The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical...

45
The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point in the figure. Starting from the definition of the torque τ = r × F , (1) derive the differential equation the angular posi- tion θ must satisfy. (2) Derive a new differential equation if the pendu- lum is damped by a friction force F f = -bv where b is some constant describing the the pendulum. (3) Derive a final differential equation if the pen- dulum is now also driven by a force F drive = F D sin(Ωt) ˆ θ. (4) Generate an algorithm for the differential equa- tion from Part 3. (5) What does the phase space look like for each set of conditions if the initial conditions are θ 0 = 25 and ω 0 =0 rad/s or θ 0 = 24 and ω 0 =0 rad/s? m mgsin θ g θ O C mgcos θ L Chaos – p. 1/3

Transcript of The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical...

Page 1: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

The Physical Pendulum and the Onset of Chaos

Consider the uniform rod rotating about an endpoint in the figure. Starting from the definition ofthe torque ~τ = ~r × ~F ,

(1) derive the differential equation the angular posi-tion θ must satisfy.

(2) Derive a new differential equation if the pendu-lum is damped by a friction force ~Ff = −b~v whereb is some constant describing the the pendulum.

(3) Derive a final differential equation if the pen-dulum is now also driven by a force ~Fdrive =

FD sin(Ωt)θ.

(4) Generate an algorithm for the differential equa-tion from Part 3.

(5) What does the phase space look like for eachset of conditions if the initial conditions are θ0 = 25

and ω0 = 0 rad/s or θ0 = 24 and ω0 = 0 rad/s?

m

mgsin

θ

g

θ

O

C

mgcosθ

L

Chaos – p. 1/34

Page 2: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Getting Started - The Harmonic Oscillator

Hooke’s Law states that

Fs = −kx

where Fs is the restoring force ex-

erted by a spring and x is the dis-

placement from equilibrium where

there is no net force acting on the

mass. See example here.

1. What differential equation does x satisfy?

2. What is the solution?

3. How would you test the solution?

4. What is the physical meaning of the constants in the solution?

Chaos – p. 2/34

Page 3: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

The Harmonic Oscillator - The Solution

The solution for Hooke’s Law is

x(t) = A cos(ωt + φ)

where x(t) is the displacement from equilibrium.

t0 1 2 3 4 5 6 7 8 9 10

x(t)

-1

-0.5

0

0.5

1

A Cosine Curve

Period

Amplitude

Phase

Chaos – p. 3/34

Page 4: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

The Simple Harmonic Oscillator - An Example

A harmonic oscillator consists ofa block of mass m = 0.33 kgattached to a spring with springconstant k = 400 N/m. See thefigure below. At time t = 0.0 s theblock’s displacement from equi-librium and its velocity are y =0.100 m and v = −13.6 m/s. (1)Find the particular solution forthis oscillator. (2) Use a centeredderivative formula to generate analgorithm for solving the equationof motion.

Chaos – p. 4/34

Page 5: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

The Pendulum - Stating the Problem

The simple pendulum is an example ofan oscillatory system where the restoringforce is provided by gravity. Consider thependulum shown in the figure.

1. What differential equation does θ

satisfy?

2. What differential equation does θ

satisfy for small angles?

3. What is the solution?

4. How would you test the solution?

5. What is the physical meaning of theconstants?

6. Redo Part 1 using torques.m

mgsin

mgcos θ

θ

θ

C

g

L O

Chaos – p. 5/34

Page 6: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

The Simple Pendulum - The Solution

The solution for simple pendulum is

θ(t) = A cos(ωt + φ)

where θ(t) is the angular displacement from equilibrium.

t0 1 2 3 4 5 6 7 8 9 10

(t)

θ

-1

-0.5

0

0.5

1

Period

Amplitude

Phase

A Cosine Curve

Chaos – p. 6/34

Page 7: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Torque - Rotational Equivalent of Force

~F = m~a → ~τ = r ~F⊥

F

Chaos – p. 7/34

Page 8: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Linear → Rotational Quantities

