REVIEW OF CRYSTAL CALORIMETERS

29
REVIEW OF CRYSTAL REVIEW OF CRYSTAL CALORIMETERS CALORIMETERS V.B.Golubev, V.B.Golubev, Budker Institute of Nuclear Budker Institute of Nuclear Physics, Novosibirsk, Russia Physics, Novosibirsk, Russia

description

REVIEW OF CRYSTAL CALORIMETERS. V.B.Golubev, Budker Institute of Nuclear Physics, Novosibirsk, Russia. Crystal Ball Detector. - PowerPoint PPT Presentation

Transcript of REVIEW OF CRYSTAL CALORIMETERS

Page 1: REVIEW OF CRYSTAL CALORIMETERS

REVIEW OF CRYSTAL REVIEW OF CRYSTAL CALORIMETERSCALORIMETERS

V.B.Golubev,V.B.Golubev,Budker Institute of Nuclear Physics, Budker Institute of Nuclear Physics,

Novosibirsk, RussiaNovosibirsk, Russia

Page 2: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 22

Crystal Ball DetectorCrystal Ball DetectorThe first large-scale crystal calorimeter in high energy physics was the NaI(Tl) The first large-scale crystal calorimeter in high energy physics was the NaI(Tl) calorimeter of the Crystal Ball detector. It showed high discovery potential of the calorimeter of the Crystal Ball detector. It showed high discovery potential of the crystal calorimeterscrystal calorimeters.

Page 3: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 33

Crystal Ball NaI(Tl) CalorimeterCrystal Ball NaI(Tl) Calorimeter

Inclusive photon spectrum at Inclusive photon spectrum at (2S) resonance(2S) resonance

Number of crystals 672Number of crystals 672Inner radius 25.4 cmInner radius 25.4 cmOuter radius 66.0 cmOuter radius 66.0 cmThickness 16 XThickness 16 X00

Solid angle coverage 93%Solid angle coverage 93%Photodetector PMTPhotodetector PMTNoise 0.05 MeVNoise 0.05 MeVDynamic range Dynamic range 101044

4 )GeV(

%8.2

EEE

Page 4: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 44

Crystal calorimeter benefitsCrystal calorimeter benefits

High efficiencies for electrons and photonsHigh efficiencies for electrons and photons Best energy resolution and good position Best energy resolution and good position

and angular resolution for photons and and angular resolution for photons and electronselectrons

High linearity and wide dynamic rangeHigh linearity and wide dynamic range Radiation hardnessRadiation hardness Reliability and simplicity of maintenanceReliability and simplicity of maintenance Compact sizeCompact size

Page 5: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 55

Energy resolution and line shapeEnergy resolution and line shape Light collection and crystal light output Light collection and crystal light output

nonuniformitiesnonuniformities Fluctuations of the shower energy lossesFluctuations of the shower energy losses Photoelectron statisticsPhotoelectron statistics Inaccuracy of the calibration of individual channelsInaccuracy of the calibration of individual channels Electronics noise and instabilitiesElectronics noise and instabilities

00

2

02

20

for ]//)[(

)/(

for 2

)(exp

)( 2

xxnxx

enN

xxxx

N

xC

n

n

Commonly used parameterizations of the calorimeter line shape:

Crystal Ballfunction

Logarithmic Gaussian(Novosibirsk function)

2

2

0 ]4log

]4logsinh[)(1log[

2

1exp)(

xx

NxW

N – norm. factorx0 – peak position–Gaussian width– joint parameter

N – norm. factorx0 – peak position–FWHM/2.35– peak asymmetry

BABAR calorimeterline shape. Fit – Crystal Ball function

Page 6: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 66

HEP Crystal CalorimetersHEP Crystal Calorimeters

Experiment Crystal Ball,SPEAR, SLAC

SND,VEPP-2M, VEPP-2000 BINP Novosibirsk

L3, LEP, CERN

KTeVTevatronFermilab

CLEO c, CESR, Cornell

BABAR PEP II SLAC

BELLE KEK B KEK

CMS, LHC, CERN

Time 75–85 90–15 80–00 96–00 80–08 94–08 94–18

95–20

Crystal NaI(Tl) NaI(Tl) BGO CsI CsI(Tl) CsI(Tl) CsI(Tl)

