The ATLAS Liquid Argon Calorimeters ReadOut Drivers

25
28/03/2003 Julie PRAST, LAPP CNRS, F RANCE 1 The ATLAS Liquid Argon Calorimeters ReadOut Drivers A 600 MHz TMS320C6414 DSPs based design

description

The ATLAS Liquid Argon Calorimeters ReadOut Drivers. A 600 MHz TMS320C6414 DSPs based design. The LHC. LHC is an accelerator ring, where the protons beams are accelerated to energy of 7 TeV. The LHC goal will be to have protons from 1 beam collide with the protons from the other. - PowerPoint PPT Presentation

Transcript of The ATLAS Liquid Argon Calorimeters ReadOut Drivers

Page 1: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

1

The ATLAS Liquid Argon Calorimeters ReadOut

Drivers

A 600 MHz TMS320C6414 DSPs based design

Page 2: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

2

The LHC

• LHC is an accelerator ring, where the protons beams are accelerated to energy of 7 TeV.

• The LHC goal will be to have protons from 1 beam collide with the protons from the other.

• 4 experiments.

LHC : Large Hadron Collider

(27 km diameter)

Page 3: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

3

The ATLAS experiment

• Goal: explore the fundamental nature of matter and the basic forces that shape our universe.

• About the size of a five story building.

• Collaboration of 2000 physicists.

• 150 universities and laboratories in 34 countries.

Page 4: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

4

The electromagnetic calorimeter

• ATLAS : Several sub-detectors

• Electromagnetic calorimeter – Identifies electrons and

photons.– Measures energy carried by

these particles. – 200 000 cells to be read at 40

MHz.Electromagnetic

calorimeter

Page 5: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

5

The calorimeter electronic chain

DETECTOR

FRONT END ELECTRONICS 1600

optical links

Glink

800 Optical links

Slink12 BitsADC

AMPLI ANALOG MEMORY (SCA)

Shaping

FEB

BACK END ELECTRONICS

ROBROD

Timing Trigger Control (TTC)

Page 6: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

6

The ROD modules

• Calculate precise energy and timing of calorimeter signals from discrete time samples (t = 25 ns).

• Perform monitoring.

• Format data for the following element in the electronics chain.

Page 7: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

7

200 modules, each receiving data from 1024 calorimeter cells.

Calculate energy for these data using optimal filtering weights:

E = ai (Si - PED)

If E > threshold, calculate timing and pulse quality factor: (< 10% cells)

E = bi (Si - PED)

2 = (Si - PED - E gi) 2

Performs histograms of E, , 2, ...

During calibration runs, perform signal averaging to calculate calibration constants for each channel.

with i = 1,.,5 time sampleswith PED = pedestal

The ROD modules goals

Page 8: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

8

Requirements

• The ROD module must be able to process an event in less than 10 µs, including histograms.

• Use of commercial programmable processor. A natural choice is Digital Signal Processor

Efficient power calculation for that kind of algorithm. High I/O bandwidth.

• Modular design. Basic components should be easily changed/upgraded.

• Low power consumption.

Page 9: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

9

The ROD : a 9U VME board

Page 10: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

10

The ROD Motherboard

Page 11: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

11

The Staging Mode

• At the beginning of LHC.• ROD equipped with half of

the PU.• Level 1 trigger rate <50 kHz.• Data from 4 FEB are routed

to one PU.• 1 DSP process 256 channels

instead of 128.

Page 12: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

12

The DSP Processing Unit

config

config

EMIFA

EXT_INT

EMIFA

EXT_INT

TMS320C6414

TMS320C6414

Input FPGA

Apex 20k160

FEB1

FEB3

FEB2

FEB4

Input FPGA

Apex 20k160

16

16

16

16

64

64

FIFO4k*16

FIFO4k*16

16

16

16

Data stream TTC VME

JTAG

EMIF B

EMIF B

16

16

BCIDTType

Acex 1k30

McBSP0 McBSP1

McBSP0

McBSP1 TTCTTCinterface

16

McBSP2

McBSP2

HPI

HPI

VMEVMEinterface

Page 13: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

13

The DSP Processing Unit

Input FPGA DSP Output FPGAFIFO

Page 14: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

14

PU Software Summary

DSP :

For 128 channels per events

E calculation or E, t, 2

Input FPGA :

Parallelized data

In DSP format

Input data :

Serial data in FEB format.

