The Relation between Science and Innovation

60
1 The Relation between Science and Innovation Toyota Motor Corp. Battery Research Lab. Hideki Iba

Transcript of The Relation between Science and Innovation

1

The Relation between Science and Innovation

Toyota Motor Corp. Battery Research Lab. Hideki Iba

2

Number of Staff

Battery Research Lab. 55

Doctor 17

Now in doctor

course for

company person

8

Toyota Motor Corp. HigashiFuji Technical Center

3

New Principal, New process Fundamental technology

Material

Product

Device

Society

Green

innovation

Fun to Drive

HV

plug-in HV

EV

Innovative Battery

1)All Solid Battery

2)Metal Air Battery

Nano Material

1)Solid Electrolyte

2)Carbon alloy Catalyst

3)New active material

Nano particle Nano coating

self organization

Interface phenomina analysis

電子 電子

Cathode(LiCoO2) Anode(Carbon)

3~4V

Liquid Electrolyte

New Principal, New process Fundamental technology

Material

Product

Device

Society

Green

innovation

Fun to Drive

HV

plug-in HV

EV

Innovative Battery

1)All Solid Battery

2)Metal Air Battery

Nano Material

1)Solid Electrolyte

2)Carbon alloy Catalyst

3)New active material

Nano particle Nano coating

self organization

Interface phenomina analysis

11

560km (350m i les)

Osaka Tokyo

Start Goal

16

18

19

標高差1,439m 距離19.99km コーナー数156 平均勾配7%

New Principal, New process Fundamental technology

Material

Product

Device

Society

Green

innovation

Fun to Drive

HV

plug-in HV

EV

Innovative Battery

1)All Solid Battery

2)Metal Air Battery

Nano Material

1)Solid Electrolyte

2)Carbon alloy Catalyst

3)New active material

Nano particle Nano coating

self organization

Interface phenomina analysis

21

10 100 1000 10000

’10

’20

’15

NiMH battery

1000

2000

4000

6000

8000

10000

Limit of conventional

batteries

All Solid

Battery

Metal Air

Battery

Sakic

hi

Batt

ery

Po

we

r D

en

sit

y (W/ℓ

Volumetric Energy Density (Wh/ℓ)Mile Range

22

0 100 200

出力密度

0

2000

4000

6000

[W/L]

0 800 300 400

ニッケル水素電池 Nickel-metal hydride battery

500 600 700

8000

2015年

2020年

2030年

2025年

リチウムイオン電池 Lithium-ion battery

全固体電池

リチウム空気電池 Lithium-air battery

高出力型 (HV用)

高容量型(EV、PHV用)

エネルギー密度 [Wh/L]

1000 900

現状(コインサイズ)

現状

Po

we

r d

en

sity

High power type

High capacity type (for EV,PHV use)

All-solid-state battery

Current condition (coin size)

Current condition

Energy density

Liquid electrolyte Solid electrolyte

- + - +

“All-solid-state” battery Lithium-ion battery vs.

4V-class cathode 5V-class cathode

Pow

er d

ensity

(W/L

)

Energy density (Wh/L)

Lithium-ion

battery All-solid-state

battery

24

http://techon.nikkeibp.co.jp/

25

26

Cathode layer

Electrolyte layer

Anode layer

Anode current collector

Cathode current collector

(1)

(2)

(3)

(4)

(5)

(6)

(8)

(9)

(7)

(10)

Electron conduction Ion conduction

Cathode active material

Anode active material

Solid Electrolyte

27

Kanno et. al., NatureMaterials, Advanced online publication, DOI:10.1038/NMAT3066, (2011)

28

Kanno et. al., NatureMaterials, Advanced online publication, DOI:10.1038/NMAT3066, (2011)

(Ge,P)S4

PS4

LiS6

Moving Li ion

a b

c a

b

29

System:LiCoO2/Li10GeP2S12/Li4Ti5O12

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

Capacity (mAh/g)

Vol

tage

(V

)

0.1C 2C 5C

8C

10C 50C 20C

30

Cathode layer

Electrolyte layer

Anode layer

Anode current collector

Cathode current collector

(1)

(2)

(3)

(4)

(5)

(6)

(8)

(9)

(7)

(10)

Electron conduction Ion conduction

Cathode active material

Anode active material

Solid Electrolyte

Rint = 1.3 x 103 (W) Rint = 2.0 x 102 (W)