PbWO4

N crystals 672 1640 11400 3260 7800 6580 8800 76000

Inner radius (m)

0.254 0.25 0.55 - 1.0 0.9 1.25 1.29

Volume (m3) 1 1 1.5 2 7 5.9 9.5 11

Thickness (X0) 16 13.4 22 27 16 16-17.5

16.2 26

Photo sensor PMT VPT Si PD PMT Si PD Si PD Si PD APD, VPT

Noise (MeV) 0.05 0.2 0.8 - 0.5 0.15 0.2 30

Dynamic range 104 103 105 104 104 104 104 105

Page 7: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 77

Scintillation crystals for calorimetryScintillation crystals for calorimetryCrystal Densit

yg/cm3

Refractive index

RadiationLengthcm

MoliereRadiuscm

maxnm

Light yield%NaI(Tl)

Decay timens

dLY/dT%/oC

Melting pointoC

NaI(Tl) 3.67 1.85 2.59 4.13 410 100 230 ~0 651

CsI(Tl) 4.51 1.79 1.86 3.57 560 165 1250 0.3 621

CsI 4.51 1.95 1.86 3.57 420310

3.61.1

306

-0.6 621

BaF2 4.89 1.50 2.03 3.10 300220

363.4

6300.9

–2~0

1280

CeF3 6.26 1.62 1.70 2.41 300 7.3 30 0.14

BGO (Bi3Ge3O12)

7.13 2.15 1.12 2.23 480 21 300 -1.6 1050

PWO (PbWO4)

8.3 2.20 0.89 2.00 425420

0.290.083

306

-1.9 1123

LSO(Lu2SiO5:Ce)

7.40 1.82 1.14 2.07 420 84 42 ~0 2050

GSO(Gd2SiO5:Ce)

6.71 1.85 1.38 2.23 440 30 60 -0.1 1950

Page 8: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 88

SND detectorSND detector

SND detector; 1 – Be vacuum chamber, 2 – tracking system, 3 – aerogel Cherenkov SND detector; 1 – Be vacuum chamber, 2 – tracking system, 3 – aerogel Cherenkov counters, 4 – NaI(Tl) scintillation counters, 5 – vacuum phototriodes, 6 – iron absorber, counters, 4 – NaI(Tl) scintillation counters, 5 – vacuum phototriodes, 6 – iron absorber, 7,8 – muon system.7,8 – muon system.

Page 9: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 99

SND NaI(Tl) calorimeterSND NaI(Tl) calorimeter

SND calorimeter geometrySND calorimeter geometry SND calorimeter segmentSND calorimeter segment

Number of crystals - 1632, thickness – 13.5 XNumber of crystals - 1632, thickness – 13.5 X00, mass – 3.5 tons , mass – 3.5 tons

Photodetectors – vacuum phototriodes with photocathode quantum Photodetectors – vacuum phototriodes with photocathode quantum efficiency of ~15% and gain ~10.efficiency of ~15% and gain ~10.

Three-layer structure allows high quality e/Three-layer structure allows high quality e/ππ separation by using separation by using measurement of the shower energy deposition longitudinal profilemeasurement of the shower energy deposition longitudinal profile

Page 10: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 1010

SND calorimeter resolutionSND calorimeter resolution

63.0)GeV(

82.0

E

Crystal calibration – using cosmic muons (precalibration) and Bhabha scattering Crystal calibration – using cosmic muons (precalibration) and Bhabha scattering events (final calibration)events (final calibration)

Future plansFuture plans – the use of the calorimeter for the time of flight measurement for – the use of the calorimeter for the time of flight measurement for selection of e+eselection of e+e− ->nnbar events. The resolution of 2ns for energy deposition of − ->nnbar events. The resolution of 2ns for energy deposition of 70 MeV was achieved in the test with an SND calorimeter crystal (to be 70 MeV was achieved in the test with an SND calorimeter crystal (to be presented at INSTR08 poster session)presented at INSTR08 poster session)

