  adjustment  he  applied  to  the  Copernican  Sun:  Kepler  considers  always  the  

Sun  as  a  physical  body  instead  of  Copernicus’  “mean  Sun,”  which  was  merely  a  hypothetical  position  in  

space.  It   is  a  category  mistake  to  talk  about  a  body  that  is  attracted  by  a  point,  according  to  Kepler.  A  

moving   body   belongs   to   physics   while   a   point   is   a   conceptual   abstraction.   No   relation   whatsoever  

between  these  two   is  possible.  Natural  objects  have  no  sympathy  and  even   less   for  something  that   is  

nothing.  For  in  the  physical  world  a  point  can  only  be  called  to  be  nothing  as  no  matter  can  be  attributed  

to   it.   Therefore,   attraction   is   an   attribute   of   objects   that   can   only   be   assigned   to   physics.   Aristotle’s  

principle   according   to  which   the   elements  move   towards   or   away   from   the   center   of   the   universe   is  

therefore  refuted.  One  of  the  principles  of  Aristotelian  motion  is  being  proved  wrong:  "fire  upward  and  

earth  downward  and  towards  the  middle  of  the  universe."  The  middle  of  the  universe  cannot  exert  any  

force  on  anything  (as  it  is  only  a  mathematical  concept),  according  to  Kepler.    

This  being  made  clear  (that  bodies  do  not  advance  towards  a  mathematical  point),  Kepler  moves  

on  to  formulating  the  “true  theory  of  gravity”  and  its  axioms.  This  theory  of  gravity  (that  could  also  be  

called  Kepler’s   theory  of  motion)   “constitutes   a   complete   rejection  of   the  Aristotelian   view  of   gravity  

and  plays  a  fundamental  role  in  Kepler’s  physical  thought.”75  The  first  axiom  of  this  theory  is  of  extreme  

generality:  “every  corporeal  substance”  will  not  move  as  long  as  it  is  not  acted  upon  from  the  outside.  

The  next  step  Kepler  takes  is  defining  gravity  (the  true  gravity  as  opposed  to  the  gravity  of  Aristotle,  who  

was  in  error):  “gravity  is  a  mutual  corporeal  disposition  among  kindred  bodies  to  unite  or  join  together  

(…).  Heavy  bodies  (…)  are  not  drawn  towards  the  center  of  the  world  qua  center  of  the  world,  but  qua  

centre  of  a  kindred  spherical  body,  namely,  the  Earth.”76  Kepler  is  refering  here  to  gravity  in  relation  to  

the  Earth  –  Moon  system.    

The   planets   (among   which   the   Earth)   move   around   the   Sun   describing   an   elliptical   orbit.   This  

motion   is   not   regular,   firstly   in   shape   (it   is   not   a   circle   but   an   ellipse)   and   secondly   in   speed   (the  

                                                                                                                         

74    Kepler,  AN,  54.  

75    Donahue,  AN,  55,  footnote  7.  

76    Kepler,  AN,  388.  

Page 32: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

31    

proportionality  between  speed  and  distance  to  the  Sun).  The  next  question  Kepler  had  to  answer  was:  

what  makes   the  planets  move  around  the  Sun?  Once   the  Aristotelian  spheres  had  been  eliminated,  a  

replacement   was   required,   a   replacement   that   was   different   from   the   construction   in   Mysterium  

Cosmographicum.  Kepler  was  able  to  formulate  a  solution,   first   (in  Astronomia  Nova)   in  the  form  of  a  

“lucky   guess”   and,   after   years   of   observation   (the   Sun   spots),   with   a   still   speculative   but   pertinent  

theory:  the  Sun  rotates  and  drags  along  the  planets  in  a  non-­‐uniform  but  continuous  movement.    

Kepler  proposes   (in  Astronomia  Nova   and  also   in   the  Epitome)   several  alternatives   to  Aristotle’s  

geocentrism  of  the  spheres.  The  hypothesis  he  starts  with  is  that  the  Sun  is  the  cause  of  the  movement  

of   the   planets.   The   physical   cause   that   supports   the   planets   in   their   orbits   is   not   clear.   Kepler   gives  

several  solutions  for  this  problem:  magnetic  fibres,  an  immaterial  species  or  light  itself.  Kepler  borrowed  

the  idea  of  the  magnetic  species  from  William  Gilbert:  “What  Kepler  takes  from  Gilbert’s  The  Magnete  

