TET2 EN NMP

5
MYELOID NEOPLASIA Brief report Analys is of th e T en -E le ve n T ra ns lo ca ti on 2( TET2) ge ne in f a mil i al myelopr olifera tive neoplas ms Ce ´ cile Saint-M artin, 1,2 Gwendoline Leroy, 1 Franc ¸ ois Delhom meau, 2,3 Ge ´ rard Panela tti, 4 Sabrina Dupont, 2 Chl oe ´ James, 5 Isabelle Plo, 2 Dominique Bordessoule, 6 Christine Chomienne, 7 Andr e ´ Dela nnoy, 8 Alain Devidas, 9 Martine Gardembas-Pain, 10 Franc ¸ oise Isnard , 11 Yves Plumelle, 12 Olivier Bernard, 13 William Vainchenker , 2 Albert Najman, 11 and Christi ne Bellann e ´ -Chante lot, 1,2 and the French Group of Familial Myeloproliferative Disorders 1 Department of Geneti cs, Assistance P ublique-H opitaux de Paris (AP- HP) Groupe H ospitalie r Pitie ´ -Salpe ´ trie ` re, Univer site ´ Pierre et Marie Curie , Paris, France; 2 Inserm U790, Institut Gustave Roussy, Villejuif, France; 3 Laborator y of Hematolog y, AP-HP Ho ˆ pital Sain t Antoine, Paris, Fr ance; 4 Department of Internal Medicine, Centre Hospitalier Universitaire (CHU) de Fort de France, Fort de France, France; 5 Inserm U876, Bordeaux, France; 6 Department of Hematology, CHU de Limoges, Limoges, France; 7 Department o f Cellular Bi ology, AP-HP Ho ˆ pital Saint L ouis, Unive rsite ´ D enis Diderot , Paris, Fran ce; 8 Department of Internal Medicine, Universite ´ Catholique de Louvain, Leuven, Belgium; 9 Department of Hematology, Centre Hospitalier Sud-Francilien, Corbeil-Essonnes, France; 10 Department of Hematology, CHU d’Angers, Angers, France; 11 Departmen t of Hemato logy, AP-HP Ho ˆ pital Sai nt Antoine, Universit e ´ Pierre et Mari e Curie, Paris , France; 12 Laboratory of Hematology, CHU de Fort de France, Fort de France, France; and 13 Inserm, E210, Universit e ´ Rene ´ Descartes , Pa ris, France The JAK2 V617F mutati on does not eluci - date the phenotypic varia bility observed in myeloproliferative neoplasm (MPN) families. A putative tumo r supp res sor gene, TET2 , was rec ent ly implicated in MPN and myelodysplasti c syndr omes thr ough the identi cation of acquired mu- tati ons affe ctin g hema topoi eticstem cell s. The pre sent study ana lyz ed the TET2 gene in 61 MPN cases from 42 families. Fifteen distinct mutations were identied in 12 (20%) JAK2 V617F -positive or -nega- tiv e pati ents. In a patient wi th 2 TET2 mutat io ns, t he anal ysis of 5 bl ood samples at dif fer ent phases of her dis- ease showed the sequential occurrence of JAK2 V617F and TET2 mutations con- comitantly to the disease evolution. Anal- ysis of famil ial segr egati on conr med that TET2 muta tion s wer e not inheri ted but somatically acquired. TET2 mutations were mainly observed (10 of 12) in pa- tients with primary myelobrosis or pat ients with pol ycy themia vera or essen- tial thro mboc ythemia who secondaril y evolve d toward mye lobrosis or acute myeloid leukemia. (Blood. 2009;1 14: 1628-1632) Introduction Families of myeloproliferative neoplasms (MPNs) are character- ized by a clinical and genetic heterogeneity. First, within MPN families, distinct clinical entities are observed, the 3 main ones being polycythemia vera (PV), essential thrombocythemia (ET), and primary myelobrosis (PMF). 1,2 Second, disease evolution can be highly variable within families presenting with the same type of MPN. 2,3 The acquired JAK2 V617F mutation present in most PV and half of ET and PMF sporadic or familial cases does not totally explain the phenotypic variability. 2-7 The existence of additional molecular events, eit her germline or acqu ire d, may expl ain the MPN predisposition and the distinct phenotypes observed within MPN families. 8-10 Recentl y , acquire d mutatio ns of the Ten-Ele ven Translocat ion 2 gene, (TET2),were reported in approximately 12% of sporadic MPN (PV, ET, and PMF) as well as in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). 11 By in vitro clonal assays, Delhommeau et al showed that TET2 defects target both multipotent and committed progenitors and were associated with a selective advantage of early hematopoiesis. 11 These recent ndings led us to analyze TET2 in familial MPN cases to determine whether TET2 could be a predisposition factor, to estimate the prevalence of acquired TET2 events in MPN cases, and to describe the clinical prole of patients with TET2 mutations. Methods Families with at least 2 affected patients with MPN were collected through a national network. 2 The diagnoses of MPN were reviewed based on the 2008 World Health Organization criteria. 12 The study was approved by the French Comite ´ de Protection des Personnes. All participants gave their written informed consent in accordance with the Declaration of Helsinki. We analy zed 61 patien ts from 42 MPN familie s, 40 Europea n and 2 African (F3 and F4). Thirty-three patients displayed a simple phenotype consisting of PV (14), ET (12), or PMF (7) with no observed hematologic evo lut ion of the dis eas e aft er a mean fol low-up perio d of 12 yea rs. Twenty-eight other patients had experienced an evolution in their MPD phe not ype wit h a mea n follo w-u p of 14. 3 years: PV evo lvi ng int o myelobrosis (post-PV MF , 6) and/or into AML (12), ET evolving into MF (4) and /or AML (5), or PMF turni ng intoAML (1). Submitted January 12, 2009; accepted June 14, 2009. Prepublished online as Blood First Edition paper, June 29, 2009; DOI 10.1 182/blood-2009- 01-197525. The online version of this article contains a data supplement. The publication costs of this article were defrayed in part by page charge payment. Theref ore, and solel y to indic ate this fact, this article is here by marked ‘‘advertisement’’ in accordance with 18 USC section 1734.  © 2009 by The American Society of Hemato logy 1628 BLOOD, 20 AUGUST 2009 VOLUME 114, NUMBER 8