Output FPGA :

TTC data

Output data :

Integer 16 bit E

or

Integer 16 bit E32 bit t, 2 and gain

or

32 bit E32 bit t, 2 and gain

« Programmable »  Part

Fixed part

in outROD

HistogramsVME Interface

Page 15: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

15

8 Calculation Units

64 Registers

The TMS320C6414 : a last generation DSP from TI

Instruction Decoding

Pér

iphé

rals

DM

A C

ontr

olle

r

Cen

tral

Mem

ory

1MB

CPUCoreC64x

Cache Memory16kB data

Cache Memory16kB data

External Memory Interface

Page 16: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

16

The DSP code structure

EDMA ISR RTX

Send Task

Synchronization Task Process

TTC circular buffer (16 events wide)

Output Event circular buffer (16 events wide)

Physics

Test

Calibration

Event from FEB

Data to output controller

Other Tasks

Input Event circular buffer (16 events wide)

EDMA ISR RTX

Send Task

Synchronization Task Process

TTC circular buffer (16 events wide)

Output Event circular buffer (16 events wide)

Physics

Test

Calibration

Event from FEB

Data to output controller

Other Tasks

Input Event circular buffer (16 events wide)

Page 17: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

17

DSP Software

• Developed with Code Composer Studio.• Whole code written in C language except• Physics loops written in linear assembly and then

optimized using CCS.Code complexity limited

Good legibility and maintenance

Page 18: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

18

Example of Linear Assembly

• Calculation of the cell energy : E=ai(si-p)

Let the compiler do all the laborious work of parallelizing, pipelining and register allocation.

a1s1

a2s2+a2s2

a5s5+a5s5 aisi

(i=2..5) aisi (i=1..5)

E=aisi-aip

mpy s1,a1,sa1dotp2 a23,s23,sa23 dotp2s45,a45,sa45 addsa23,sa45,sa25 add sa1,sa25,sa15 sub sa15,px,e

Page 19: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

19

DSP software results

• Physics calculation of 128 channels : 3.5 s.– Includes all the necessary histograms , 2 for a fraction of 10 % of high energy cells.

• 30 to 40% of time is due to stall cycles.– Cycles lost because data are not in the cache.

Page 20: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

20

• When a data or instruction is not in the cache memory => 6 stalls cycles until the data is copied from the central memory to the cache.

• For the E calculation : 6 data to be read => 36 wait cycles

• The cache memory must be understood to ameliorate these numbers.

Pér

iphé

rals

DM

A C

ontr

olle

r

Cen

tral

Mem

ory

1MB

CPUCoreC64x

Cache Memory16kB data

Cache Memory16kB data

The Cache Memory

Page 21: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

21

• L1D Mapping:• Take care of which data is

loaded, from which address and in what order.

• L1D Pipelining:• Use of consecutive loads

• 1 miss : 6 wait cycles

• 2 misses : 8 wait cycles

• 4 misses : 12 wait cycles

• L1D access optimization

• Samples preloading

• Interleaved histograms

Pér

iphé

rals

DM

A C

ontr

olle

r

Cen

tral

Mem

ory

1MB

CPUCoreC64x

Cache Memory16kB data

Cache Memory16kB data

Which improvements ?

Page 22: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

22

DSP software results• Physics calculation of 128 channels : 3.5 s.

– Includes all the necessary histograms , 2 for a fraction of 10 % of high energy cells.

• 30 to 40% of time is due to stall cycles.– Cycles lost because data are not in the cache.

• The complete code takes about 7 s (600 MHz DSP).– Includes the RTX kernel, synchronization and send tasks,

… 30 % of margin for further improvements.

Page 23: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

23

Agenda

• Mid March : Motherboard + PU assembled• May 2003: Validation in standalone mode.• Fall 2003: System test in the experiment environment.• Spring 2004: production launch.• Summer 2004: Boards installation at LHC.

Page 24: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

24

Conclusion: the ROD

• Calculate precise energy and timing of the signals calorimeter.

• 1 motherboard and 4 Processing Units.

• 1 PU = two 600 MHz TMS320C6414 DSP.

• 30 % of margin for future improvements.

• 200 ROD to be produced in 2004.

Page 25: The ATLAS Liquid Argon Calorimeters ReadOut Drivers

28/03/2003 Julie PRAST, LAPP CNRS, FRANCE

25

Thank You