(1600)   is   the   notion   that   the   Earth   has   an   animate   magnetic   virtue   and   that   this   virtue   can   be  

demonstrated  to  be  immaterial  (for  it  cannot  be  blocked).”77  

In  Astronomia  Nova,  for  the  first  time,  the  Sun  is  spinning,  it  rotates  about  its  own  axis:  “(…)  since  

the   species  of   the   source,   or   the  power  moving   the  planets,   rotates   about   the   center  of   the  world,   I  

conclude  with  good  reason,  (…),  that  that  of  which  it  is  the  species,  the  Sun,  also  rotates.”78    

In   his   Kepler’s   Physical   Astronomy,   Bruce   Stephenson   notices   that   there   is   a   slight   difference  

between  Kepler’s  account  of  the  Sun  rotating  around  its  own  axis  in  Astronomia  Nova  and  the  account  

of  the  same  hypothesis  in  the  Epitome.  Innitially,  Kepler  speculated  over  a  movement  of  the  Sun  around  

its   own   axis   in  Astronomia   Nova   (the   “lucky   guess”  mentioned   earlier).   In   Chapter   34,   “the   Sun   is   a  

magnetic  body  and  rotates  in  its  space,”  Kepler  formulates  the  theory  of  the  “motor  virtue”  of  the  Sun:    

 

For   it  may  appear  that   there   lies  hidden   in  the  body  of   the  Sun  a  sort  of  divinity,  which  may  be  compared  to  our  soul,  from  which  flows  that  species  driving  the  planets  around,  just  as  from  the  soul  of  someone  throwing  pebbles  a  species  of  motion  comes  to  inhere  in  the  pebbles  thrown  by  him,  even  when  he  who  threw  them  removes  his  hand  from  them.79  

                                                                                                                         

77    Regier,  Kepler's  Theory  of  Force,  21.  

78    Donahue,  AN,  65.  

79    Donahue,  AN,  63.  

Page 33: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

32    

 

In  between  Astronomia  Nova  and  Epitome,  “the  observations  of  sunspots  moving  accross  the  face  of  the  

Sun  had  confirmed  this  supposition.”80    

The   image  of   the   system   is  now  made  clear:   the  Sun   rotates  around   its  own  axis  and  drags   the  

planets  with   it.   The  Sun   is   fixed   in   space,   the  Earth  and   the  other  planets  move  around   the  Sun,   this  

being  also   the  explanation  of   the  apparent  movement  of   the   sphere  of   the   fixed  stars.  The  attractive  

force  of  the  Sun  is  countered  by  the   inertia  of  the  planets,  a  force  directly  proportional  to  their  mass.  

There  is  a  motive  force  that  moves  the  Sun,  the  nature  of  which  is  not  yet  well  specified.    

 

5.  The  Refutation  

Kepler’s  worldview,   based   on   Copernicus’   heliocentrism,   had,   along   his   career,   taken   shape,   changed  

and  developed  until   it  became  what  we  know  today  to  be  his   image  of   the  universe:  one  could  call   it  

“evolution,”  as  it  is  now  well  known  that  Kepler  worked  continuously  on  it  and,  what  is  most  important,  

never   stopped   being   critical   towards   others   and   towards   himself.   Starting   from   the   hypothesis   of  

heliocentrism,  Kepler  formulated  theories  and  dismissed  them  again,  being  able,  somewhere  on  his  way,  

to  formulate  laws  of  major  importance  for  the  progress  of  science.  A  critical  attitude  was  one  of  his  main  

characteristics.  When  reading  Astronomia  Nova,  the  reader  is  confronted  with  a  special  kind  of  writing:  

it   is   difficult   to   say   if   it   is   a   history   (a   personal   record)   or   an   astronomy   treatise.   There   is   care   and  

thoroughness   in   the  development  of   the  book  as   if   the  writer   tried  to   foresee  the  possible  objections  

that  could  dismantle  his  theory.  Kepler  doubted  and  rejected  theories  and  conjectures  of  others  but  also  

his   own,   the   critical   approach   and   examination   being   an   essential   contribution   to   the   progress   of  

knowledge.   In   the  words  of  Karl  Popper:   “The  critical  method  alone  explains   the  extraordinarily   rapid  

growth   of   the   scientific   form   of   knowledge,   the   extraordinary   progress   of   science.   All   prescientific  

knowledge  whether  animal  or  human,   is  dogmatic;  and  science  begins  with   the   invention  of   the  non-­‐

dogmatic,  critical  method.”81    

Kepler’s  criticism  of  Aristotle  uses  two  kinds  of  arguments:  first,  there  are  arguments  of  (natural)  

physics,  which  Kepler  presented  in  Part  IV  of  the  Epitome  (see  4.1  Heliocentrism).  Second,  there  are  the  

