The ANTARES project

33
The ANTARES project L. Moscoso DSM/DAPNIA, CEA/Saclay Venice, Italy, Feb. 22-26, 99

description

The ANTARES project. L. Moscoso DSM/DAPNIA, CEA/Saclay Venice, Italy, Feb. 22-26, 99. The ANTARES project. Construction of a prototype (few lines connected to the shore) of a neutrino telescope extrapolable to a km 3 detector. Programme of measurement of environmental parameters. - PowerPoint PPT Presentation

Transcript of The ANTARES project

Page 1: The ANTARES project

The ANTARES projectThe ANTARES project

L. Moscoso

DSM/DAPNIA, CEA/Saclay

Venice, Italy, Feb. 22-26, 99

L. Moscoso

DSM/DAPNIA, CEA/Saclay

Venice, Italy, Feb. 22-26, 99

Page 2: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 2

The ANTARES projectThe ANTARES project

• Construction of a prototype (few lines connected to the shore) of a neutrino telescopeextrapolable to a km3 detector

• Programme of measurement of environmental parameters

• 40km off-shore from Toulon, France

• 2400m depth

Page 3: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 3

THE ANTARES COLLABORATION

THE ANTARES COLLABORATION

The project involves European laboratories:•Particle Physics:

– DAPNIA-CEA Saclay, France

– IFIC-Valencia, Spain

– IN2P3-CNRS: Marseille and Mulhouse, France

– ITEP, Moscow, Russia

– NIKHEF, Amsterdam, The Netherlands

– Oxford and Sheffield Universities, U.K.

•Astronomy & Astrophysics:

– LAS Marseille, France

– Marseille Observatory, France

•Sea Science:

– Centre d'Océanologie de Marseille, France

– IFREMER, France

Page 4: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 4

ANTARES demonstratorANTARES

demonstrator

• 40 km long electro-optical cable: May 98

• Mechanical tests on a full string: June 98

• Connection-disconnection tests with a submarine: December 98

• First partially equipped string (8 PMTs), electronics, slow control, electro-optical cable: Spring 99

• Fully equipped line ( 50 PMTs): 2000

And after:

10-15 strings: 2001-200310-15 strings: 2001-2003

Page 5: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 5

ANTARES demonstratorANTARES

demonstrator

Page 6: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 6

THE OPTICAL MODULES THE OPTICAL MODULES

The photomultiplier is housed inside a high pressure resistant glass sphere:

– Large cathod photomultipliers

– Signal locally digitized.

– Slow control.

Page 7: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 7

The first prototype in its cage

The first prototype in its cage

Page 8: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 8

SOME PICTURES OF THE PROTOTYPE

DEPLOYMENT

SOME PICTURES OF THE PROTOTYPE

DEPLOYMENT

Page 9: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 9

In Dec. 1998, “Le Nautile” has been used to test the connection between a cable and a high pressure container:

Tests pursued in 1999 and in 2000.

Operation done on the ANTARES

site at -2400 m

Nautile

Deep sea connector

Cable

Connection testConnection test

Page 10: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 10

Le NautileLe Nautile

Page 11: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 11

ANTARESsite measurements

ANTARESsite measurements

Several strings have been developed to

measure the environmental parameters:

– Autonomous acquisition (optical modules, currentmeter, tiltmeter,…)

– Long term measurements (a few months)

Page 12: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 12

ANTARESsite measurements

ANTARESsite measurements

• Optical background

Done ten times off-shore from Toulon and Corsica

• Fouling of optical surfaces

Long term counting rates

Sediment trap, sampling box

Done three times with two orientations

• Water transparency

Long and rigid structure: att

Repeated with pulsed LED: July 98.

Disentangle scatt/abs

Page 13: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 13

Buoy +Argos

Optical Module

Utilities container

Energy sphere

Currentmeter

Release

Anchor

18 m

50 m

50 m

1.4 m

20 m

OPTICAL BACKGROUNDOPTICAL BACKGROUND

Page 14: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 14

OPTICAL BACKGROUNDOPTICAL BACKGROUND

Page 15: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 15

OPTICAL BACKGROUNDOPTICAL BACKGROUND

• Baseline: 40K decay = 40 kHz

• 3-4% of dead-time for PMTs

• No correlation for two OMs >20m apart

Page 16: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 16

FoulingFouling

Fouling and sedimentation decrease the glass transparency.