Transcript of TET2 EN NMP

Page 1: TET2 EN NMP

8/6/2019 TET2 EN NMP

http://slidepdf.com/reader/full/tet2-en-nmp 1/5

MYELOID NEOPLASIA

Brief report

Analysis of the Ten-Eleven Translocation 2 (TET2) gene in familialmyeloproliferative neoplasms

Cecile Saint-Martin,1,2 Gwendoline Leroy,1 Francois Delhommeau,2,3 Gerard Panelatti,4 Sabrina Dupont,2 Chloe James,5

Isabelle Plo,2 Dominique Bordessoule,6 Christine Chomienne,7 Andre Delannoy,8 Alain Devidas,9

Martine Gardembas-Pain,10 Francoise Isnard,11 Yves Plumelle,12 Olivier Bernard,13 William Vainchenker,2 Albert Najman,11

and Christine Bellanne-Chantelot,1,2 and the French Group of Familial Myeloproliferative Disorders

1Department of Geneti cs, Assistance P ublique-H opitaux de Paris (AP- HP) Groupe H ospitalie r Pitie-Salpetriere, Univer site Pierre et M arie Curie , Paris,

France; 2Inserm U790, Institut Gustave Roussy, Villejuif, France; 3Laborator y of Hematolog y, AP-HP Hopital Sain t Antoine, Paris, Fr ance; 4Department of

Internal Medicine, Centre Hospitalier Universitaire (CHU) de Fort de France, Fort de France, France; 5Inserm U876, Bordeaux, France; 6Department of

Hematology, CHU de Limoges, Limoges, France; 7Department o f Cellular Bi ology, AP-HP Hopital Saint L ouis, Unive rsite D enis Diderot , Paris, Fran ce;8Department of Internal Medicine, Universite Catholique de Louvain, Leuven, Belgium; 9Department of Hematology, Centre Hospitalier Sud-Francilien,

Corbeil-Essonnes, France; 10Department of Hematology, CHU d’Angers, Angers, France; 11Departmen t of Hemato logy, AP-HP Hopital Sai nt Antoine,

Universit e Pierre et Mari e Curie, Paris , France; 12Laboratory of Hematology, CHU de Fort de France, Fort de France, France; and 13Inserm, E210,

Universit e Rene Descartes , Pa ris, France

The JAK2 V617F 

mutation does not eluci-date the phenotypic variability observed

in myeloproliferative neoplasm (MPN)

families. A putative tumor suppressor

gene, TET2 , was recently implicated in

MPN and myelodysplastic syndromes

through the identification of acquired mu-

tations affecting hematopoieticstem cells.

