Thales Overview oct 2013 v2

84
Extending the Boundaries Of Organic Synthesis with Flow Chemistry Heather Graehl, MS, MBA Director of Sales North America ThalesNano North America

Transcript of Thales Overview oct 2013 v2

Page 1: Thales Overview oct 2013 v2

Extending the Boundaries Of Organic Synthesis with Flow Chemistry

Heather Graehl, MS, MBA Director of Sales North America ThalesNano North America

Page 2: Thales Overview oct 2013 v2

I’m  San  Diego  Based  

400+ Biotech Companies

Page 3: Thales Overview oct 2013 v2

Who  are  we?  

•  ThalesNano  is  a  technology  company  that  gives  chemists  tools  to  perform  novel,  previously  inaccessible  chemistry  safer,  faster,  and  simpler.  

•  Based  Budapest,  Hungary  •  Market  leader:  800  customer  install  base  on  6  conJnents.  •  33  employees  with  own  chemistry  team.  

•  11  years  old-­‐most  established  flow  reactor  company.  •  R&D  Top  100  Award  Winner.

Page 4: Thales Overview oct 2013 v2

Customers (>800 worldwide)

Page 5: Thales Overview oct 2013 v2

What is flow chemistry?

Page 6: Thales Overview oct 2013 v2

What  is  flow  chemistry?  

•  Performing  a  reacJon  conJnuously,  typically  on  small  scale,  

•  through  either  a  coil  or  fixed  bed  reactor.  

OR  

Pump  Reactor   CollecJon  

Page 7: Thales Overview oct 2013 v2

Mixing  (batch  vs.  flow)  

Flow  reactors  can  achieve  homogeneous  mixing  and  uniform  hea6ng  in  microseconds  (suitable  for  fast  reac6ons)  

Page 8: Thales Overview oct 2013 v2

MiniaturizaJon:  Enhanced  temperature  control    Large  surface/volume  rate  

•  Microreactors  have  higher  surface-­‐to-­‐volume  raJo  than  macroreactors,  heat  transfer  occurs  rapidly  in  a  flow  microreactor,  enabling  precise  temperature  control.  

Yoshida,  Green  and  Sustainable  Chemical  Synthesis  Using  Flow  Microreactors,  ChemSusChem,  2010  

Page 9: Thales Overview oct 2013 v2

KineJcs  In  Flow  Reactors  

•  In  a  microfluidic  device  with  a  constant  flow  rate,  the  concentraJon  of  the  reactant  decays  exponenJally  with  distance  along  the  reactor.    

•  Thus  Jme  in  a  flask  reactor  equates  with  distance  in  a  flow  reactor  

X  

A  

dX/dt  >  0    

dA/dt  <  0    

Page 10: Thales Overview oct 2013 v2

Reactants

Products

By-products

Traditional Batch Method

Gas inlet

Reactants

Products

By-products

Batch vs. Flow

Better surface interaction Controlled residence time Elimination of the products

Flow Method

H-Cube Pro™

Page 11: Thales Overview oct 2013 v2

Catalyst screening

Parameter scanning: effect of residence time to the conversion and selectivity

Catalyst Flow rate / mL/

min

Residence time / sec

Conc. / mol/dm3

Conv. / %

Sel. / %

IrO2 2 9 0,2 52 69

Re2O7 2 9 0,2 53 73

(10%Rh 1% Pd)/C

2 9 0,2 79 60

RuO2 (activated)

2 9 0,2 100 100

1 18 0,2 100 99

0,5 36 0,2 100 98

Ru black 2 9 0,2 100 83

1% Pt/C doped with Vanadium

2 9 0,2 100 96

1 18 0,2 100 93

0,5 36 0,2 100 84

Conditions: 70 bar, EtOH, 25°C

Selective aromatic nitro reduction

Increase and decrease of residence time on the catalyst cannot be performed in batch

Page 12: Thales Overview oct 2013 v2

Heating Control

Lower reaction volume. Closer and uniform temperature control

Outcome:

Safer chemistry. Lower possibility of exotherm.

Batch

Flow

Larger solvent volume. Lower temperature control.

Outcome:

More difficult reaction control. Possibility of exotherm.

Page 13: Thales Overview oct 2013 v2

Heating Control

Lithium Bromide Exchange

Batch

Flow

•  Batch experiment shows temperature increase of 40°C. •  Flow shows little increase in temperature.

Ref: Thomas Schwalbe and Gregor Wille, CPC Systems

Page 14: Thales Overview oct 2013 v2

Survey  Conducted  

Small  scale:  §  Making  processes  safer  §  Accessing  new  chemistry  

§  Speed  in  synthesis  and  analysis  

§  AutomaJon  

Large  scale:  §  Making  processes  safer  §  Reproducibility-­‐less  batch  to  batch  variaJon  

§  SelecJvity  

   Why  move  to  flow?  