4 )GeV(

%2.4

EEE

Photon energy resolution Angular resolution for photons

Page 11: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 1111

L3 BGO calorimeterL3 BGO calorimeter

L3 detector at LEP 1980-2000L3 detector at LEP 1980-2000

Number of crystals:Number of crystals: Barrel – 7680Barrel – 7680 Endcaps – 2Endcaps – 2××15271527Thickness – 22XThickness – 22X00

Photodotector – Si PDPhotodotector – Si PD

Page 12: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 1212

L3 calorimeter calibrationL3 calorimeter calibrationProton RFQ accelerator-based calibration systemProton RFQ accelerator-based calibration system

RFQ accelerator produces RFQ accelerator produces 1.85 MeV H1.85 MeV H−− beam. After beam. After focusing and steering it is focusing and steering it is neutralized and directed neutralized and directed through the detector magnetic through the detector magnetic field to Li target inside the field to Li target inside the detector.detector.Resonant proton radiative Resonant proton radiative capture reaction (capture reaction (σσ=5mb) =5mb) produces calibration photons:produces calibration photons:p+p+77Li → Li → 88Be + Be + (17.6 MeV)(17.6 MeV)

Calibration accuracy – 0.5%

Page 13: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 1313

L3 calorimeter energy resolutionL3 calorimeter energy resolution

ContributionContribution IntrinsicIntrinsic TemperatureTemperature CalibrationCalibration OverallOverall

BarrelBarrel 0.8%0.8% 0.5%0.5% 0.5%0.5% 1.07%1.07%

EndcapEndcap 0.6%0.6% 0.5%0.5% 0.4%0.4% 0.88%0.88%

Page 14: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 1414

L3 calorimeter discovery potentialL3 calorimeter discovery potential

Study of the processStudy of the processee++ee−−→→Determination of the numberDetermination of the numberof light neutrinosof light neutrinos

Page 15: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 1515

KTeV detectorKTeV detector

Page 16: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 1616

KTeV CsI calorimeterKTeV CsI calorimeter

%45.0)GeV(

%2

EEE

Nonlinearity (3 – 75 GeV) 0.4%Nonlinearity (3 – 75 GeV) 0.4%

o Calorimeter size 1.9x1.9 mCalorimeter size 1.9x1.9 m22

o Number of crystals 3100Number of crystals 3100o Thickness 27 XThickness 27 X00

o Crystal size 2.5x2.5x50 cmCrystal size 2.5x2.5x50 cm33 (central (central part), 5.0x5.0x50 cmpart), 5.0x5.0x50 cm33 outer part outer part

o Photodetector – PMT Photodetector – PMT o Calibration – electrons from KCalibration – electrons from Ke3e3 decays decays

Spacial resolution for photons ~1 mmSpacial resolution for photons ~1 mm

Page 17: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 1717

CLEO-c detectorCLEO-c detector

Page 18: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 1818

CLEO-c CsI(Tl) calorimeterCLEO-c CsI(Tl) calorimeter

• Number of crystals 7784:Number of crystals 7784:Barrel – 6144Barrel – 6144Endcaps – 2Endcaps – 2××820820

• Crystal size – 5x5x30 cm3Crystal size – 5x5x30 cm3• Thickness – 16.2 XThickness – 16.2 X00

• Inner radius – 1.02 mInner radius – 1.02 m• Barrel length – 3.26 mBarrel length – 3.26 m• Total CsI(Tl) mass – 27000 kgTotal CsI(Tl) mass – 27000 kg• Solid angle coverage – 95%Solid angle coverage – 95%• Photodetector Si photodiode Photodetector Si photodiode (4 per crystal)(4 per crystal)

• Material in front of the barrel Material in front of the barrel part – 0.18Xpart – 0.18X00

Page 19: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 1919

CLEO calorimeter performanceCLEO calorimeter performance

Angular and energy resolution mass resolution

Page 20: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 2020

BABAR DetectorBABAR Detector

Page 21: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 2121

Number of crystals – 6580, Number of crystals – 6580, Thickness – 16Thickness – 16÷÷17.5 X17.5 X00

Inner radius – 0.92 mInner radius – 0.92 mLength – 2.9 mLength – 2.9 mSolid angle coverage 90% (in cms)Solid angle coverage 90% (in cms)