The present study analyzed the TET2 

gene in 61 MPN cases from 42 families.

Fifteen distinct mutations were identifiedin 12 (20%) JAK2 V617F -positive or -nega-

tive patients. In a patient with 2 TET2

mutations, the analysis of 5 blood

samples at different phases of her dis-

ease showed the sequential occurrence

of JAK2 V617F  and TET2  mutations con-

comitantly to the disease evolution. Anal-

ysis of familial segregation confirmed that

TET2  mutations were not inherited but

somatically acquired. TET2  mutationswere mainly observed (10 of 12) in pa-

tients with primary myelofibrosis or

patients with polycythemia vera or essen-

tial thrombocythemia who secondarily

evolved toward myelofibrosis or acute

myeloid leukemia. (Blood. 2009;114:

1628-1632)

Introduction

Families of myeloproliferative neoplasms (MPNs) are character-

ized by a clinical and genetic heterogeneity. First, within MPNfamilies, distinct clinical entities are observed, the 3 main ones

being polycythemia vera (PV), essential thrombocythemia (ET),

and primary myelofibrosis (PMF).1,2 Second, disease evolution can

be highly variable within families presenting with the same type of 

MPN.2,3 The acquired JAK2V617F  mutation present in most PV and

half of ET and PMF sporadic or familial cases does not totally

explain the phenotypic variability.2-7 The existence of additional

molecular events, either germline or acquired, may explain the

MPN predisposition and the distinct phenotypes observed within

MPN families.8-10

Recently, acquired mutations of the Ten-Eleven Translocation

2 gene, (TET2),were reported in approximately 12% of sporadic

MPN (PV, ET, and PMF) as well as in myelodysplastic syndrome(MDS) and acute myeloid leukemia (AML).11 By in vitro clonal

assays, Delhommeau et al showed that TET2 defects target both

multipotent and committed progenitors and were associated with a

selective advantage of early hematopoiesis.11 These recent findings

led us to analyze TET2 in familial MPN cases to determine whether

TET2 could be a predisposition factor, to estimate the prevalence of 

acquired TET2 events in MPN cases, and to describe the clinicalprofile of patients with TET2 mutations.

Methods

Families with at least 2 affected patients with MPN were collected through

a national network.2 The diagnoses of MPN were reviewed based on the

2008 World Health Organization criteria.12 The study was approved by the

French Comite de Protection des Personnes. All participants gave their

written informed consent in accordance with the Declaration of Helsinki.

We analyzed 61 patients from 42 MPN families, 40 European and

2 African (F3 and F4). Thirty-three patients displayed a simple phenotype

consisting of PV (14), ET (12), or PMF (7) with no observed hematologic

evolution of the disease after a mean follow-up period of 12 years.

Twenty-eight other patients had experienced an evolution in their MPD

phenotype with a mean follow-up of 14.3 years: PV evolving into

myelofibrosis (post-PV MF, 6) and/or into AML (12), ET evolving into MF

(4) and/or AML (5), or PMF turning intoAML (1).

Submitted January 12, 2009; accepted June 14, 2009. Prepublished online as

Blood First Edition paper, June 29, 2009; DOI 10.1182/blood-2009-01-197525.

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge

payment. Therefore, and solely to indicate this fact, this article is hereby

marked ‘‘advertisement’’ in accordance with 18 USC section 1734.

 © 2009 by The American Society of Hematology

1628 BLOOD, 20 AUGUST 2009 VOLUME 114, NUMBER 8

Page 2: TET2 EN NMP

8/6/2019 TET2 EN NMP

http://slidepdf.com/reader/full/tet2-en-nmp 2/5

     T    a

     b     l    e     1 .