Page 15: Thales Overview oct 2013 v2

Reaction Line

150°C, 100 bar (1450 psi) H2, CO, O2, CO/H2, C2H4, CO2. Reactions in minutes. Minimal work-up.

-70 - +80C O3, Li, -N3, -NO2

Safe and simple to use. Multistep synthesis. 2 step independant T control.

450°C, 100 bar (1450 psi) New chemistry capabilities. Chemistry in seconds. Milligram-kilo scale Solve Dead-end chemistry.

H-Cube Pro & Gas Module: Reagent gases

Phoenix Flow Reactor: Endothermic chemistry

IceCube: Exothermic Chemistry

Page 16: Thales Overview oct 2013 v2

H-Cube Catalysis Platform: Making hydrogenations safe, fast, and selective

Page 17: Thales Overview oct 2013 v2

H-Cube Pro Overview

•  HPLC pumps continuous stream of solvent •  Hydrogen generated from water electrolysis •  Sample heated and passed through catalyst •  Up to 150°C and 100 bar. (1 bar=14.5 psi)

Hydrogenation reactions: § Nitro Reduction § Nitrile reduction § Heterocycle Saturation § Double bond saturation § Protecting Group hydrogenolysis § Reductive Alkylation § Hydrogenolysis of dehydropyrimidones § Imine Reduction § Desulfurization

Page 18: Thales Overview oct 2013 v2

No More Hydrogen Cylinders

•  Large cylinders contain 4360 litres of compressed H2

•  They are a severe safety hazard •  H-Cube doesn’t use gas cylinders •  Only water •  Clean •  No transportation costs •  Low energy •  Safe •  Just 2 mL H2 @ 1bar

Page 19: Thales Overview oct 2013 v2

Hydrogen generator cell §  Solid Polymer Electrolyte

High-pressure regulating valves

Water separator, flow detector, bubble detector

Page 20: Thales Overview oct 2013 v2

Catalyst System - CatCart®

• Benefits •  Safety •  No filtration necessary •  Enhanced phase mixing

• Over 100 heterogeneous and Immobilized homogeneous catalysts

10% Pd/C, PtO2, Rh, Ru on C, Al2O3 Raney Ni, Raney Co Pearlmans, Lindlars Catalyst Wilkinson's RhCl(TPP)3 Tetrakis(TPP)palladium Pd(II)EnCat BINAP 30

• Different sizes • 30x4mm • 70x4mm (longer residence time or scale up)

• Ability to pack your own CatCarts • CatCart Packer (with vacuum) • CatCart Closer (no vacuum)

Page 21: Thales Overview oct 2013 v2

New Software with H-Cube Pro

Timer Hydrogen Variability

Valve control Data saving Chemistry Guide

Page 22: Thales Overview oct 2013 v2

H-Cube Pro = higher throughput

2 cells for higher hydrogen production: 60 mL/min

Page 23: Thales Overview oct 2013 v2

H-Cube Pro: Higher temperature capability

Page 24: Thales Overview oct 2013 v2

H-Cube Pro: Selectivity with lower temp control

T (oC) p (bar) Flow rate (ml/min) Conversion (%) B Selectivity (%)

20 1, controlled 1 37 99 20 1, controlled 2 65 93 20 1, controlled 3 87 77

Solvent Conc. Temp. (°C) Pressure (bar)

Flow Rate (mL/min)

Product Distribution (%, GC-MS)

A B C EtOH 0.1 M 10 10 1 0 100 0

H-Cube

H-Cube Pro

Page 25: Thales Overview oct 2013 v2

Simple Validation Reactions (out of 5,000)

10% Pd/C, RT, 1 bar Yield: 86 - 89% Alternate reductions Ketone: Pt/C Aromatic: Ru/O2

Raney Ni, 70°C, 50 bar, 2M NH3 in MeOH, Yield: >85%

Page 26: Thales Overview oct 2013 v2

Simple Validation Reactions (out of 5,000)

10% Pd/C, 60˚C, 1 bar Yield: >90%

Batch reaction of {3-[(2-carbazol-9-yl-acetylamino)-methyl]-benzyl}-carbamic acid benzyl ester Reagent: H2, catalyst: 10% Pd/C, EtOH, 1 atm, Yield: 76 % Conn, M. Morgan; Deslongchamps, Ghislain; Mendoza, Javier de; Rebek, Julius; JACSAT; J. Am. Chem. Soc.; EN; 115; 9; 1993; 3548-3557.

