The Atoms of Analog Circuit Design - Gonzaga...

30
1 EE 303 – Electronics I The "Atoms" of Analog Circuit Design C. Talarico Gonzaga University

Transcript of The Atoms of Analog Circuit Design - Gonzaga...

Page 1: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

1 EE 303 – Electronics I

The "Atoms" of Analog Circuit Design

C. Talarico Gonzaga University

Page 2: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

2 EE 303 – Electronics I

Elementary Amplifier Configurations

CommonSource

CommonGate

CommonDrain

Transconductance Stage

Current Buffer

Voltage Buffer

One-Transistor Stages

Page 3: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

3

Common Source Stage

•  A common source stage is sufficient for building a simple amplifier.

•  How about the other two possible single-transistor configurations?

•  We'll find that common gate and common drain stages can be incorporated as valuable add-ons, for building "better" amplifiers

•  Interestingly, many analog circuits can be decomposed into a combination of the above three fundamental building blocks

EE 303 – Electronics I

Page 4: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

4

Widely Used Two-Transistor Stages

Cascode Stage

Current Mirror

Differential Pair

EE 303 – Electronics I

Page 5: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

5

Let's Build Our First Amplifier (CS Amplifier)

•  One way to amplify –  Convert input voltage to current using voltage controlled

current source (VCCS) –  Convert back to voltage using a resistor (R)

•  "Voltage gain" = ΔVout/ΔVin –  Product of the V-I and I-V conversion factors

EE 303 – Electronics I

Page 6: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

6

Common Source Amplifier

•  MOS device acts as VCCS

IdVi

Vo

VDD

Id =12µCox

WLVi −Vt( )2 ( ) RVV

LWCVV tioxDDo ⋅−−= 2

21µ

T

EE 303 – Electronics I

Page 7: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

7

Biasing

•  Need some sort of "battery" that brings input voltage into useful operating region

•  Define VOV=VI-Vt, "quiescent point gate overdrive” (no input signal applied) –  with no input signal applied VOV=VGS-Vt

VI

ΔVo

ΔVi

VO

VOV

EE 303 – Electronics I

Page 8: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

8

Relationship Between Incremental Voltages

•  What is ΔVo as a function of ΔVi?

VO +ΔVo =VDD −12µCox

WLVOV +ΔVi( )2 ⋅R

ΔVo = −12µCox

WLR ⋅ VOV +ΔVi( )2 −VOV2$%

&'

= −12µCox

WLR ⋅ 2VOVΔVi +ΔVi

2$% &'

= −2IDVOV

⋅R ⋅ ΔVi 1+ΔVi2VOV

$

%(

&

')

•  As expected, this is a nonlinear relationship

•  Nobody likes nonlinear equations; we need a simpler model –  Fortunately, a (1st order) linear approximation to the above

expression is sufficient for 90% of all analog circuit analysis

Note: Vgs=Vi=(VI+ΔVi)

EE 303 – Electronics I

Page 9: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

9

Small Signal Approximation (1)

•  Assuming ΔVi << 2VOV, we have

!"

#$%

& Δ+Δ⋅⋅−=Δ

OV

ii

OV

Do V

VVRVIV

212

iOV

Do VR

VIV Δ⋅⋅−≅Δ2

•  If we further pretend that the input voltage increment is infinitely small, we can find this result directly by taking the derivative of the large signal transfer function at the "operating point" VI

dVodVi Vi=VI

= −2IDVOV

⋅R = −µCoxWLVOV ⋅R = Av

small-signal voltage gain

Note: ΔVi is the max excursion of the signal Vi from VI

EE 303 – Electronics I

Page 10: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

10

Small Signal Approximation (2)

•  Graphical illustration:

VI

VO

VOV

dVo/dVi

•  The slope of the above tangent is the so called "small-signal voltage gain" of our amplifier (Av)

= vo/vi = Av

Notation:

Vi=VI

EE 303 – Electronics I

Page 11: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

11

Notation

oOo vVV +=

Total quantity Quiescent

point value Incremental

change

Total quantity Quiescent

point value Incremental

change

Alternatively: (IEEE standard)