Small effect in the horizontalposition: 1.5% effect after one year

Page 17: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 17

Sea water attenuation length

Sea water attenuation length

Page 18: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 18

Sea water attenuation length

Sea water attenuation length

DC measurement

Page 19: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 19

Measured with a blue pulsed LED (467 nm):

– Attenuation length 40 m

– Scattering length > 100 m

Pulsed LEDsPulsed LEDs

25 m44 m

0 100 200 300ns

Page 20: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 20

Present activitiesPresent activities

• Digitized signals transmission

• Study and choice of PMTs

• Positioning and slow control

• Mechanics and deployment

• Software

Page 21: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 21

Digital optical modulesDigital optical modules

ARS0

PSD

Integr

SPEPipe-line

ADC

DATASTREAMOUT

pulsetime

Application Specific Integrated Circuit(ASIC) in the digital optical modules.Similar to the ATWR (D. Nygren)

Analogue Ring Sampler (ARS)

Page 22: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 22

Performance studiesPerformance studies

• Events simulation: including the response of the optical modules

• Reconstruction of simulated events

• Optimization of the layout for a big detector

• Simulation of a 0.1km2 detector (15 strings, 1000 PMTs)

- Detection & reconstruction efficiency

- Angular resolution

- Calorimetry

Page 23: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 23

DETECTOR LAYOUTDETECTOR LAYOUT

The detector is a network of vertical strings, ~100 m apart from each other.

Each string is ~400 m long with

~100 photomultipliers.

Detector connected to the shore by an EO cable (DAQ, slow control and power).

Photomultipliers

Page 24: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 24

ANTARES-0.1km2

Angular resolutionANTARES-0.1km2

Angular resolution

For a E-2 spectrum

E> 1 TeV

0.5°(degrees)

Page 25: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 25

Extrapolation of the 2nd EGRET catalogue

Extrapolation of the 2nd EGRET catalogue

• 2nd EGRET catalogue:

Differential spectral index

High energy -rays are absorbed over large distances (GZK effect)

• If all HE are produced by :NN 0.4

• Neutrinos are not absorbed

• 116 measured sources on a long period (April 91 to September 93)

EGeV

Page 26: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 26

How many sources are detectable?

(CL < 10-4 with at least 5 events)

2nd EGRET catalogue2nd EGRET catalogue

Page 27: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 27

0.1km2year at 45°N 0.1km2year at 45°N

• Only few pulsars. No AGN

• Summing over 42 possible AGNs:

Background = 2.7

B+S = 8-67 (spectral index = 2.2-2.0)

Page 28: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 28

NEUTRINO OSCILLATIONSNEUTRINO OSCILLATIONS

Atmospheric neutrinos to study the Super-Kamiokande evidence:

Measure disappearance in the domain L/E ~ 600 km/GeV

Idea: measure the vertical upward-going

flux

– The base line length is always the same: L 12 740 km (Earth diameter)

– The only variable is the neutrino energy: 5 < E < 50 GeV

255 < L/E < 2550 km/GeV

Page 29: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 29

Page 30: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 30

Survival ProbabilitySurvival Probability

Battistoni & Lipari

Page 31: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 31

Method:– Use vertical events: cos > 0.97– The muon energy is estimated by its

range

Use the events interacting inside the detector

volume

Require a densely equiped detector ...

Without oscillations

Nu

mb

er o

f ev

ents

Simulated E spectrum with/without oscillation

Number of floors/cos E

Page 32: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 32

Physical backgroundPhysical background

• Downward-going muons

• Showers

• Low energy misreconstructed neutrino interactions

Page 33: The ANTARES project

Venice, Feb. 23-26, 99

L. Moscoso 33

ConclusionsConclusions

• The ANTARES project has accumulated a lot of measurements of water parameters.

• Ready for the deployment of the first string connected to the shore.

• Physical studies on neutrino mixing and on HE cosmic neutrinos starting in 2001.