Raney Ni, 80˚C, 80 bar Yield: 90%

Batch reference: Reagent: HCOONH4, catalyst: 10% Pd/C, solvent: MeOH, Reaction time: 30 min, 1 atm. Yield: 78 % Kaczmarek, Lukasz; Balicki, Roman; JPCCEM; J. Prakt. Chem/Chem-Ztg.; EN; 336; 8; 1994; 695-697

Page 27: Thales Overview oct 2013 v2

H-Cube® Reaction Examples

Batch: 200°C, 200 bar, 48 hours

Batch: 150°C, 80 bar, 3 days

Page 28: Thales Overview oct 2013 v2

Chemoselective hydrogenations

Selective reduction in presence of benzyl protected O or N 5% Pt/C, 75°C, 70 bar, 0,01M, ethanol,no byproduct Yield: 75%

Batch reference: Reagent: aq. NaBH4, Solvent: THF; 0°C, Yield: 76,1 % Nelson, Michael E.; Priestley, Nigel D.; JACSAT; J. Am.

Chem. Soc.; EN; 124; 12; 2002; 2894-2902

Route A: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 25°C. Yield: 80%

Route B: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 100°C. Yield: 85%

No batch reference

Page 29: Thales Overview oct 2013 v2

Selective Hydrogenations

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 97% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

Conditions: Au/TiO2, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

H-Cube® - Chemoselective hydrogenations

Ürge, L.et al. submitted for publication

Selective hydrogenation of the double-bond

Selective hydrogenation to afford oxime

Selective hydrogenation of the double-bond

Page 30: Thales Overview oct 2013 v2

Selective Hydrogenations

Conditions: 10% Pd/C, 70 bar, 0°C, residence time 16s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 11-17s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 100% yield

Ürge, L.et al. submitted for publication

H-Cube® - Chemoselective hydrogenations

Nitro group reduction in the presence of a halogen

Nitro group reduction in the presence of Cbz-group

Nitro group reduction without retro-Henry as a

side-reaction

Page 31: Thales Overview oct 2013 v2

Selective dehydrochlorination

Flow rate

(mL/min)

Pressure (bar) Temperature (oC)

Bubdet Catalyst Amount A (%)

Amount B (%)

Amount C (%)

Amount D (%)

1 20 (∆p:5 bar) 110 50 10% Pd/C 26.7% 61.5% - 7% 1 20 (∆p:3 bar) 110 50 1% Pd/C 61,90% 29,40% - 2,50% 1 20 (∆p:13

bar) 110 50 5% Rh/C 78.9% 5.1% - 9.2%

1 20 (∆p:10 bar)

110 50 5% Pd/C 26.7% 60.9% - 6.7%

1 20 (∆p:5 bar) 110 50 5% Pd/C(S) 25% 63.4% - 6.6%

Objective: Match similar selectivity of 60% but without additives of CsF, S, K2CO3 and PPh3

Page 32: Thales Overview oct 2013 v2

Partial saturation of heterocycles

Optimised reaction parameters: -  H-Cube Pro -  Temperature: 100oC -  Pressure: 100 bar -  Hydrogen amount: Maximum

Results:

•  Generate new non-planar molecules from existing stocks. •  New molecules have new Log P and other characteristics.

•  Cheap •  Clean •  Quick •  Only on H-Cube: High P + Selective control.

Flow  rate  (ml/min)   Conversion  %  of  A  %  of  B  %  of  C  0.3   100%   100   0   0  0.5   100%   92   8   0  1.0   100%   86   14   0  

Page 33: Thales Overview oct 2013 v2

Deuteration

Substrate Product Deuterium content(%)

Isolated yield / %

99 99

97 98

93 97

96 98

96 99

Mándity, I.M.; Martinek, T.A.; Darvas, F.; Fülöp, F.; Tetrahedron Letters; 2009, 50, 4372–4374

Page 34: Thales Overview oct 2013 v2

H-Cube Autosampler™

Gilson 271 Liquid Handler §  402 single Syringe pump (10 mL) §  Direct GX injector (Valco) §  Low-mount fraction collection (Bio-Chem) §  Septum-piercing needle §  Static drain wash station §  Tubes, connectors, fittings

Open vial collection Collection through probe (into closed vial)

Page 35: Thales Overview oct 2013 v2

H-Cube Midi™ reactor for scale-up

Parameters: -  p= 1-100 bar -  T=10-150°C -  v=0.1-3 ml/min - c=0.01-0.1 M - H2 production = up to 60ml/min - CatCarts = 30x4mm or 70x4mm

Parameters: -  p= 1-100 bar -  T=25-150°C -  v=5-25 ml/min - c=0.05-0.25 M - H2 production = up to 125ml/min - CatCarts = 90x9.5mm

Milligram to Gram Scale

Half Kilogram Scale

Page 36: Thales Overview oct 2013 v2

Expanding H-Cube Beyond Hydrogenation

Page 37: Thales Overview oct 2013 v2

Conversion: 90-95% (TLC) Purity: 70% (LC-MS) without work-up

Batch parameters: K3PO4, TBA-Br, Pd(OAc)2, DMF, 2 hours, 130 °C Reference: (Zim, Danilo; Monteiro, Adriano L.; Dupont, Jairton; Tetrahedron Lett.; EN; 41; 43; 2000; 8199-8202)