                                                                                                                         

80    Stephenson,  Kepler,  141.  

81    Popper,  All  Life,  7.  

Page 34: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

33    

philosophical  arguments  which  Kepler  discusses  in  Part  I  of  the  Epitome.  The  beginning  of  the  Epitome  is  

made  by  stating  clearly,   in  several  questions  an  answers,   that  the  Sun   is  at  the  centre  of  the  universe  

and  that  Aristotle’s  view  on  the  universe  was  wrong.  Kepler  presents  in  short  the  position  of  those  that  

pretend  that   it   is  the  Sun  that   is  placed  at  the  centre  of  the  universe:  “The  very  ancient  Pythagoreans  

and  the  Italian  philosophers  supply  us  with  some  of  the  arguments  in  Aristotle  [On  the  Heavens,  Book  II,  

Chapter  13];  and  these  arguments  are  drawn  from  the  dignity  of  the  Sun  and  that  of  the  place,  and  from  

the  Sun’s  office  of  vivification  and  illumination  in  the  world.”82  This  is  the  position  of  the  Pythagoreans,  

Copernicus’,  and  also  Kepler’s.  The  argument  of  dignity  states  that  as  “the  more  worthy  place  is  due  to  

the  most  worthy  and  most  precious  body,"  no  other  body  can  be  more  worthy  than  the  Sun,  which  is  

fire.  According  to  Kepler,  the  sphere  of  the  universe  has  three  conceptual  parts,  the  centre,  the  surface,  

and  the  intermediary  space;  out  of  which  the  Sun,  as  one  of  the  most  important  actors  of  the  game,  can  

only  be  placed  at  one  of  the  extremities,  either  the  centre  or  the  surface.  As  only  the  centre  can  fulfill  

the  mission  of  watching  over  all  the  other  bodies,  the  Sun  can  only  be  placed  in  the  middle.  The  Sun  is  

therefore  the  one  to  occupy  the  center  of   the  world.  Several  pages  earlier,  Kepler  had  already  shown  

that  the  Sun  is  the  principal  body  of  the  world  (as  the  Earth  used  to  be  in  the  Aristotelian  system).  In  this  

view,  Earth  does  not  belong   to   the  major  group  of  actors  but   to   the  planetary  part  of   the  world   (the  

movable):  it  “should  not  be  reckoned  among  the  primary  parts  of  the  great  world  but  should  be  added  

to  one  of  the  primary  parts  (…)  to  the  planetary  region,  the  movable  world.”83  Kepler  opposes  here  the  

primary  parts  of  the  great  world  to  the  primary  parts  of  the  planetary  region.  The  Earth  belongs  to  the  

second  group  and  it  revolves  the  Sun  together  with  the  other  planets.  The  Sun  is  the  source  of  light  (“the  

eye  of  the  world”84)  and  heat  (“the  fireplace  of  the  world”85),  movement  (“the  Sun  is  the  first  cause  of  

the  movement  of  the  planets  and  the  first  mover  of  the  universe,  even  by  reason  of  its  own  body”86)  and  

harmony   of   movement   (only   with   the   Sun   in   the   centre   are   the   “magnitudes   harmonically  

                                                                                                                         

82    Kepler,  Epitome,  17.  

83    Ibid.,  14.  

84    Ibid.,  15.  

85    Ibid.  

86    Kepler,  Epitome,  15.  

Page 35: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

34    

proportioned”87).    

Aristotle  responded  to  these  arguments  of  the  ancient  heliocentrists,  by  saying  that  “they  assume  

something  which   is  not  granted”:   that   the   two  centres  of   the  world  coincide.  He  compares   the  world  

with   an   animal   body:   in   an   animal   body   “the   heart   is   inside   but   it   is   not   equally   distant   from   the  

surface.”88  The  animal  body  has  therefore  two  centres  that  are  not  located  at  the  same  point:  the  centre  

of  vivification  and  the  centre  of   the  body.  Similarly,  even   if   the  Sun   is   the  centre  of  vivification  of   the  

universe,  it   is  still  the  Earth  that  is  situated  at  its  centre.  Kepler’s  rejection  of  Aristotle’s  view  is  clearly  

stated:  “nothing  is  more  probable  than  this.”89  Aristotle   is  seen  as  being  more  of  a  metaphysician,  not  