LiCoO2 Li7P3S11

Li+

Li+

Li7P3S11

LiCoO2

LiNbO3

buffer layer

Li+

Li+

insulating phase (Co3S4)

32

LiPON

LiCr 0 . 0 5 Ni0 . 4 5 Mn1 . 45O 4

(LNM)

Li

C/Ti/Pt

6 0 nm

2 .5 m m

5 .0 m m

BaTiO3 (10nm)(a)

200 nm

(b)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

3.0 3.5 4.0 4.5 5.0 5.5

E / (V vs. Li/Li+)

I /

μA

(ii) Li+ deficiency at around the interface

C. Yada et al., submitted for publication

E

+

-

LiPON Li LiNi0.5Mn1.5O4

4.7 V

Large

RLNMO /LiPON

Well-developed EDLs

in high-voltage battery

Predominant Li+ deficiency at around the interface

+ + + + +

+ + + +

Electric double layers

- - - - - - -

- -

- - - - -

- - -

- - - -

-

- - - - - - -

-

-

- -

- - - - - -

- - - - - -

- - - - - - -

- -

- -

- - -

- -

- - -

- -

- - -

-

-

- - - -

- -

- -

- - -

-

-

- Li+

-

-

-

-

Li+

+

4.7 V

Design of electric potential distribution

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

3.0 3.5 4.0 4.5 5.0 5.5

E / (V vs. Li/Li+)

I /

μA

Mn3+ ⇌ Mn4+

Ni2+ ⇌ Ni4+

C. Yada et al., submitted for publication

BaTiO3 (f 10 nm)

LiPON Li

E

+

-

LiNi0.5Mn1.5O4

Li+

- - - - -

- - - - -

- - -

-

- - - -

- - -

- - - - - -

- -

- -

-

-

- - -

- -

- -

- -

- -

-

- - -

-

- - -

-

- + - + - + - +

- + - + - + - +

+ + + +

+

+ + + + +

-

- -

-

-

- -

Electric double layers

- - - -

- - - -

- - - Li+

Relaxation of interfacial electric field

by BaTiO3 modification

Increase in Li+ concentration at around the interface

35

Kanno et. al., NatureMaterials, Advanced online publication, DOI:10.1038/NMAT3066, (2011)

36

Guerin and Hayden; J. Combinatorial Chemistry 8 (2006) 66-73

Target

Li La Ti

O2プラズマ

(K-cell) (EB) (EB)

37

TiO2

0 10 20 30 40 50 60 70 80 90 100

LaO1.5

0

10

20

30

40

50

60

70

80

90

100

LiO0.5

0

10

20

30

40

50

60

70

80

90

100

(35mm x 35mm Target) LiO0.5

LaO1.5

TiO2

Li3xLa2/3-xTiO3

38

-6

-5

-4

-3

-2

0.00 0.05 0.10 0.15 0.20

log

(s

tota

l/

Sc

m-1

)

x in Li3xLa2/3-xTiO3

Error bar

バルク材料の実測データ Literature data

予測された導電率 Calculated conductivity

39

La1 La2

La1 La2

90°ドメイン

Anti-phase domain (APB)

40

41

10 100 1000 10000

’10

’20

’15

NiMH battery

1000

2000

4000

6000

8000

10000

Limit of conventional

batteries

All Solid

Battery

Metal Air

Battery

Sakic

hi

Batt

ery

Po

we

r D

en

sit

y (W/ℓ

Volumetric Energy Density (Wh/ℓ)Mile Range

42

固体の生成物が析出

O2

LiOH水溶液 負極集電体 正極集電体

カーボン 触媒 固体電解質 負極 酸素透過膜

Li+

Li ⇔

Li+ + e-

4Li+ + 4e- + O2 + 2H2O 4LiOH

放電

充電

正極反応

O2

Li+

セパレーター 負極集電体 正極集電体

カーボン 触媒 電解液 負極 酸素透過膜

Li ⇔

Li+ + e-

正極反応

2Li+ + 2e- + O2 Li2O2

放電

充電

水溶液系 Li空気電池 非水系 Li空気電池

生成物は電解液に溶解

生成物

金属Li / PC, LiTFSA(1M) / MnO2担持空気極 / O2

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

Cycle number

Dis

ch

arg

e c

ap

acity [

mA

h/g

-ca

rbo

n]

放電

容量

[m

Ah

/g-c

arb

on

]