Suzuki-Miyaura C-C cross coupling:

Sample reactions

Br

N O 2 B

O H O H

N O 2 CatCart TM 70*4 mm Pd EnCat TM BINAP 30, 2-propanol, TBAF, 80°C, 20 bar, 0.05M, 0.5 ml/min

+

Page 38: Thales Overview oct 2013 v2

Selective Suzuki coupling (Cl, Cl)

The  condiJons  were:  

1  equivalent  of  2,6-­‐dichloroquinoxaline  with  1.2  equivalent  of  o-­‐Tolylboronic  acid    

ConcentraJon  set  to  0.02M  

Solvent:  Methanol  

Base:  NaOH  

AnalyJcs:  GC-­‐MS  

Flow  rate  (ml/min)  

Pressure   Temperature  Catalyst   Base  

Result  (bar)   (oC)   LC-­‐MS,  220nm  

0.8   20   100  Fibrecat  1007  

(70mm)  3  ekv  

Conversion:  82%  SelecJvity:  48%  

0.3   20   100  Fibrecat  1007  

(70mm)  3  ekv  

Conversion:  99%  SelecJvity:  48%  

0.8   20   100  Fibrecat  1035  

2.5  ekv  Conversion:  16%  

(30mm)   SelecJvity:  100%  

0.8   20   100  Fibrecat  1029  

(30mm)  2.5  ekv  

Conversion:  18%  SelecJvity:  100%  

0.8   20   100  Fibrecat  1048  

(30mm)  2.5  ekv  

Conversion:  40%  SelecJvity:  100%  

0.8   20   100  10%  Pd/C  

2.5  ekv  Conversion:  89%  

(30mm)   SelecJvity:  14%  

0.5   20   50  Fibrecat  1048  

2.5  ekv  Conversion:17%  

(30mm)   SelecJvity:  ~100%  

0.5   20   100  Fibrecat  1048  

2.5  ekv  Conversion:  35%  

(30mm)   SelecJvity:  ~100%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecJvity:  73%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecJvity:  80%  

0.2   20   100  Fibrecat  1029  

2.5  ekv  Conversion:  12%  

(30mm)   SelecJvity:  100%  

Page 39: Thales Overview oct 2013 v2

Purity (LCMS): 63%

Batch parameters: Pd(OAc)2, PPh3, TEA, DMF, 3 days, 110°C, yield: 70% Reference: J. Chem. Soc. Dalton Trans., 1998, 1461-1468 J. Chem. Soc. Dalton Trans., 1998, 1461-1468

Heck C-C cross coupling:

Sample reactions

CatCartTM: Pd (PPh3)4, TBAF, 2-propanol, 0.05M, 100oC, 1 bar, 0.2 ml/min.

Page 40: Thales Overview oct 2013 v2

Gas  Module  

•   Versa6le:    Compressed  Air,  O2,  CO,  C2H4,  SynGas,  CH4,  C2H6,  He,  N2,  N2O,  NO,  Ar.  

•   Fast:    ReacJons  with  other  gases  complete  in  less  than  10  minutes  

•   Powerful:    Up  to  100  bar  capability.  

•   Robust:    All  high  quality  stainless  steel  parts.  

•   Simple:    3  bumon  stand-­‐alone  control  or  via  simple  touch  screen  control  on  H-­‐Cube  Pro™.  

Page 41: Thales Overview oct 2013 v2

Use of Gas Module Attached to the H-Cube Pro™

Gas Module HPLC pump H-Cube Pro™

Filter included Check valve included

Page 42: Thales Overview oct 2013 v2

Problems with Oxidation

Page 43: Thales Overview oct 2013 v2

Alcohol oxidation: Optimization

Pressure Temp. (oC) CatCart Conversion Selectivity

40 25 1 % Au/TiO2 0 – 40 65 1 % Au/TiO2 6.5 >85 40 25 1 % Au

/Fe2O3 0 – 40 65 1 % Au

/Fe2O3 12.7 0 40 25 5 % Ru

/Al2O3 2.8 ~100 40 65 5 % Ru

/Al2O3 3.6 ~100 100 65 5 % Ru

/Al2O3 2.7 ~100 100 100 5 % Ru

/Al2O3 8.5 ~100 100 140 5 % Ru

/Al2O3 15.5 ~100 100 65 1 % Au/TiO2 5.6 84 100 100 1 % Au/TiO2 47.2 93 100 140 1 % Au

/TiO2 ~100 93 100 65 1 % Au

/Fe2O3 4 0 100 100 1 % Au

/Fe2O3 31 7 100 • Area% of desired product in GC-MS / (100 – Area% of reactant in GC-MS)

General conditions: H-Cube Pro with Gas Module, 50 mL/min oxygen gas, 1 mL/min liquid flow rate (0.05M in acetone, 20 mL sample volume), CatCart: 70mm., 1 % Au/TiO2 (cartridge: 70mm, THS 01639),

Batch ref.: Oxygen; perruthenate modified mesoporous silicate MCM-41 in toluene T=80°C; 24 h; Bleloch, Andrew; et al. Chemical Communications, 1999 , 8,1907 - 1908

Very fast addition of alcohol to gold surface. Alkoxide formation.