skilled  in  astronomy.  Copernicus,  on  the  contrary,   is  skilled  in  this  discipline  and  he  could  show  us  the  

truth:  “And  when  we  ask  in  what  place  in  the  world  the  Sun  is  situated,  Copernicus,  as  being  skilled  in  

the  knowledge  of  the  heavens,  shows  us  that  the  Sun  is  in  the  midpart.”90  The  astronomer  is  getting  the  

front  seat,  the  rest  are  left  with  speculation:  “The  others  who  exhibit  its  [the  Earth’s]  place  as  elsewhere  

are  not  forced  to  do  this  by  astronomical  arguments  but  by  certain  others  [arguments]  of  a  metaphysical  

character  drawn  from  the  consideration  of  the  Earth  and  its  place.”91    

In  his  Logic  of  Scientific  Discovery,  Karl  Popper  defines  the  problem  of  demarcation  as  the  finding  

of  “a  criterion  which  would  enable  us  to  distinguish  between  the  empirical  sciences  on  the  other  hand  

and   (…)  metaphysical   systems  on   the  other.”92  Kepler   constantly   looked   for   the   good   arguments   that  

would  refute  the  Aristotelian  system  together  with  any  other  theories  that  would  not  pass  the  scientific  

test,  even  when  the  theory   in  question  was  his  own.  He  struggled   for  sustainable,   feasible  arguments  

that  would  “demarcate”  between  “good”  theories  and  pseudo-­‐scientific  theories  (or,  as  Popper  would  

call  it,  “prescientific  knowledge”).  The  question  of  finding  a  method  to  demarcate  science  from  pseudo-­‐

science  is  nowadays  still  under  discussion.  This  makes  Kepler’s  attempt  to  distinguish  between  the  two  

                                                                                                                         

87    Ibid.  

88    Kepler,  Epitome,  18.  

89    Ibid.  

90    Kepler,  Epitome,  19.  

91    Ibid.  

92    Popper,  The  Logic,  34.  

Page 36: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

35    

even  more   remarkable.  He  used   the  method  of   trial   and  error  as  one  of   the   first,  being  methodically  

critical   with   empirical   knowledge,   corresponding   to   Popper’s   modern   view   on   the   methodology   of  

science:  “(…)  the  novelty  of  science  and  scientific  method,  which  distinguishes  it  from  the  prescientific  

approach,  is  its  consciously  critical  attitude  to  attempted  solutions;  it  takes  an  active  part  in  attempts  at  

elimination,   in   attempts   to   criticize   and   falsify.”93  Kepler   questioned   and   doubted   the   circularity   and  

uniformity  of  the  movement  of  the  planets  with  method,  proving  them  wrong,  eventually:    

 

The  orbit  of   the  planet   is  not  a  perfect  circle.  But   if  mind  caused   the  orbit,   it  would   lay  out   the  orbit  in  a  perfect  circle,  which  has  beauty  and  perfection  of  the  mind.  On  the  contrary,  the  elliptic  figure  of  the  route  of  the  planet  and  the  laws  of  the  movements  whereby  such  a  figure  is  caused  smell  (…)  of  material  necessity  rather  than  of  the  conception  and  determination  of  the  mind.94  

 

In  Popper’s  epistemology,  even  theories  that  are  impossible  to  test  by  experience  can  be  submitted  to  

the  test  of  falsifiability   in  order  to  prove  them  true  or  false:  “this  means  that  their  form  must  be  such  

that  to  verify  them  and  to  falsify  them  must  both  be  logically  possible.”95  Therefore,  a  theory  that  is  not  

falsifiable  cannot  be  accepted  as  scientific.  Kepler’s  aim  was  not  to  prove  the  Aristotelian  system  to  be  

false,  he  was  not  a  theoretician  of  science,  his  aim  was  to  reveal  how  the  planetary  system  worked  and  

to  prove  it  true.  In  order  to  reveal  the  real  system,  he  needed  assumptions  that  were  contradicting  the  

presently   accepted   theories,   those   of   Aristotle   and   Ptolemy.   He   managed   to   refute   the   Aristotelian  

worldview   by   using   a   smart   trick:   if   he   could   show   that   the   Aristotelian   principles   emerged   from   a  

metaphysical  belief  rather  than  an  empirical  analysis  of  observations,  he  could  subsequently  show  that  

such  a   system   is  not   to  be  proven  wrong  because  of   the  simple   reason   that   it  didn’t  have  a   scientific  

basis.  The   falsification  of   the  Aristotelian  worldview   is  actually  not  possible   logically  because  Aristotle  

does  not  “show  but  seek”96  his  theory.  As  Copernicus  had  already  shown,  the  Sun  is  in  the  center  of  the  

world   and   “the   others   who   exhibit   its   place   as   elsewhere   are   not   forced   to   do   this   by   astronomical  