     C     l     i    n     i    c    a     l    p    r    o     fi     l    e    o     f     t     h    e     1     2    p    a     t     i    e    n     t    s    w     i     t

     h     T     E     T     2    m    u     t    a     t     i    o    n    s

     P     1     (     F     1     )

     P     2     (     F     2     )

     P     3     (     F     2     )

     P     4     (     F     3     )

     P     5     (     F     3     )

     P     6     (     F     4     )

     P     7     (     F     4     )

     P     8

     P     9

     P     1     0

     P     1     1

     P     1     2

    S   e

   x

    F   e   m   a    l   e

    F   e   m   a    l   e

    F   e   m   a    l   e

    F   e   m   a    l   e

    M   a    l   e

    F   e   m   a    l   e

    F   e   m   a    l   e

    F   e   m   a    l   e

    M   a    l   e

    F   e   m   a    l   e

    M   a    l   e

    M   a    l   e

    D    i   a   g   n   o   s    i   s

    P    V

    P    V

    P    V

    E    T     

    P    V

    E    T

    E    T

    E    T

    E    T

    P    M    F

    P    M    F

    P    M    F

    P    V

    A   g

   e   a    t    d    i   a   g   n   o   s    i   s ,   y

    7    5 .    3

    6    2 .    1

    5    8 .    4

    3    7 .    5

    3    4 .    8

    4    7

    4    8 .    6

    4    5 .    3

    7    8

    7    7 .    2

    6    4 .    3

    5    4 .    6

    O   v

   e   r   a    l    l    d   u   r   a    t    i   o   n   o    f    t    h   e

    d    i   s   e   a   s   e ,   y

    5 .    9

    1    6 .    3

    1    6 .    4

    1    8 .    1

    7 .    3

    1 .    2

    6 .    2

    2    9 .    2

    3 .    5

    4 .    3

    3 .    6

    1    3 .    2

    O   u

    t   c   o   m   e

    A    l    i   v   e

    A    l    i   v   e

    A    l    i   v   e

    D   e   c   e   a   s   e    d

    D   e   c   e   a   s   e    d

    D   e   c   e   a   s   e    d

    A    l    i   v   e

    A    l    i   v   e

    D   e   c   e   a   s   e    d

    D   e   c   e   a   s   e    d

    D   e   c   e   a   s   e    d

    A    l    i   v   e

     C    o

    m    p     l     i    c    a     t     i    o    n    s

    D    i   s   e   a   s   e    d   u   r   a    t    i   o   n   a    t    fi   r   s    t

   c   o   m   p    l    i   c   a    t    i   o   n ,   y

    4 .    7

    1    3

  —

    1    5 .    7

    7 .    1

    1 .    0

  —

    1    6 .    0

  —

  —

  —

    9 .    4

    M   y   e    l   o    fi    b   r   o   s    i   s ,   y   e   s    /   n   o

    Y   e   s

    Y   e   s

    N   o

    Y   e   s

    Y   e   s

    N   o

    N   o

    Y   e   s

  —

  —

  —

    Y   e   s

    L   e   u    k   e   m    i   c

    t   r   a   n   s    f   o   r   m   a    t    i   o   n ,

   y   e   s    /   n   o

    N   o

    N   o

    N   o

    Y   e   s

    Y   e   s

    Y   e   s

    N   o

    N   o

  —

  —

  —

    N   o

     J     A

     K     2     V     6     1     7     F

    D    i   s   e   a   s   e    d   u   r   a    t    i   o   n   a    t    fi   r   s    t

   o    b   s   e   r   v   a   n   c   e ,   y

    4 .    6

    1    4 .    4

    1    4 .    5

    8 .    4

    3 .    6

    1 .    0

    5 .    7

    2    0 .    3

    0 .    2

    2 .    9

    2 .    7

    3 .    4

    A    l    l   e    l   e    b   u   r    d   e   n ,    %

    9    5

    6    5

    5    0

    2    5

    0

    0

    4    0

    9    0

    3    5

    3    5

    6    5

    8    0

     T     E

     T     2    m    u     t    a     t     i    o    n    s

    D    i   s   e   a   s   e    d   u   r   a    t    i   o   n   a    t    fi   r   s    t