Page 44: Thales Overview oct 2013 v2

Aromatization of heterocycles

Reaction parameters were tested: -  H-Cube Pro with and without GasModule -  Oxidizing agent: Hydrogen-peroxide and Oxygen -  Catalyst: MnO2, Amerlyst 36, Au/TiO2 -  Solvent: Acetone/H2O2, Acetone -  Temperature 60-150oC, pressure 20-50 bar, flow rate 1 ml/min, concentration: 0.05 mmol/ml

Oxidizing  agent   Solvent   Catalyst  

Temperature  (oC)  

Pressure  (bar)   Conversion   Comment  

MnO2   Acetone   MnO2   60   20   82%   Blockage  aoer  10  minutes  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   70   20  68%  aoer  1  run  78%  aoer  2  run  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   100   30  68%  aoer  1  run  98%  aoer  2  run  

The  catalyst  was  reacJvated  with  H2O2  between  the  runs.  

O2  (10  ml/min)   Acetone   Au/TiO2   75   11   8%  

O2  (10  ml/min)   Acetone   Au/TiO2   150   11   95%  

Aoer  10  minutes  the  conversion  was  dropped  to  

50%  

O2  (50  ml/min)   Acetone   Au/TiO2   150   20   >  98%  

Page 45: Thales Overview oct 2013 v2

Ø  Conditions: 100oC, 30 bar, CO gas, 0.5 ml/min liquid flow rate, 0.01 M in THF Ø  Catalyst: Polymer supported Pd(PPh3)4 Ø  Reference test was managed on X-Cube Ø  Reaction was repeated Ø  Different gas flow rates were tested

Results

Aminocarbonylation

ReacJon  HC-­‐Pro  with  gas  module  (CO  flow  rate)  

XC  reference  

10  ml/min  

30  ml/min  

60  ml/min  

30  ml/min  

30  ml/min  

60  ml/min  

60  ml/min  

60  ml/min  

Conversion  %   60   65   79   66   62   79   79   82   0  

Page 46: Thales Overview oct 2013 v2

Accessing New Molecules or Chemical Space

Page 47: Thales Overview oct 2013 v2

Heterocyclic rings of the future, J. Med. Chem., 2009, 52 (9), pp 2952–2963.

•  3000 potential bicyclic systems unmade • Many potential drug like scaffolds Why? • Chemists lack the tools to expand into new chemistry space to access these new compounds. •  Time • Knowledge

The quest for novel heterocycles

Page 48: Thales Overview oct 2013 v2

•  Standard benzannulation reaction •  Good source of:

•  Quinolines •  Pyridopyrimidones •  Naphthyridines

→ Important structural drug motifs

Disadvantages: • Harsh conditions • High b.p. solvents • Selectivity • Solubility

W. A. Jacobs, J. Am. Chem. Soc.; 1939; 61(10); 2890-2895

High T Chemistries – in Batch

Page 49: Thales Overview oct 2013 v2

• Replacement of diphenyl ether (b.p: 259°C) with THF (b.p.: 66 °C)

Cyclization conditions: a: 360 °C, 130 bar, 1.1 min b: 300 °C, 100 bar, 1.5 min c: 350 °C, 100 bar, 0.75 min

Pyridopyrimidinone Quinoline

No THF polymerization!

Batch conditions: 2 hours

Gould-Jacobs Reaction – in Flow

Page 50: Thales Overview oct 2013 v2

The nature of the substituents is critical because they increase or decrease the nucleophilicity of the ring: Electron donating groups increase yields, Electron withdrawing groups decrease yields.

50

Process exploration

• Meldrum’s acidic route to pyridopyrimidones and to hydroxyquinolines

Cyclization conditions: a: 300 °C, 160 bar, 0.6 min b: 300 °C, 100 bar, 0.6 min c: 360 °C, 100 bar, 1 min d: 350 °C, 130 bar, 4 min e: 300 °C, 100 bar, 1.5 min

Lengyel L., Nagy T. Zs., Sipos G., Jones R., Dormán Gy., Ürge L., Darvas F., Tetrahedron Lett., 2012; 53; 738-743

Page 51: Thales Overview oct 2013 v2

New Scaffold Generation

5 novel bicyclic scaffolds generated-fully characterized. Many more to follow

Page 52: Thales Overview oct 2013 v2

Phoenix Flow Reactor: High temperature synthesis

Powerful: Up to 450°C

Versatile: Heterogeneous and homogeneous capabilities.