サイクル数

0.02 mA/cm2

25℃

100cyc後に60%以上の容量保持

2.0

2.5

3.0

3.5

4.0

4.5

0 100 200 300 400 500 600 700 800 900

Capacity [mAh/g-carbon]

Voltage [

V]

容量 [mAh/g-carbon]

電圧

[V

]

放電

充電

電圧ロス (充放電時の電圧差)

金属Li / PC, LiTFSA(1M) / MnO2担持空気極 / O2

Li2O2の理論電圧(2.97V)

1st cycle

0.02 mA/cm2

25℃

45

Li+

O

=

O- XO C

e-

CO2

XO・

< 放電 >

< 充電 >

O

=

C OLi XO

Li+

PC

(副反応)

使用した電池材料

解析により同定した

生成物

有機溶媒

Li+

O2

2e-

PP13TFSA

(正反応)

2Li+

(X = alkyl group or Li)

O O

O O

O

O

O2

Li2O2

46

0

500

1000

1500

2000

2500

3000

40 50 60 70 80 90

Energy [eV]

Inte

nsity

PP13TFSA : 5.9mAh程度

100nm程度

の粒子

MnO2/CB

-4

-2

0

2

4

6

40 50 60 70 80 90

Energy [eV]

Secondary

diff

ere

ntia

l inte

nsity

Li2CO3

Li2O2

sample

Li2CO3 Li2O2

sample

中略

48

Tokyo Univ of Science Komaba, Yabuuchi

Cathode:NaNi0.5Mn0.5O2

Anode:Hard Carbon

Electrolyte:PC+α

①Osaka pref. univ Hayashi

Cathode: Sulfide

Anode: Carbon

Electrolyte: Sulfide

Kyushu Univ Okada + Sumitomo Chem.

Cathode:NaFeO2

Anode:C1600(Sumotomo)

Electrolyte:IL←Yamaguchi univ Morita

②Kyoto univ Hagiwara +

Sumitomot Electric.

Cathode:NaCrO2

Anode:Na-Sn alloy

Electrolyte:NaFSA-KFSA(67℃melt)

New High Capacity

Active Material

Na ion battery Open innovation

Fig. Li-M-P (M = Ni, Co and Mn) system Fig. Na-M-P (M = Ni, Co and Mn) system

1) Na-M-P 2) Li-M-P

Marisite-NaMPO4

Olivine-LiMPO4

×

1Dイオンチャンネル

イオンチャンネルなし

Refs. 1) F. Sanz et al., Chem Mater. 13 1334-1340 (2001). 2) F. Sanz et al., J. solid state chem. 123 129 (1996).

Na4M3(PO4)2P2O7

[M=Ni, Co, Mn]

(I) a軸方向 (II) b軸方向

b

c

a

c

Na1

Na2 Na3

Na4

(III) c軸方向

a

b

Na3Na4

Fig. Na-M-P (M = Ni, Co and Mn) system

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 20 40 60 80 100 120 140

Capacity [mAh/g]

Pote

ntial

[V

vs.

Na

+/N

a]

1st cycle

50th cycle

100th cycle

Fig. Charge and discharge curves of Na4Co3(PO4)2P2O7 at a) 1st, b) 50th and c) 100th cycles.

Current density : 34 mA/g

Counter : Na metal

Electrolyte : EC/DEC (1M NaPF6)

New Principal, New process Fundamental technology

Material

Product

Device

Society

Green

innovation

Fun to Drive

HV

plug-in HV

EV

Innovative Battery

1)All Solid Battery

2)Metal Air Battery

Nano Material

1)Solid Electrolyte

2)Carbon alloy Catalyst

3)New active material

Nano particle Nano coating

self organization

Interface phenomina analysis

54

55

56

「Nano structure control」

Latest development Issues

Nano to bulk scale up

such as)

Interface structure

layer structure

self organize

in-situ analysis

Step1

・nano particle fabrication

Step2

・nano composite magnet

・nano cluster catalyst

58

New Principal, New process Fundamental technology

Material

Product

Device

Society

Green

innovation

Fun to Drive

HV

plug-in HV

EV

Innovative Battery

1)All Solid Battery

2)Metal Air Battery

Nano Material

1)Solid Electrolyte

2)Carbon alloy Catalyst

3)New active material

Nano particle Nano coating

self organization

Interface phenomina analysis

60

http://www.toyota.co.jp/jpn/events/culture/dreamcar/gallery.html