   o    b   s   e   r   v   a   n   c   e ,   y

    4 .    6

    1    4 .    4

    1    4 .    5

    8 .    4    /    1    5 .    1    *

    3 .    6

    1 .    0

    5 .    7

    2    0 .    3

    0 .    2

    2 .    9

    2 .    7

    3 .    4

     T     E     T     2   a    l    l   e    l   e    b   u   r    d   e   n ,    %

    5    0

    2    5

    2    0

    5    /    4    0    †

    4    0

    5    0    /    3    5

    5    0

    4    5    /    6    0

    4    5

    4    5

    2    0

    L   o   c   a    t    i   o   n

    E   x   o   n    1    1

    I   n    t   r   o   n    7

    E   x   o   n    3

    E   x   o   n    3

    E   x   o   n    3

    E   x   o   n    3

    I   n    t   r   o   n    4

    A    l    l   e   x   o

   n   s

    E   x   o   n   s    3    /    1    1

    E   x   o   n    3

    E   x   o   n    8

    E   x   o   n    1    1

    N   u   c    l   e   o    t    i    d   e   c    h   a   n   g   e

   c .    5    6    9    5    d   e    l    C

   c .    3    9    5    4         2    T         A

   c .    3    1    3    8    d   e    l    T

   c .    1    6    4    8    C         T    /   c .    2    5    7    0    d   e    l    A

   c .    2    0    5    8    A         T

   c .    1    9    5    5    d   e    l    A    /   c .    2    4    9    0    d   u   p    A

   c .    3    5    0    0         3    A         C

   c .    1_    6    0

    0    9    d   e    l   c .    1    7    2    0    C         T    /   c .    4    9    9    9_

    5    0    1    4    d   e    l    1    6

   c .    6    9    4    C         T

   c .    4    0    1    9    T         C

   c .    5    6    0    3    A         G

    P   r   o    t   e    i   n   c    h   a   n   g   e

   p .    L   e   u    1    8    9    9    f   s

   p .    ?

   p .    T    h   r    1    0    4    7    f   s

   p .    A   r   g    5    5    0    X    /    A   s   n    8    5    7    f   s

   p .    A   r   g    6    8    6    S

   e   r

   p .    G    l   n    6    5    2    f   s    /   p .    G    l   n    8    3    1    f   s

   p .    ?

   p .    ?

   p .    G    l   n    5    7    4    X    /   p .    L   e   u    1    6    6    7    f   s

   p .    G    l   n    2    3    2    X

   p .    L   e   u    1    3    4    0    P   r   o

   p .    H    i   s    1    8    6    8    A   r   g

  —    i   n    d    i   c   a    t   e   s   n   o    t   a   p   p    l    i   c   a    b    l   e .

    *    D    i   s   e   a   s   e    d   u   r   a    t    i   o   n   a    t    fi   r   s    t   o    b   s   e   r   v   a    t    i   o   n    f   o   r   e   a   c    h   m   u    t   a    t    i   o   n .

    †     T     E     T     2   a    l    l   e    l   e    b   u   r    d   e   n   a    t    fi   r   s    t   o    b   s   e   r   v   a    t    i   o   n    f   o   r   e   a   c    h   m

   u    t   a    t    i   o   n .

TET2 IN FAMILIAL MYELOPROLIFERATIVE NEOPLASMS 1629BLOOD, 20 AUGUST 2009 VOLUME 114, NUMBER 8

Page 3: TET2 EN NMP

8/6/2019 TET2 EN NMP

http://slidepdf.com/reader/full/tet2-en-nmp 3/5

TET2 molecular analysis

Amplifications of  TET2 (NM_001127208.1) were performed either on

genomic DNA extracted from mononuclear blood cells and from buccal

swabs or directly on hematopoietic colonies after heating at 95°C for

10 minutes. Purified polymerase chain reaction (PCR) products were

sequenced using the BigDye Terminator chemistry (Applied Biosystems)

and run on an ABI3100 capillary sequencer.

The search for large genomic rearrangement was performed by

quantitative multiplex PCR of short fluorescent fragments and applied to

patients homozygous for all TET2 polymorphisms to exclude hemizygosity

of the region. Primer pairs were designed for exons 3, 6, and 11. PCR

products were separated on an ABI3100 capillary sequencer. Analysis usingGeneMapper, Version 4.0 (Applied Biosystems), is based on the compari-

son of the peak heights generated from the tested DNA sample and the

control DNA. A heterozygous exon deletion will lead to a 2-fold reduction

of the height of the corresponding peak. Primer sequences for TET2

sequencing and quantitative multiplex PCR of short fluorescent fragments

are shown in supplemental Table 1 (available on the Blood website; see the

Supplemental Materials link at the top of the online article).