Fast: Reactions in seconds or minutes.

Innovative: Validated procedure to generate novel bicyclic compounds

Simple: 3 button stand-alone control or via simple touch screen control on H-Cube Pro™.

Page 53: Thales Overview oct 2013 v2

Phoenix loop-reactor possibilities

•  Materials - sizes §  Stainless steel (1 – 16 mL) –

up to 450oC and 100bar •  Coil (1/16” 4-16 ml) •  Short coil (1/16” 1-4ml) •  Static mixer (3/8”, 32ml)

§  PTFE coil (4 – 16 ml) – up to 150oC or 20bar

§  Hastelloy (4 – 16 ml) – up to 450oC and 100bar

•  Easy to recoil •  Versatile

Page 54: Thales Overview oct 2013 v2

Phoenix packed bad reactor possibilities

• CatCart (30, 70 mm) – up to 250°C and 100 bar •  MidiCart – up to 150°C and 100bar •  Special high temperature cartridge – up to 450°C and 100bar

90 × 9.5 mm

Page 55: Thales Overview oct 2013 v2

Cartridge Volumes and Packing Type   Volume   Max.  T/p  (100  bar  

unJl  it  is  indicated  otherwise)  

Comment  

H-­‐Cube  Pro  Type  CatCarts  30  mm     0.38  mL   250°C   Packed  by  

ThalesNano  70  mm     0.76  mL   250°C   Packed  by  

ThalesNano  Phoenix  Metal-­‐Metal  Sealing  High  T  CatCarts  

125  mm  (1/4  SS  id  3  mm)   0.9  mL   450  °C   User  can  fill  125  mm  (1/4  SS  id  3.8  mm)   1.3  mL   450  °C   User  can  fill  125  mm  (1/2  SS  id  9.4mm)   9  mL   450  °C   User  can  fill,  filters  

are  needed  250  mm  (1/4  SS  id  3mm)   1.8  mL   450  °C   User  can  fill,  filters  

are  needed  250  mm  (1/4  SS  id  3.8  mm)   2.6  mL   450  °C    User  can  fill,  filters  

are  needed  250  mm  (1/2  SS  id  9.4mm)   18  mL   450  °C   User  can  fill,  filters  

are  needed  H-­‐Cube  Midi  Type  MidiCarts  

MidiCart   7.6  mL   150  °C   Packed  by  ThalesNano  

Page 56: Thales Overview oct 2013 v2

Ring closure on aryl NH : key step •  Mitsunobu reaction or traditional heating with T3P did not

furnish the bicyclic heterocycle. •  Reaction proceeded smoothly in Phoenix reactor at 300oC with

65% yield despite requirement for the cis amide conformer in transition state.

Mitsunobu Reaction Application Note

Page 57: Thales Overview oct 2013 v2

N-Alkylation Application Note

RaNi 70mm 200C, 80bar 0.5ml/min

Page 58: Thales Overview oct 2013 v2

58

Reaction pathway using Raney-Ni catalyst

Advantages of Raney-Nickel: •  Cheaper than Pd, Pt containing catalysts •  Differently preactivated Raney-Ni catalyst can give more

flexibility – selectivity issues

But: Pyrophoric!

Page 59: Thales Overview oct 2013 v2

59

Optimizing the reaction conditions:

•  0.1M Indole solution in ethanol, RaNi 4200 Catalyst, GC-MS results

Reach higher selectivity: Protect the N-atom with TMS-Cl Result: 90% conversion with 80%

selectivity (300 °C, 100 bar, 0.5 mL/min,

isolated yield: 76.5%)

Page 60: Thales Overview oct 2013 v2

60

Alkylation of 2-methyl-indoline

The total amount of dialkylated products was 18%.

Alkylation coupled with dehydrogenation

Page 61: Thales Overview oct 2013 v2

61

Ring closuring of 2-methyl-indole with 1,3-butanediol

Ring closure is coupled with hydrogenation of double bond

Page 62: Thales Overview oct 2013 v2

Fischer-Indole Synthesis: Scale Out

cf. MW reaction: Bagley, M. C.; et al. J. Org. Chem. 2005, 70 , 7003

In AcOH/2-propanol (3:1) (0.5M) 150 °C, 60 bars,

1.0 mL min-1 (4 min res. time) 88% isolated yield

Continuous Flow Results (4 mL or 16 mL Coil) Scale-up

200 °C, 75 bars, 5.0 mL min-1 (~3 min res. time)

96% isolated yield

25 g indole/hour

Page 63: Thales Overview oct 2013 v2

High temperature reactions

Conditions: p = 70 bar T = 270°C v = 0.4 mL/min c = 0.04 M (NMP) Result: 82% yield

Kappe, O. C. et al. Eur. J. Org. Chem., 2009, 9, 1321-1325.