                                                                                                                         

93    Popper,  All  Life,  11.  

94    Kepler,  Epitome,  52-­‐53.  

95    Popper,  The  Logic,  40.  

96    Kepler,  Epitome,  19.  

Page 37: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

36    

arguments  but  by  certain  others  of  a  metaphysical  character  drawn  from  the  consideration  of  the  Earth  

and   its   place.”97  In   the   Epitome,   Kepler   argues   for   Copernicanism   in   a   modern   way:   he   assigns   the  

theories  of  the  ancients  as  “probable”  and,  as  a  contrary,  describes  the  demonstration  of  Copernicus  as  

bringing  in  necessity.98  Kepler’s  attempt  to  separate  the  “new  physics”  from  the  old,  traditional  theory  

of  motion  having  its  origin  in  Aristotle’s  worldview,  brought  science  on  a  new  path  of  physical  causality  

that  would  help  change  our  view  upon  the  universe.    

 

6.  Conclusion  

Kepler’s  description  of  the  planetary  system  is  based  on  a  new  vision  of  motion  and  its  implications  were  

important  not  only  for  the  further  development  of  astronomy,  but  for  the  progress  of  science  in  general.  

His   faith   in   the  growth  of   knowledge  by   testing,  questioning,   inquiring  brought  him  eventually   to   the  

three  laws  of  planetary  movement  that  provided  us  with  a  new  kind  of  knowledge,  able  to  look  at  the  

depths  beyond  appearances:  

 

But   we   are   practised   in   the   discipline   which   discloses   the   causes   of   things,   shakes   off   the  deceptions  of  eyesight,  and  carries  the  mind  higher  and  farther,  outside  of  the  boundaries  of  the  eyesight.  Hence  it  should  not  be  surprising  to  anyone  that  eyesight  should  learn  from  reason,  that  the  pupil  should  learn  something  new  from  his  master  which  he  did  not  know  before.99    

 

His   critical   approach   to   astronomy,   which   is   transparent   in   all   his   writings,   fully   used   the   dichotomy  

between   physical   and   metaphysical,   giving   it   new   connotations,   even   if   the   linguistic   and   semantic  

clarity  of  the  two  concepts  is  still  problematic.  In  an  evolving  process  along  his  career  as  mathematician  

and   astronomer,   Kepler   succeded   in   invalidating   Aristotle’s   notion   of   celestial  motion   and   formulate  

laws  of  motion  that  contributed  in  an  essential  way  to  the  Scientific  Revolution.  

                                                                                                                           

97    Ibid.  

98    Kepler,  Epitome,  21  –  22:  “The  reasoning  of  the  ancients  is  merely  probable,  but  the  demonstration  of  Copernicus,  arising  from  his  principles,  brings  necessity.”  “The  ancients  do  not  explain  and  confirm  as  they  desire  the  reason  for  their  lay-­‐out;  Copernicus  establishes  his  lay-­‐out  excellently  by  reasons.”  

99    Kepler,  Epitome,  14.  

Page 38: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

37    

 

 

 

 

 

 

 

   

Page 39: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

38    

Bibliography  

• Aristotle,  The   Complete  Works,   2   volumes,   the   revised  Oxford   translation,   Edited   by   Jonathan  

Barnes,  New  Jersey:  Princeton  University  Press,  1984.  

• Baumgardt,  Carola,  Johannes  Kepler,  Life  and  Letters,  New  York:  Philosophical  Library,  1951.  

• Bodnar,  Istvan,  "Aristotle's  Natural  Philosophy",  The  Stanford  Encyclopedia  of  Philosophy  (Spring  

2012  Edition),  Edward  N.  Zalta  (ed.)  

URL=,http://plato.stanford.edu/archives/spr2012/entries/aristotle-­‐natphil/  (consulted  on  12  

April    2015).  

• Caspar,  Max,  Kepler,  Trans.  Doris  Hellman,  New  York:  Dover  Publications,  1993.  

• Corvi,  Roberta,  An  Introduction  to  the  Thought  of  Karl  Popper,  London:  Routledge,  1997.  

• DeWitt,  Richard,  Worldviews  -­‐  An  Introduction  to  the  History  and  Philosophy  of  Science,  Oxford:  

Wiley-­‐Blackwell,  2010.  