Linear RotationalQuantity Connection Quantity

s s = rθ θ = s

r

vT vT = rω ω = vT

r= dθ

dt

aT aT = rα α = aT

r= dω

dt

KE = 1

2mv2 KER = 1

2Iω2

~F = m~a τ = rF⊥ ~τ = I~α

~p = m~v ~L = ~r × ~p ~L = I~ω

Chaos – p. 8/34

Page 9: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

The Physical Pendulum and the Onset of Chaos

Consider the uniform rod rotating about an endpoint in the figure. Starting from the definition ofthe torque ~τ = ~r × ~F ,

(1) derive the differential equation the angular posi-tion θ must satisfy.

(2) Derive a new differential equation if the pendu-lum is damped by a friction force ~Ff = −b~v whereb is some constant describing the the pendulum.

(3) Derive a final differential equation if the pen-dulum is now also driven by a force ~Fdrive =

FD sin(Ωt)θ.

(4) Generate an algorithm for the differential equa-tion from Part 3.

(5) What does the phase space look like for eachset of conditions if the initial conditions are θ0 = 25

and ω0 = 0 rad/s or θ0 = 24 and ω0 = 0 rad/s?

m

mgsin

θ

g

θ

O

C

mgcosθ

L

Chaos – p. 9/34

Page 10: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Moments of Inertia

Chaos – p. 10/34

Page 11: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Nonlinear, Physical Pendulum Phase Space and Time Series

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

ΘHradL

ΩHr

adsL

Phase Space for Θ0=25oHredL, Θ0=24o

HblackL

0 5 10 15 20 25 30

-0.4

-0.2

0.0

0.2

0.4

tHsL

ΘHr

adL

Time Series for Θ0=25oHblueL, Θ0=24o

HgrayL

Chaos – p. 11/34

Page 12: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Nonlinear, Physical Pendulum Phase Space and Time Series

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

ΘHradL

ΩHr

adsL

Phase Space for Θ0=25oHredL, Θ0=24o

HblackL

0 5 10 15 20 25 30

-0.4

-0.2

0.0

0.2

0.4

tHsL

ΘHr

adL

Time Series for Θ0=25oHblueL, Θ0=24o

HgrayL

Chaos – p. 12/34

Page 13: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Nonlinear, Damped, Driven, Physical Pendulum Phase Space a ndTime Series

-10 -5 0 5 10 15

-2

-1

0

1

2

ΘHradL

ΩHr

adsL

Phase Space for Θ0=25oHredL, Θ0=24o

HblackL

0 20 40 60 80-10

-5

0

5

10

15

tHsL

ΘHr

adL

Time Series for Θ0=25oHblueL, Θ0=24o

HgrayL

Chaos – p. 13/34

Page 14: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Code for Nonlinear, Damped, Driven, Physical Pendulum

( * Initial conditions and parameters * )

th0 = 25.0 * Pi/180; ( * initial position in meters * )

w0 = 0.0; ( * initial velocity in m/s * )

t0 = 0.0; ( * initial time in seconds * )

grav = 9.8; ( * acceleration of gravity * )

length = 14.7; ( * length of pendulum * )

mass = 0.245; ( * mass of pendulum * )

( * driving force amplitude and friction force. See below for mo re * )

qDrag = 0.6; ( * drag coefficient * )

DriveForce = 11.8; ( * DriveForce = 11.8; cool plot value * )

DriveFreq = 0.67; ( * driving force angular frequency * )

DrivePeriod = 2 * Pi/DriveFreq; ( * period of the driving force * )

( * step size * )

step = 0.10;

Chaos – p. 14/34

Page 15: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Code for Nonlinear, Damped, Driven, Physical Pendulum

( * limits of the iterations. since we already have theta(t=0) a nd we

have calculated theta(t=step) then the first value in the ta ble will

be for t=2 * step. * )

tmin = 2 * step;

tmax = 80.0;