BABAR CsI(Tl) CalorimeterBABAR CsI(Tl) Calorimeter

)%2.008.035.1()GeV(

)%3.003.03.2(4

EE

E

)GeV(

mrad)04.016.4(

E

Page 22: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 2222

BABAR Calorimeter CalibrationBABAR Calorimeter Calibration1)1) Liquid radioactive source based on the reaction: Liquid radioactive source based on the reaction: 1919F(n,F(n,))1616N; N; 1616N (7s) N (7s) 1616O* O*

1616O+O+γγ(6.13 MeV);(6.13 MeV);2)2) Bhabha scatterig (2.5 Bhabha scatterig (2.5 – 8 GeV– 8 GeV), 200 direct hits per crystal, 0.35% statistical and ), 200 direct hits per crystal, 0.35% statistical and

1% systematic error;1% systematic error;3)3) Additional corrections using Additional corrections using ππ00 decays, decays, ee++ee−−→→ e e++ee−−andandµµ++µµ−−reactionsreactions

Neutron generator based on Neutron generator based on deuterium-tritium fusion reaction.deuterium-tritium fusion reaction.

Generates up to 10Generates up to 1099 14 MeV n/s, 14 MeV n/s, when high voltage on.when high voltage on.

Activates Fluorinert FC77 liquidActivates Fluorinert FC77 liquidCounting rate 40 photons per crystal Counting rate 40 photons per crystal per secondper second

Calibration accuracy ~0.25% for 15-30 Calibration accuracy ~0.25% for 15-30 minute runminute run

Page 23: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 2323

BABAR Calorimeter PerformanceBABAR Calorimeter Performance

Liquid source calibration spectrum Liquid source calibration spectrum in one crystal. in one crystal. Fit – 3 Gaussians (6.13 MeV peak Fit – 3 Gaussians (6.13 MeV peak + 2 escape peaks) and + 2 escape peaks) and parameterized background.parameterized background.Resolution – Resolution – σσ=0.3 MeV=0.3 MeV

peak in peak in invariant mass invariant mass spectrum for Espectrum for E >300MeV >300MeV

Relative drop in Relative drop in light yield versus light yield versus timetime

Page 24: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 2424

CMS DetectorCMS Detector

Page 25: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 2525

CMS calorimeter requirementsCMS calorimeter requirementsOne of the main goals of the CMS detector is a One of the main goals of the CMS detector is a discovery of the Higgs boson. For the Mdiscovery of the Higgs boson. For the MHH= =

100100÷÷150GeV the golden decay mode is H150GeV the golden decay mode is H→→..

The CMS EM calorimeter design resolution:The CMS EM calorimeter design resolution:

%5.0 ,MeV 200 %,7.2 where

,)GeV(

cba

cE

b

E

a

EE

Radiation doses at high LHC luminosities:Radiation doses at high LHC luminosities:Barrel center – 0.15Gy/h, Endcap – 15Gy/h Barrel center – 0.15Gy/h, Endcap – 15Gy/h

Typical loss of transparency in PbWOTypical loss of transparency in PbWO44 is 3% at is 3% at

0.15 Gy/s – requires precision real time 0.15 Gy/s – requires precision real time monitoring of the crystal optical properties.monitoring of the crystal optical properties.

Expected total Expected total -radiation doses for 10-year running at highest luminosity are -radiation doses for 10-year running at highest luminosity are 101044 Gy in the barrel and ~10 Gy in the barrel and ~1066 Gy in endcaps. Expected neutron fluence is Gy in endcaps. Expected neutron fluence is 10101313 n/cm n/cm22

Page 26: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 2626

New crystals for HEP calorimetryNew crystals for HEP calorimetryand ILC calorimeter proposaland ILC calorimeter proposal

LSO – LuLSO – Lu22SiOSiO5 5 (Ce)(Ce)

LYSO – LuLYSO – Lu2(1-x)2(1-x)YY2x2xSiOSiO55(Ce)(Ce)

x=5 – 10%x=5 – 10%

R.Y. Zhu, 2005 ALCPG & ILCR.Y. Zhu, 2005 ALCPG & ILCWorkshops Snowmass, USA[1]Workshops Snowmass, USA[1]