ΔvO

ΔVo

oOO vVv +=

EE 303 – Electronics I

Page 12: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

12

Small Signal MOS Model

•  Fortunately we don't have to repeat this analysis for every single circuit we build

•  Instead, we derive a linearized circuit model for the MOS transistor and plug it into arbitrary circuits

ID+id

+VDS+vds-+

VGS+vgs-

id

+vds-

+vgs-Conditions:

VDS>VGS-Vtvgs<<VGS-Vt

gm×vgs

Id

ID

VGS Vgs

gm

id

vgs

gm

EE 303 – Electronics I

Page 13: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

13

Transconductance

•  The parameter that relates small signal gate voltage to drain current is called transconductance (gm)

•  The transconductance is found by differentiating the large signal I-V characteristic of the transistor at its operating point

( )221

tgsoxd VVLWCI −µ=

( ) OVoxtGSox

VVgs

d

gs

dm V

LWCVV

LWC

dVdI

vig

GSgs

µ=−µ====

OV

Dm V

Ig 2=

EE 303 – Electronics I

Page 14: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

14

Small-Signal Equivalent of CS Amplifier

•  Use large signal I-V law to compute operating point (ID, VO, gm) –  Make sure device operates in proper region; consider

desired “signal swing”

•  Now perform rest of calculations in “small-signal land” –  Gain, bandwidth (more later), …

ID+DId

VO+DVo

VDD

DVi

VI

ΔVo

ΔId

ΔVi

+vo-

+vgs-

gm×vgs

R

vi

EE 303 – Electronics I

Page 15: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

15

Example (1) •  Given: VI=1.5V, W=20µm, L=1µm, R=5kΩ, VDD=5V •  Assume the desired signal swing ΔVi at the input is small enough

for the transistor to operate in the same region at all time •  Technology parameters: µCox = 50µA/V2, Vt=0.5V

•  Calculate: ID, VO, gm, Av

ID+id

VO+vo

VDD

vi

VI

R( ) AV.V.

VAID µ=−⋅⋅µ

⋅= 500505112050

21 2

2

V.AkVVO 5250055 =µ⋅Ω−=

SaturationVVVVV

V.VV

tItGS

ODS ⇒⎭⎬⎫

=−=−

==

152

EE 303 – Electronics I

Page 16: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

16

Example (2)

mSV.V.A

VIgOV

Dm 1

505150022

=−

µ⋅==

551 −=Ω⋅−=−= kmSRgA mv

+vo-

+vgs-

gm×vgs

R

vi

EE 303 – Electronics I

Page 17: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

17

Getting Started with HSpice

•  The above circuit was easy to analyze –  And it is unlikely that we made a mistake

•  In general, we want to be able to compute circuit characteristics both manually and by using a circuit simulator –  Both hand calculation and simulation is important; one does

not “replace” the other –  “Double book keeping is important in design and analysis to

detect flaws in assumptions and understanding

•  Let’s see how we can duplicate this result using HSpice…

EE 303 – Electronics I

Page 18: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

18

HSpice Input File (1)

* Common source amplifier

* Filename: one.sp

* C. Talarico, Fall 2014

*** device model

.model simple_nmos nmos kp=50u vto=0.5

*** useful options

.option post brief nomod

*** Supply voltage

vdd vdd 0 5

*** input voltage

vi vi 0 dc 1.5 *** value for .op analysis

+ ac 0.1 *** amplitude for .ac analysis

+ sin 1.5 0.1 1k *** sinewave for .tran: V_I=1.5V, v_i=0.1V, f=1kHz

EE 303 – Electronics I

Page 19: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

19

HSpice Input File (2) *** Circuit

*** d g s b

mn1 vo vi 0 0 simple_nmos w=20u l=1u

R1 vdd vo 5k

*** calculate operating point

.op

*** large signal analysis (sweep Vi)

.dc vi 0 5 0.01

*** small signal analysis (sweep frequency)

.ac dec 10 100 1k

*** transient analysis (sweep time)

.tran 1u 5m

.end

EE 303 – Electronics I

Page 20: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

20

.op Output **** mosfets

element 0:mn1

model 0:simple_nmos

region Saturati

id 500.0000u

vgs 1.5000

vds 2.5000

vbs 0.

vth 500.0000m

vdsat 1.0000

vod 1.0000

beta 1.0000m

gam eff 527.6252m

gm 1.0000m

gds 0.