( * condense the constants into coefficients for the appropria te terms. * )

f1 = 1 + (3 * qDrag * step/(2 * mass* length));

f2 = 3 * DriveForce * (stepˆ2)/(2 * length);

f3 = -3 * grav * (stepˆ2)/(2 * length);

f4 = -1 + (3 * qDrag * step/(2 * mass* length));

( * set up the first two points. * )

t1 = t0 + step;

th1 = th0 + w0 * step;

( * get rid of the previous results for the table and proceed * )

Clear[pdispl]

Clear[tdispl]

Chaos – p. 15/34

Page 16: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Code for Nonlinear, Damped, Driven, Physical Pendulum

( * A centered second derivative formula is used to generate an i terative

solution for the mass on a spring. first load the starting poi n. * )

thmid = th0; ( * starting value of theta * )

thplus = th1; ( * second value of theta * )

tmid = t0;

( * create a table of ordered (theta,w). for each component the n ext value

is calculated and then the variables incremented for the nex t interation.

pdispl = th0, w0;

tdispl = t0, th0;

Do[thminus = thmid;

thmid = thplus;

tmid = tmid + step;

thplus = (f2 * Sin[DriveFreq * t] + 2 * thmid + f3 * Sin[thmid] +

f4 * thminus)/f1; wmid = (thplus - thminus)/(2 * step);

pdispl = Append[pdispl, thmid, wmid] ;

tdispl = Append[tdispl, tmid, thmid] ,

t, tmin, tmax, step

];

Chaos – p. 16/34

Page 17: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 1 Results

0 10 20 30 40 50 60

-100

-80

-60

-40

-20

0

tim eHsL

ΘHr

adL

Tim e Series of the Physical Pendulum

Red - Θ0=25o

Blue - Θ0=24o

0 10 20 30 40 50 60

-150

-100

-50

0

tim eHsL

ΘHr

adL

Tim e Series of the Physical Pendulum

-100 -80 -60 -40 -20 0

-10

-5

0

5

10

ΘHrad L

ΩHr

adsL

Phase Space of the Physical Pendulum

Chaos – p. 17/34

Page 18: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Visualizing Chaos - The Phase Space Trajectory

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

ΘHradL

ΩHr

adsL

θ0 = 10

Chaos – p. 18/34

Page 19: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Visualizing Chaos - Stroboscopic Pictures

Chaos – p. 19/34

Page 20: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Visualizing Chaos - Stroboscopic Pictures

3D Scatter Plot

0

20

40

60

t HsL

-100

10ΘHrad L

-2

-1

0

1

2

ΩHrad sL

Chaos – p. 20/34

Page 21: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Visualizing Chaos - The Poincare Section

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

ΘHradL

ΩHr

adsL

θ0 = 10

Chaos – p. 21/34

Page 22: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Visualizing Chaos - The Poincare Section

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

ΘHradL

ΩHr

adsL

θ0 = 10

Chaos – p. 22/34

Page 23: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Visualizing Chaos - The Poincare Section

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

ΘHradL

ΩHr

adsL

θ0 = 10

Chaos – p. 23/34

Page 24: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Visualizing Chaos - The Poincare Section

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

ΘHradL

ΩHr

adsL

θ0 = 10

Chaos – p. 24/34

Page 25: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Visualizing Chaos - The Poincare Section

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

ΘHradL

ΩHr

adsL

θ0 = 10

Chaos – p. 25/34

Page 26: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Visualizing Chaos - The Poincare Section

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

ΘHradL

ΩHr

adsL

θ0 = 10

Chaos – p. 26/34

Page 27: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Visualizing Chaos - The Time Series

0 10 000 20 000 30 000 40 000-400

-300

-200

-100

0

timeHsL

ΘHr

adL

Time Series of the Physical Pendulum

Chaos – p. 27/34

Page 28: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Calculating Chaos - The Poincare Series - 1

( * initial conditions and parameters * )

t0 = 0.0; x0 = 1.0; v0 = 0.2; step = 0.01;