X-Cube FlashTM – Kolbe Synthesis Conditions: p = 60 bar T = 180°C v = 4 mL/min Residence time: 440 s c = 0.49 M (H2O) Best result: 51% conversion

Kappe, O. et al. Chem. Eng. Technol. 2009, 32(11), 1-16.

X-Cube FlashTM – SNAr reaction

Page 64: Thales Overview oct 2013 v2

Versatile Catalysis Platform

• Reactions from 10-450C and 1-100bar (1450 psi) • Up to 13 different reagent gases • Heterogeneous or homogeneous catalysis

Fully Automated system now available

Page 65: Thales Overview oct 2013 v2

High  Energy  

Reac6ons  

Page 66: Thales Overview oct 2013 v2

IceCube  

Safe:  Low  reacJon  volume,  excellent  temperature  control,  SW  controlled  –  including  many  safety  control  points  

Simple  to  use:  easy  to  set  up,  default  reactor  structures,  proper  system  construcJon  

Powerful:  Down  to  -­‐50°C/-­‐70°C,  up  to  80°C  

Versa6le  chemistry:  Ozonolysis,  nitraJon,  lithiaJon,  azide  chemistry,  diazoJzaJon  

Versa6le  reactors:  Teflon  loops  for  2  reactors  with  1/16”  and  1/8”  loops  

Chemical  resistance:  Teflon  wemed  parts  

Mul6step  reac6ons:  2  reacJon  zones  in  1  system  Modular:  OpJon  for  Ozone  Module,  more  pumps  

Size:  Stackable  to  reduce  footprint  

Page 67: Thales Overview oct 2013 v2

Flexible  and  modular  for  variety  of  chemistry  

•   2pcs  rotary  piston  pumps    

•   2pcs  3-­‐way  inlet  valves  

•   Flow  rate:  0.2  –  4.0  mL/min  

•   Max  pressure:  6.9  bar  

•   Main  reactor  block  temp:    -­‐70/50°C  –  +80°C    

•   Main  reactor  volume  up  to  8  mL  

•   Tubing:  1/16”  or  1/8”  OD  PTFE  

•   Secondary  reactor  block  temp.:    -­‐  30  –  +80°C  

•   Secondary  reactor  volume  up  to  4  mL  

Cooling  Module  

•   ConJnuous  ozone  producJon  

•   Controlled  oxygen  introducJon  

•   Max.  100  mL/min  gas  flow  

•   14%  Ozone  producJon  

Pump  Module   Ozone  Module  

Page 68: Thales Overview oct 2013 v2

ReacJon  zones  

First  ReacJon  Zone  

Secondary  ReacJon  Zone  

Right  hand  side:    Water  inlet  and  outlet  

Reactor  plate  coiled  with  Teflon  tube  (1/16”)  

Page 69: Thales Overview oct 2013 v2

Single  or  mulJstep  reacJons  

A  

B  C  

A  B  

C  

D  

Pre-­‐cooler/Mixer   Reactor  

-­‐70-­‐+80ºC  

-­‐70-­‐+80ºC   -­‐30-­‐+80ºC  

Applica6ons:  Azide,  Lithia6on,  ozonolysis,  nitra6on,  Swern  oxida6on  

Azide,  nitra6on,  Swern  oxida6on  

Ideal for reactive intermediates or quenching

Page 70: Thales Overview oct 2013 v2

Control  –  Graphical  User  Interface  

Welcome  screen  of  the  IceCube  

Ozonolysis  set-­‐up   3  pump  –  2  reactor  set-­‐up  

Page 71: Thales Overview oct 2013 v2

?   Halogena6on  

Nitra6on  Azides  

Mul6step  reac6ons  

Modular  

Lithia6on  

Ozonolysis  

Swern  Oxida6on  

IdenJfied  ApplicaJons  

Page 72: Thales Overview oct 2013 v2

Why  ozonolysis  is  neglected?  

•  Highly  exothermic  reacJon,  high  risk  of  explosion    

•  Normally  requires  low  temperature:  -­‐78°C.  •  In  addiJon,  the  batchwise  accumulaJon  of  ozonide  is  associated  again  with  risk  of  explosion  

•  There  are  alternaJve  oxidizing  agents/systems:  •  Sodium  Periodate  –  Osmium  Tetroxide  (NaIO4-­‐OsO4)  

•  Ru(VIII)O4    +  NaIO4  

•  Jones  oxidaJon  (CrO3,  H2SO4)  

•  Swern  oxidaJon  •  Most  of  the  listed  agents  are  toxic,  difficult,  and/or    expensive  to  use.  

Page 73: Thales Overview oct 2013 v2

What  is  ozonolysis?  