EE 303 – Electronics I

Page 21: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

21

.dc Output

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5 V

o [V

]

Vi [V]

DC Transfer Function

EE 303 – Electronics I

Page 22: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

22

.ac Output

Av = vo/vi

= -0.5V/0.1V

= -5 101 102 103 104

−0.5

0

0.5

1

1.5

|vo|

[V]

f [Hz]

Small Signal Transfer Function

101 102 103 1040

100

200

300

pha

se(v

o) [d

egre

e]

f [Hz]

EE 303 – Electronics I

Page 23: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

23

.tran Output

0 0.5 1 1.5 2 2.5 3x 10−3

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

time [sec]

vol

tage

[V]

Transient Analysis (sweep time)

ViVo

NOTE: Vo is slightly above 2V and slightly below 3V. The discrepancy with hand calculation is due to the fact that the MOS behavior is not linear (the small signal model is an approximation !)

EE 303 – Electronics I

Page 24: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

24

Another Run

•  Now with the following stimulus

*** input voltage

vi vi 0 dc 1.5 *** value for .op analysis

+ ac 1000 *** amplitude for .ac analysis

+ sin 1.5 1000 1k *** sinewave for .tran: V_I=1.5V, v_i=1000V, f=1kHz

•  1000V input amplitude applied to the circuit!

EE 303 – Electronics I

Page 25: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

25

.tran Output

0 0.5 1 1.5 2 2.5 3x 10−3

−1

0

1

2

3

4

5

6

time [sec]

vol

tage

[V]

Transient Analysis (Vi = sin 1.5 1000 1k)

ViVo

EE 303 – Electronics I

Page 26: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

26

.ac Output

101 102 103 1040

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

|vo| [

V]

f [Hz]

Small Signal Transfer Function

5000V output ?!?

EE 303 – Electronics I

Page 27: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

27

Important to Remember

•  Once a small-signal model of the circuit is constructed, all large signal information is lost –  The small-signal (.ac) circuit transfer function is linear and

extends from –∞ to + ∞ –  Features such as finite voltage range, signal clipping, etc. are

lost and completely meaningless in a small-signal analysis (or .ac simulation)

•  The input amplitude in the .ac statement is irrelevant and can be set to any number (other than 0) –  Best to use 1V, in which case the output amplitude

corresponds to the circuit gain

EE 303 – Electronics I

Page 28: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

28

HSPICE Deck (1)

* Common source amplifier

* filename: one.sp

* C. Talarico, Fall 2014

*** device model

.model simple_nmos nmos kp=50u vto=0.5

*** useful options

.option post brief nomod

*** supply voltage

vdd vdd 0 5

*** input voltage

vi vi 0 dc 1.5 *** value for .op analysis

+ ac 0.1 *** amplitude for .ac analysis

+ sin 1.5 0.1 1k *** sinewave for .tran: V_I=1.5V, v_i=0.1V, f=1kHz

*** circuit

*** d g s b

mn1 vo vi 0 0 simple_nmos w=20u l=1u

R1 vdd vo 5k

EE 303 – Electronics I

Page 29: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

29

HSPICE Deck (2)

*** calculate operating point

.op

*** large signal analysis (sweep Vi)

.dc vi 0 5 0.01

*** small signal analysis (sweep frequency)

.ac dec 10 100 1k

*** transient analysis (sweep time)

.tran 1u 5m

.alter another_run

*** input voltage

vi vi 0 dc 1.5 *** value for .op analysis

+ ac 1000 *** amplitude for .ac analysis

+ sin 1.5 1000 1k *** sinewave for .tran: V_I=1.5V, v_i=1000V, f=1kHz

.end

EE 303 – Electronics I

Page 30: The Atoms of Analog Circuit Design - Gonzaga Universityweb02.gonzaga.edu/faculty/talarico/EE303/HO/atoms_ct.rev... · 2017-07-16 · Gonzaga University . Source: R. Dutton, B. Murmann

Source: R. Dutton, B. Murmann Stanford University

30

MATLAB script

EE 303 – Electronics I