Cell culture

Peripheral blood granulocytes were isolated using standard protocols.

Thawed cells were sorted on the CD34 and CD38 antigens using a

FACSDiva cell sorter. CD34CD38 cells were seeded in methylcellulose

medium supplemented with erythropoietin, interleukin-3, and stem cell

factor. Hematopoietic colonies were picked at day 14.

Results and discussion

Sixty-one patients were screened for mutations in the 6009-bp

coding sequence of the TET2 gene, composed of 11 exons spanning

130 kb. Fifteen distinct molecular defects, including 11 (73%)

truncating mutations, 3 (20%) missense mutations, and one whole

gene deletion, were identified (Table 1). They were spread through-

out the gene. The 11 truncating mutations consisted of 3 nonsense

mutations, 6 out-of-frame insertions/deletions, and 2 splice site

mutations. The 3 missense mutations affected amino acids that

were conserved in at least one of the TET2 paralogs, TET1 and

TET3, and in TET2 orthologs.13,14 Two, p.Leu1340Pro and

p.His1868Arg, were located in the 2 highly conserved TET2

functional domains (1134-1444 and 1842-1921) of the Drosophila

ortholog.13 Furthermore, all 3 missense mutations were absent from

165 control individuals of ethnically matched populations, leading

us to consider them as putative mutations. The proportion and the

type of TET2 mutations identified in familial MPNs were similar to

the ones found in sporadic MPN cases.11,15 TET2 mutations have

also been reported in other myeloid malignancies.11,15–19

All mutations identified were each found in a single patient, and

segregation with the phenotype could never be observed in the

families (Figure 1). Moreover, in 3 families (F2, F3, and F4),

different TET2 mutations were identified in affected members.

F4

F1

JAK2 V617F 

DiagnosisEvolution

TET2 

PV AML

-

PV AML

PVMF

V617F L1899fs

P1

nd nd 

V617F 

F2

ET

PV

c.3954

+2T>A

MFPV

T1047fs

P2 P3

V617F V617F 

nd V617F 

ET

ET AML

7

LMMC AML

nd 

nd nd 

 AMLnd 

nd nd 

 AML AML

nd nd 

ET

c.3500+3A>C V617F 

Q652fs/Q831fs

-

 AML

nd nd 

P6P7

F3

 AML

ET ET AML

5 3

--

ET

--

ET

V617F -

PV>MF>AML

N857fs/R550X 

MF

-

ET

V617F 

-

ET

-

R686S 

MF>AML

P4

P5

V617F V617F 

Figure 1. Pedigrees of 4 MPN families (F1, F2, F3, and F4) showing that TET2 mutations do not segregate with the MPN phenotype. Filled symbols represent patients;

their clinical phenotype is indicated below. Under each symbol, the first top line represents the phenotype at the time of diagnosis; the second line, the evolution (blank where

there is none);the thirdline,the JAK2 V617F status (V617F when themutation wasfound; – otherwise); andthe fourthline, any TET2 mutation.Mutations are annotated in amino

acid one-letter code. nd indicates not done.

1630 SAINT-MARTIN et al BLOOD, 20 AUGUST 2009 VOLUME 114, NUMBER 8

Page 4: TET2 EN NMP

8/6/2019 TET2 EN NMP

http://slidepdf.com/reader/full/tet2-en-nmp 4/5

Sequence analysis of buccal swabs available for patients P1 (F1)

and P4 (F3) showed the absence of the TET2 mutations. Therefore,

the analysis of the 42 families showed that TET2 is not a major

predisposing gene factor in familial MPN and that identified TET2

defects were acquired events.