( * get the second and third points on the curve * )

t1 = t0 + step;

x1 = x0 + step * v0;

x2 = 2 * x1 - x0 - (step * step * x1);

v1 = (x2 - x0)/(2 * step);

( * put the first point in the table * )

MyTable = x0, v0, x1, v1;

( * rename stuff for the first point of the algorithm * )

xminus = x0;

xmid = x1;

xplus = x2;

tmin = t1 + step;

tmax = 50.0;

Chaos – p. 28/34

Page 29: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Calculating Chaos - The Poincare Series - 2

( * Use a Do loop and store the points when t = n\[Pi]. A centered

formula is used to approximate the second derivative. Set pa rameters

needed to test when to store the data. * )

TimeTest = Pi;

PeriodCounter = 1;

( * main loop. * )

Do[xminus = xmid;

xmid = xplus;

xplus = 2 * xmid - xminus - (step * step * xmid);

vmid = (xplus - xminus)/(2 * step);

If[t > TimeTest,

MyTable = Append[MyTable, xmid, vmid];

PeriodCounter = PeriodCounter + 1;

TimeTest = PeriodCounter * 2* Pi

],

t, tmin, tmax, step

]

Chaos – p. 29/34

Page 30: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Harmonic Oscillator With Coupled Equations - 1

( * Solving the mass on a spring problem.

Initial conditions and parameters * )

x0 = 0.0; ( * initial position in meters * )

v0 = 2.0; ( * initial velocity in m/s * )

t0 = 0.0; ( * initial time in seconds * )

( * set up the first two points.

step size * )

step = 0.1;

t1 = t0 + step;

x1 = x0 + v0 * step;

v1 = v0 - ( step * kspring * x0/mass);

xminus = x0; ( * initial value of x * )

vminus = v0; ( * initial value of v * )

xmid = x1;

vmid = v1;

mass = 0.33; ( * the mass in kg * )

kspring = 0.5; ( * spring constant in N/m * )

Chaos – p. 30/34

Page 31: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Harmonic Oscillator With Coupled Equations - 2

( * limits of the iterations. since we already have y(t=0) and we

have calculated y(t=step), then the first value in the table

will be for t=2 * step. * )

tmin = 2 * step;

tmax = 25.0;

( * create a table of ordered (t,x). for each component the next v alue is

calculated and then variables are incremented for the next i nteration.

tpos = Table[

t,

vplus = vminus - (2 * step * kspring/mass) * xmid;

xplus = xminus + (2 * step * vmid);

vminus = vmid;

vmid = vplus;

xminus = xmid;

xmid = xplus

,

t, tmin, tmax, step

];

Chaos – p. 31/34

Page 32: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=1000. s

3 2 1 0 1 2 30

5

0

5

0

5

0

5

H dL3 2 1 0 1 2 3

0

5

0

5

0

5

0

5

H dL

1 0 1 2 3 40

5

0

5

0

5

0

H dL1 0 1 2 3 4

0

5

0

5

0

5

0

H dL

Chaos – p. 32/34

Page 33: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=1000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=10000. s

3 2 1 0 1 2 30

5

0

5

0

5

0

5

H dL

1 0 1 2 3 40

5

0

5

0

5

0

H dL1 0 1 2 3 4

0

5

0

5

0

5

0

H dL

Chaos – p. 32/34

Page 34: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=1000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=10000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=15000. s

1 0 1 2 3 40

5

0

5

0

5

0

H dL1 0 1 2 3 4

0

5

0

5

0

5

0

H dL

Chaos – p. 32/34

Page 35: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=1000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=10000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=15000. s

-0.01 0.00 0.01 0.02 0.03 0.041.280

1.285

1.290

1.295

1.300

1.305

1.310

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=10000. s

1 0 1 2 3 40

5

0

5

0

5

0

H dL

Chaos – p. 32/34

Page 36: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=1000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=10000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=15000. s