• Di  Liscia,  Daniel  A.,  Johannes  Kepler,  The  Stanford  Encyclopedia  of  Philosophy  (Summer  2014  

Edition),  Edward  N.  Zalta  (ed.),  URL  =  

<http://plato.stanford.edu/archives/sum2014/entries/kepler/>  (consulted  on  30  March  2015).  

• Donahue,  W.  H.,  Selections  from  Kepler's  Astronomia  Nova:  A  Science  Classics  Module  for  

Humanities  Studies,  Santa  Fe:  Green  Lion  Press,  2005.  

• Gingerich,  Owen,  The  Eye  of  Heaven.  Ptolemy,  Copernicus,  Kepler,  New  York:  American  Institute  

of  Physics,  1993.  

• Kepler,   Johannes,   Epitome   of   Copernican   Astronomy,   Trans.   Charles   Glenn   Wallis,   New   York:  

Prometheus  Books,  1995.    

• Kepler,   Johannes,  Harmonies   of   the  World   -­‐   Book   Five,   Trans.   Stephen   Hawking,   Philadelphia:  

Running  Press,  2002.  

• Kepler,   Johannes,   New   Astronomy,   Trans.   W.   H.   Donahue,   Cambridge:   Cambridge   University  

Press,  1992.  

• Kepler,  Johannes,  The  Six-­‐cornered  Snowflake,  London:  Oxford  University  Press,  1966.  

• Kepler,  Johannes,  Somnium,  Trans.  Normand  R.  Faladeau,  

https://frostydrew.org/papers.dc/papers/paper-­‐somnium/  (consulted  on  30  March  2015).  

• Koestler,   Arthur,   Johannes   Kepler   -­‐   Een   nieuwe   visie   op   het   helaal,   Elsevier  

Natuurwetenschappelijke  Pockets,     1962.  

Page 40: TheNew$Physics$ Kepler's$Refutationof$Aristotle's$Concept ... · 2!! 1.Introduction:theContext$ In!1619!Kepler!formulated!the!lastof!his!three!laws!of!planetary!motion.1!By!thattime,!he!had!reW

39    

• Koestler,  Arthur,  The  Sleepwalkers  :  a  History  of  Man's  Changing  Vision  of  the  Universe,  London:  

Hutchinson,  1964.  

• Koyré,   Alexandre,  The  Astronomical   Revolution:   Copernicus   -­‐   Kepler   -­‐   Borelli,   New   York:  Dover  

Publications,  1992.  

• Piglicci,  Massimo  &  Boudry,  Maarten  (editors),  Philosophy  of  Pseudoscience  -­‐  Reconsidering  the  

Demarcation     Problem,  Chicago:  The  University  of  Chicago  Press,  2013.  

• Popper,  Karl  Raymund,  The  Logic  of  Scientific  Discovery,  London:  Hutchinson,  1983.  

• Popper,  Karl  Raymund,  Realism  and  the  Aim  of  Science,  London:  Hutchinson,  1983.  

• Popper,   Karl   Raymund,   “The   Logic   and   Evolution   of   Scientific   Theory”   in   All   Life   Is   Problem  

Solving,  3-­‐22,  London:  Routledge,  1999    

• Regier,  Johathan,  "Kepler’s  Theory  of  Force  and  His  Medical  Sources,"  Early  Science  and  

Medicine,  19  (2014),  1  -­‐  27.  

• Rossi,  Paolo,  The  Birth  of  Modern  Science,  Oxford:  Blackwell  Publishers,  2001.  

• Sachs,  Joe,  Aristotle:  Motion  and  its  Place  in  Nature,  Internet  Encyclopedia  of  Philosophy,  

http://www.iep.utm.edu/aris-­‐mot/  (consulted  on  16  May  2015).  

• Stephenson,  Bruce,  Kepler’s  Physical  Astronomy,  Princeton:  Princeton  University  Press,  1994.  

• Stokes,  Geoffrey,  Popper:  Philosophy,  Politics  and  Scientific  Method,  Polity  Press,  1998.  

• Swinford,  Dean,  Through  the  Daemon's  Gate  -­‐  Kepler's  Somnium,  Medieval  Dream  Narratives  and  

the  Polysemy    of  Allegorical  Motifs,  New  York  &  London:  Routledge,  2006.  

• Voelkel,  James  R.,  The  Composition  of  Kepler's  Astronomia  Nova,  Princeton:  Princeton  University  

Press,  2001.