Two distinct TET2 mutations were found in 3 unrelated patients(P4, P6, and P9, Table 1). We picked 3 individual colonies derived

from CD34CD38 cells from the blast phase of patient P4; and

using allele-specific PCR, we found that each TET2 mutation

affected a different allele of the same colony (data not shown). In

addition, we showed in mononuclear cells from patient P6 that the

2 exon 3 mutations were not located in cis. These observations are

in favor of a biallelic inactivation of  TET2, in agreement with the

hypothesis of a tumor suppressor role of TET2.11

In patient P4 for whom 5 blood samples were available

throughout the last 3 steps of her evolution, PV, MF, and AML

(Figure 2A), sequence analysis showed that JAK2V617F  and the

TET2 p.Arg550X mutation were present at the PV stage and later

on. The p.Asn857fs mutation only started being detectable in thesecond sample, 7 years later and 5 months before the diagnosis of 

MF. The sequential analysis showed that the burden of  JAK2 and

TET2 mutant alleles grew in time, concomitantly with the develop-

ment of the disease. Blood progenitor cells were available at the PV

and blast phases (Figure 2B). During the PV stage, endogenous

erythroid colonies carried the p.Arg550X mutation (5 of 29) but

p.Asn857fs was never observed and 19 of 29 clones were found

 JAK2V617F -positive in the absence of any TET2 mutation. These

results suggest the initial occurrence of  JAK2V617F  followed by

TET2 p.Arg550X and subsequently by the TET2 p.Asn857fs

defect. After leukemic transformation, all colonies but 2 (29 of 31)

carried JAK2V617F  and both TET2 mutations. We genotyped the

rs16922579 SNP located in intron 9 of  JAK2 and heterozygous in

patient P4. A homozygous G/G genotype was found in JAK2V617F -

negative colonies, whereas G/A and A/A genotypes were observed

in JAK2V617F heterozygous and homozygous colonies, respectively.

These preliminary results suggest a loss of the JAK2V617F  allele

through mitotic recombination during disease progression. In

contrast, in 2 other studies, mitotic recombination was excluded in

2 informative patients who transformed to AML and for whom allblast cells were JAK2V617F -negative.20,21

The TET2 defects with an allele burden semiquantitatively

estimated by sequencing varied from 20% to 60% and were

identified in 12 patients (12 of 61, 20%) diagnosed with PV (4 of 

32), ET (5 of 21), and PMF (3 of 8; Table 1). All but 2 patients were

positive for the JAK2V617F  mutation. Altogether, 20% of the

 JAK2V617F -positive patients were found mutated for TET2 (10 of 

49) and 17% of the JAK2V617F -negative patients (2 of 12). The

2 negative cases were ET patients who developed very active AML

and died rapidly (P5 and P6, Table 1). In contrast to results recently

reported, we did not observe an older age for patients with TET2

mutations (supplemental Table 1).15

Twenty-nine percent (10 of 35) of patients with PMF or withhematologic complications (post-PV/ET MF or AML) were found

mutated in TET2 compared with 7.7% (2 of 26) of patients without

any diagnosed hematologic complications after a mean disease

duration of 12 years.

We first performed a univariate analysis to compare the

incidence of transformation between the 2 groups (supplemental

Table 1). The results indicated a trend toward hematologic compli-

cations in TET2-mutated patients, although this difference was not

statistically significant (P .055). This was confirmed by a

multivariate analysis (supplemental Table 1). Similarly, a trend

toward malignant proliferation was recently reported in MDS/MPN

syndromes.18 Studies on larger cohorts of MPN cases would be

required to estimate the prevalence of TET2 events in patients with

more aggressive outcome.

p.Asn857fsp.Arg550X

25

35

45

45

p.Val617Phe

TET2 JAK2  

5

35

40

45

45

 Allele Burden

(%)

0

45

40

50

55

60

 Allele Burden

(%) Allele Burden

(%)

A B

Buccal

swab

0

8

15.6

15.8

16

17.5

15.6

PV

ET

MF

AL

Blood

7

15.7

17

17.6

(yrs)

Disease

duration

0

10

20

30

40

20

10

20

305

24

AL phase

0

10

20

30

PV phase

5

19

0

10

20

30

5

wt/wt 550X/wtTET2

genotype

550X/857fs

absent

heterozygoushomozygous

JAK2V617F

wt/wt 550X/wtTET2

genotype

550X/857fs

Figure 2. Sequential study ofTET2 mutationsand JAK2 V617F  in patient P4 (F3)in mononuclear cells and committed progenitors. (A) Sequence electrophorogramsare

shown for each TET2 mutation and for JAK V617F . (Left diagram) The different phases of the disease with their time lapse from diagnosis. (Right diagram) The disease duration

(in years) at each sample date. Allele burdens of TET2  mutations and JAK2V617F, semiquantitatively estimated by sequencing as Bellanne-Chantelot et al,2 are indicated.