-0.01 0.00 0.01 0.02 0.03 0.041.280

1.285

1.290

1.295

1.300

1.305

1.310

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0., tm ax=10000. s

-0.01 0.00 0.01 0.02 0.03 0.041.280

1.285

1.290

1.295

1.300

1.305

1.310

ΘHradL

ΩHr

adsL

Θ0 = 55 deg, Shift=0., tm ax=10000. s

Chaos – p. 32/34

Page 37: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.25, tm ax=10000. s

5 0 5 0 50

5

0

5

0

H dL

0 2 4 6 8 00

1

2

3

4

5

H dL0 0 0 0 0 0

0

0

0

0

HsL

Chaos – p. 33/34

Page 38: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.25, tm ax=10000. s

0.95 1.00 1.05 1.10 1.15-0.10

-0.05

0.00

0.05

0.10

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.25, tm ax=10000. s

0 2 4 6 8 00

1

2

3

4

5

H dL0 0 0 0 0 0

0

0

0

0

HsL

Chaos – p. 33/34

Page 39: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.25, tm ax=10000. s

0.95 1.00 1.05 1.10 1.15-0.10

-0.05

0.00

0.05

0.10

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.25, tm ax=10000. s

1.060 1.062 1.064 1.066 1.068 1.0700.000

0.001

0.002

0.003

0.004

0.005

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.25, tm ax=10000. s

0 0 0 0 0 0

0

0

0

0

HsL

Chaos – p. 33/34

Page 40: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.25, tm ax=10000. s

0.95 1.00 1.05 1.10 1.15-0.10

-0.05

0.00

0.05

0.10

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.25, tm ax=10000. s

1.060 1.062 1.064 1.066 1.068 1.0700.000

0.001

0.002

0.003

0.004

0.005

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.25, tm ax=10000. s

0 2000 4000 6000 8000 10 000

-1500

-1000

-500

0

tim eHsL

ΘHr

adL

Θ0 = 25 deg, Shift=0.25, tm ax=10000. s

Chaos – p. 33/34

Page 41: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=1000. s

3 2 1 0 1 2 30

5

0

5

0

5

0

5

H dL3 2 1 0 1 2 3

0

5

0

5

0

5

0

5

H dL

4 6 8 0 2 44

5

6

7

8

9

0

H dL4 6 8 0 2 4

4

5

6

7

8

9

0

H dL

Chaos – p. 34/34

Page 42: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=1000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=10000. s

3 2 1 0 1 2 30

5

0

5

0

5

0

5

H dL

4 6 8 0 2 44

5

6

7

8

9

0

H dL4 6 8 0 2 4

4

5

6

7

8

9

0

H dL

Chaos – p. 34/34

Page 43: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=1000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=10000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=15000. s

4 6 8 0 2 44

5

6

7

8

9

0

H dL4 6 8 0 2 4

4

5

6

7

8

9

0

H dL

Chaos – p. 34/34

Page 44: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=1000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=10000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=15000. s

0.44 0.46 0.48 0.50 0.52 0.541.04

1.05

1.06

1.07

1.08

1.09

1.10

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=10000. s

4 6 8 0 2 44

5

6

7

8

9

0

H dL

Chaos – p. 34/34

Page 45: The Physical Pendulum and the Onset of Chaosggilfoyl/compphys/slides/chaos... · The Physical Pendulum and the Onset of Chaos Consider the uniform rod rotating about an end point

Chaos Lab 2 Results

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=1000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=10000. s

-3 -2 -1 0 1 2 3-20

-15

-10

-5

0

5

10

15

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=15000. s

0.44 0.46 0.48 0.50 0.52 0.541.04

1.05

1.06

1.07

1.08

1.09

1.10

ΘHradL

ΩHr

adsL

Θ0 = 25 deg, Shift=0.05, tm ax=10000. s

0.44 0.46 0.48 0.50 0.52 0.541.04

1.05

1.06

1.07

1.08

1.09

1.10

ΘHradL

ΩHr

adsL

Θ0 = 55 deg, Shift=0.05, tm ax=10000. s

Chaos – p. 34/34