In a last decade the mass production capabilities for LSO and LYSO In a last decade the mass production capabilities for LSO and LYSO crystals were established mostly for the medical industry. Their potential crystals were established mostly for the medical industry. Their potential applications in HEP were also explored applications in HEP were also explored

Page 27: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 2727

LSO propertiesLSO properties

Density – 7.40 g/cmDensity – 7.40 g/cm33

Radiation length – 1.14 cmRadiation length – 1.14 cm Moliere radius – 2.07 cmMoliere radius – 2.07 cm Light yield – 84% of NaI(Tl)Light yield – 84% of NaI(Tl) max – 420 nmmax – 420 nm Decay time – 42 nsDecay time – 42 ns Small temperature dependence Small temperature dependence

of the light yieldof the light yield

0.511 MeV 0.511 MeV 2222Na spectra from Na spectra from long crystal samples long crystal samples Photodetector – 2 Hamamatsu Photodetector – 2 Hamamatsu 5x5 mm5x5 mm22 APDs per crystal. APDs per crystal.Light output – 2000 p.e./MeVLight output – 2000 p.e./MeVNoise – 35 keVNoise – 35 keV

Page 28: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 2828

LSO (LYSO) radiation hardnessLSO (LYSO) radiation hardnessThe tests of radiation hardness of L(Y)SO crystals (J.M.Cheng et The tests of radiation hardness of L(Y)SO crystals (J.M.Cheng et al., IEEE Trans Nucl Sci. 52 (2002)[2]; P.Kozma and P.Kosma Jr., al., IEEE Trans Nucl Sci. 52 (2002)[2]; P.Kozma and P.Kosma Jr., NIM A539(2005)132[3]) showed that the radiation hardness of LSO NIM A539(2005)132[3]) showed that the radiation hardness of LSO crystals is very high. crystals is very high. Complete recovery after 10Complete recovery after 1055Gy gamma irradiation takes few Gy gamma irradiation takes few days. The radiation hardness of LSO is higher than that of BGO and days. The radiation hardness of LSO is higher than that of BGO and PWO.PWO. The main problem with the LSO crystal radiation damage could The main problem with the LSO crystal radiation damage could be radiation-induced phosphorescence. The estimated radiation-be radiation-induced phosphorescence. The estimated radiation-induced read-out noise is ~1 MeV for 100 ns gate and 500 rad/h induced read-out noise is ~1 MeV for 100 ns gate and 500 rad/h dose rate [2]. dose rate [2]. Thus, the LSO and LYSO crystals are good candidates for ILC Thus, the LSO and LYSO crystals are good candidates for ILC detector calorimeter. Another possible applicaion is the SuperB detector calorimeter. Another possible applicaion is the SuperB datector calorimeter endcaps.datector calorimeter endcaps.

Page 29: REVIEW OF CRYSTAL CALORIMETERS

03.03.200803.03.2008 V. Golubev, INSTR08V. Golubev, INSTR08 2929

SummarySummary In crystal calorimeters the e/In crystal calorimeters the e/ showers are totally absorbed showers are totally absorbed

in sensitive media. This provides the best energy resolution in sensitive media. This provides the best energy resolution for electrons and photons and also a good spatial resolution.for electrons and photons and also a good spatial resolution.

Crystal calorimeters have wide dynamic range of up to 10Crystal calorimeters have wide dynamic range of up to 1055 and low energy threshold of few MeV or less.and low energy threshold of few MeV or less.

Crystal calorimeters are highly reliable and simple in Crystal calorimeters are highly reliable and simple in maintenance.maintenance.

New high-density scintillation crystals like LSO and LYSO New high-density scintillation crystals like LSO and LYSO have high light output and transparency, short scintillation have high light output and transparency, short scintillation decay time and very high radiation hardness. This makes decay time and very high radiation hardness. This makes the crystal calorometers based on these crystals a good the crystal calorometers based on these crystals a good choice for future HEP detectors including detector for ILC. choice for future HEP detectors including detector for ILC.