The Operational Basis of a FET MOSFET

7
1 ESE 568: Mixed Signal Circuit Design and Modeling Lec 2: September 4th, 2019 MOS Models: Devices and Large Signal Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD) Lecture Outline ! MOSFET (Large Signal) " Physical Device " Device Models " Examples " 2 nd order effects 2 Penn ESE 568 Fall 2019 - Khanna MOSFET Metal Oxide Semiconductor Field Effect Transistor: Device and Models Penn ESE 568 Fall 2019 - Khanna 3 The Operational Basis of a FET 4 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD) Metal Oxide (Insulator) P-type Semiconductor The Operational Basis of a FET 5 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD) The Operational Basis of a FET 6 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Transcript of The Operational Basis of a FET MOSFET

Page 1: The Operational Basis of a FET MOSFET

1

ESE 568: Mixed Signal Circuit Design and Modeling

Lec 2: September 4th, 2019 MOS Models: Devices and Large Signal

Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Lecture Outline

!  MOSFET (Large Signal) "  Physical Device "  Device Models

"  Examples

"  2nd order effects

2 Penn ESE 568 Fall 2019 - Khanna

MOSFET

Metal Oxide Semiconductor Field Effect Transistor: Device and Models

Penn ESE 568 Fall 2019 - Khanna 3

The Operational Basis of a FET

4 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Metal

Oxide (Insulator)

P-type Semiconductor

The Operational Basis of a FET

5 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

The Operational Basis of a FET

6 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Page 2: The Operational Basis of a FET MOSFET

2

The Operational Basis of a FET

7 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

MOSFET Physical Structure

8 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

nMOS IV Characteristics

9 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

nMOS IV Characteristics

10 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

nMOS IV Characteristics

11 Only valid for vds near 0 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F.

Najmabadi, UCSD)

nMOS IV Characteristics

12 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Page 3: The Operational Basis of a FET MOSFET

3

nMOS IV Characteristics

13 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

nMOS IV Characteristics

14 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Transistor IV curves

15 Penn ESE 568 Fall 2019 - Khanna

Channel Length Modulation

16 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Channel-length Modulation

Channel Length Modulation

17 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Channel-length Modulation

Body Effect

18 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Page 4: The Operational Basis of a FET MOSFET

4

The Operational Basis of a FET

19

Not exactly Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

The Operational Basis of a FET

20

Not exactly

Weak Inversion Strong Inversion

Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Weak Inversion (or Cut-off or Subthreshold)

!  Transition from insulating to conducting is non-linear, but not abrupt

!  Current does flow "  But exponentially dependent on VGS

21 Penn ESE 568 Fall 2019 – Khanna

Weak Inversion (or Cut-off or Subthreshold)

If VGS <Vth,

IDS = ISWL

!

"#

$

%&e

VGS−VthnkT /q

!

"#

$

%&

1− e−VDSkT /q!

"#

$

%&!

"

##

$

%

&&

1+λVDS( )

22

!  Current is from the parasitic NPN BJT transistor when gate is unbiased and there is no conducting channel

Penn ESE 568 Fall 2019 – Khanna

MOS IV Characteristic Equations

23

Simplified for hand analysis

Not exactly, subT current flows

[1+λ(vDS−VOV)]

[1+λ(vDS−VOV)]

Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

pMOS Device

24 Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Page 5: The Operational Basis of a FET MOSFET

5

MOS IV Characteristic Equations

25

Simplified for hand analysis

Not exactly, subT current flows

[1+λ(vDS−VOV)]

[1+λ(vSD−VOV)]

Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

nMOS Exercise

!  http://www-g.eng.cam.ac.uk/mmg/teaching/linearcircuits/mosfet.html

26 Penn ESE 568 Fall 2019 - Khanna

Example: Operating Regions

!  Assume VTHn = -VTHp = 0.5V, µnCox = µpCox = 50µA/V2, λ = 0, and M1 and M2 have the same value of W and L (are same size)

!  Determine operating region for M1 and M2 assuming: "  Vbias = 1.2 "  Vbias = 0.2 "  Vbias = 0.65

27 Penn ESE 568 Fall 2019 - Khanna

2nd Order Effects

!  Mobility Degradation with Normal Field "  Vertical field "  Triode and saturation region

!  Velocity Saturation "  Lateral field "  Saturation region

!  Short Channel Effects 

28 Penn ESE 568 Fall 2019 - Khanna

Mobility Degradation with Normal Field

29 Penn ESE 568 Fall 2019 - Khanna

!  Usually modeled empirically !  Affects both saturation and triode regions

"  Strong inversion only

(VDS small)

Mobility Degradation with Normal Field

!  High gate-to-source voltage

!  θ= mobility modulation factor (empirical)

30

µn (eff ) ≈µn0

1+θ(VGS −VT )

Penn ESE 568 Fall 2019 – Khanna

Page 6: The Operational Basis of a FET MOSFET

6

Velocity Saturation

!  Affects saturation region in strong inversion !  Once velocity saturates:

31

Mobility degradation due to lateral electric field (VDS/Leff)

Penn ESE 568 Fall 2019 – Khanna

Velocity Saturation

!  Long Channel

32 Penn ESE 570 Spring 2019 – Khanna

Velocity Saturation

!  Long Channel !  Short Channel

33 Penn ESE 570 Spring 2019 – Khanna

Short Channel Effects – VT Reduction

34

n+ n+

pn+ depletion

region

pn+ depletion

region VGS induced depletion

region

S G

D

n+ n+

S G

D

QB0 QB0(sc)

xj

Leff Leff

VT0 (short channel) = VT0 - ΔVT0

Penn ESE 568 Fall 2019 – Khanna

Short Channel Effects – VT Reduction

35

n+ n+

pn+ depletion

region

pn+ depletion

region VGS induced depletion

region

S G

D

n+ n+

S G

D

QB0 QB0(sc)

xj

Leff Leff

VT0 (short channel) = VT0 - ΔVT0

Penn ESE 568 Fall 2019 – Khanna

Short Channel Effects - DIBL

36 Penn ESE 568 Fall 2019 - Khanna

!  Drain Induced Barrier Lowering "  VT Reduction with Drain Bias

Page 7: The Operational Basis of a FET MOSFET

7

MOS IV Characteristic Equations

37

Simplified for hand analysis

Not exactly, subT current flows

[1+λ(vDS−VOV)]

[1+λ(vDS−VOV)]

Penn ESE 568 Fall 2019 – Khanna (Slides adapted from F. Najmabadi, UCSD)

Lecture Outline

!  MOSFET has modes of operation "  Subthreshold "  Triode "  Saturation "  Have simplified model for hand analysis

!  Second order effects "  Mobility Degradation with Normal Field "  Short Channel Effects

"  Velocity Saturation "  VT reduction "  DIBL

38 Penn ESE 568 Fall 2019 - Khanna

Admin

!  HW 1 due Sunday at midnight in Canvas "  Allow time for submitting "  Make sure your submission is the correct file

"  Check!

!  Diagnostic Quiz extended "  Complete by Friday midnight or get a 0

39 Penn ESE 568 Fall 2019 – Khanna