•  Ozonolysis  is  a  technique  that  cleaves  double  and  •  triple  C-­‐C  bonds  to  form  a  C-­‐O  bond.  

Page 74: Thales Overview oct 2013 v2

How  does  it  work?  

SM1  /  Reactant  or  Solvent  

SM2  /  Quench  or  Solvent  

Product  or  Waste  

Page 75: Thales Overview oct 2013 v2

Flow  Ozonolysis  of  Styrenes  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lem.,  

Page 76: Thales Overview oct 2013 v2

Oxida6on  of  alkynes  

Oxida6on  of  amines  to  nitro  groups  

Flow  Ozonolysis  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lem.,  

Page 77: Thales Overview oct 2013 v2

Flow  Ozonolysis  Of  Thioanisole  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lem.,  

Page 78: Thales Overview oct 2013 v2

Batch  reac6on:  Max.  -­‐60°C  to  avoid  side  reacJon  

In  Flow:  

Even  at  -­‐10°C  without  side  product  formaJon  

0.45  M  in  DCM,  0.96  mL/min  

0.45  M  alcohol,  0.14  M  DMSO  in  DCM  0.94  mL/min  

3.6  M  in  MeOH,  0.76  mL/min  

*  Aoer  purificaJon  

ApplicaJon  Note:  Swern  OxidaJon  

When  compared  to  batch  condiJons,  IceCube  can  sJll  control  reacJons  at  warmer  temperatures  due  to  bemer  mixing  and  more  efficient  heat  transfer.  

Page 79: Thales Overview oct 2013 v2

DiazoJzaJon  and  azo-­‐coupling  in  the  IceCube  

Entry   Vflow  (ml/min)  A  -­‐  B  -­‐  C  

T  (°C)   τ  (1.  loop,  min)  

τ  (2.  loop,  min)  

Isolated  Yield  (%)  

1   0.4   0   2.12   3.33   91  

2   0.9   0   0.94   1.48   91  

3   0.6   0   1.42   2.22   85  

4   0.9   10   0.94   1.48   85  

5   1.5   10   0.56   0.88   86  

6   1.5   15   0.56   0.88   98  

7   1.2   15   0.71   1.11   84  

8   1.8   15   0.47   0.74   86  

Aniline  HCl  sol.   Pump  A  

Pump  B  NaNO2    sol.  

Pump  C  

Phenol    NaOH  sol.   •  Most  aromaJc  diazonium  salts  

are  not  stable  at  temperatures  above  5°C  •  Produces  between  65  and  150  kJ/mole  and  is  usually  run  industrially  at  sub-­‐ambient  temperatures  •  Diazonium  salts  decompose  exothermically,  producing  between160  and  180  kJ/mole.    •  Many  diazonium  salts  are  shock-­‐sensiJve  

Page 80: Thales Overview oct 2013 v2

Safe reaction of azides using Ice-Cube

•  2 Step Azide Reaction in flow •  No isolation of DAGL •  Significantly reduced hazards

TKX50

Page 81: Thales Overview oct 2013 v2

Novel  scaffold  synthesis  from  explosive  intermediates  

NitraJon  of  AromaJc  Alcohols  

Pump  A   Pump  B   Temperature  (oC)  

Loop  size  (ml)  

Conversion  (%)  

SelecJvity  (%)  

SoluJon  Flow  rate  (ml/

min)   SoluJon  Flow  rate  (ml/

min)  

ccHNO3   0.4  1g  PG/15ml  ccH2SO4   0.4   5  -­‐  10   7   100  

0  (different  products)  

1.48g  NH4NO3/15ml  ccH2SO4   0.7  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   100   100  

1.48g  NH4NO3/15ml  ccH2SO4   0.5  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   50   80  (20%  dinitro)  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (3  bar)   100   100  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (1  bar)   80  

70  (30%  dinitro  and  nitro)  

Currently  invesJgaJng  selecJvity  at  lower  temperatures  on  IceCube  

Page 82: Thales Overview oct 2013 v2

Coming  soon…  

•  LithiaJon  experiments  (collaboraJons)  

•  FluorinaJon  experiments  (collaboraJons)  

•  Low  temperature  selecJve  reacJons,  not  certainly  from

 exothermic  nature  

•  Very  low  temperature  experiments,  where  batch

 condiJons  required  liquid  nitrogen  temperature  or

 below  

Page 83: Thales Overview oct 2013 v2

Free Chemistry Services

Thalesnano has own chemistry team

We try to solve your challenging chemistry in flow

Low Temperature • reactive intermediates, selectivity, dangerous, exothermic chemistry

High Temperature & Pressures • dead end chemistry, flash heating, rearrangements, alkylations, reactions with gases (hydrogenation, oxidation, carbonylation), catalysis

Email the group: [email protected]

Page 84: Thales Overview oct 2013 v2

THANK YOU FOR YOUR ATTENTION!!

ANY QUESTIONS