(B) Histograms show for PV and acute leukemia (AL) phases the 3 distinct TET2 genotypes (each bar corresponding to a specific genotype, wt/wt, 550X/wt, 550X/857fs).T he

JAK2 V617F  mutation was absent, heterozygous, or homozygous. The number of genotyped clones is indicated for each group.

TET2 IN FAMILIAL MYELOPROLIFERATIVE NEOPLASMS 1631BLOOD, 20 AUGUST 2009 VOLUME 114, NUMBER 8

Page 5: TET2 EN NMP

8/6/2019 TET2 EN NMP

http://slidepdf.com/reader/full/tet2-en-nmp 5/5

Recent data showed that TET1 catalyzes conversion of 

5-methylcytosine to 5-hydroxy-methylcytosine.22 TET gene

family may play an important role in epigenetic regulation of 

stem cell functions. In addition, it was shown that deletion of 

TET2 induced a clonal advantage at the level of early hematopoi-

etic progenitors.11 This may explain that patients with a defect in

TET2 are prone to progress to MF. Moreover, TET2 defects may

be a primary or secondary event, before or after JAK2V617F 

asreported for the 20q- deletion.21 In future studies, it will be

important to understand whether different kinetics of occurrence

of these 2 independent genetic defects have the same impact on

the clinical course of the disease and are both associated with a

clonal dominance at early hematopoietic stages.

Acknowledgments

The authors thank Nicole Casadevall for helpful discussions,

Myriam Labopin for statistical analysis, and the patients and their

families for their participation in this study.

This work was supported by grants from the Institut National du

Cancer (INCa; 2008), GIS-Maladies Rares, Project A0709ILS

(F.D., C.B.-C.), Programme Hospitalier de Recherche Clinique

(AOR07014; A.N., C.B.-C., G.L.), and Association pour la Recher-

che sur la Moelle Osseuse (A.N.). S.D. is a Ministere de la

Recherche et de la Technologie recipient. I.P. is supported by the

Canceropole Ile de France. F.D. is the recipient of a European

Hematology Association fellowship (2005/27), the Myeloprolifera-

tive Disorders Foundation (Investigator grant), and the Laurette

Fugain Association and the Fondation de France.

Authorship

Contribution: C.B.-C., F.D., W.V., and A.N. drew the original study

design; D.B., C.C., A. Delannoy, A. Devidas, M.G.-P., F.I., A.N.,

G.P., Y.P., W.V., and the French Group of Familial Myeloprolifera-

tive Disorders recruited the patients; A.N. recorded all clinical and

hematologic data; C.S.-M., G.L., and C.J. performed molecular

analyses; F.D., S.D., I.P., and O.B. assisted with interpretation of 

research; C.B.-C. and C.S.-M. analyzed data and wrote the

manuscript; and A.N., F.D., S.D., and W.V. critically reviewed the

manuscript. All authors contributed to the amendment of the

manuscript.

Conflict-of-interest disclosure: The authors declare no compet-

ing financial interests.

A complete list of the French Group of Familial Myeloprolifera-

tive Disorders appears in the supplemental Appendix.

Correspondence: Christine Bellanne-Chantelot, Centre de Gene-

tique Moleculaire et Chromosomique, Groupe Hospitalier Pitie

Salpetriere, 47-83 blvd de l’Hopital, 75651 Paris Cedex 13, France;

e-mail: [email protected].

References

1. Gilbert HS. Familial myeloproliferative disease.

Baillieres Clin Haematol. 1998;11(4):849-858.

2. Bellanne-Chantelot C, Chaumarel I, Labopin M,

et al. Genetic and clinical implications of the

Val617Phe JAK2 mutation in 72 families with my-

eloproliferative disorders. Blood. 2006;108(1):

346-352.

3. Rumi E, Passamonti F, Pietra D, et al. JAK2(V617F) as an acquired somatic mutation and a

secondary genetic event associated with disease

progression in familial myeloproliferative disor-

ders. Cancer. 2006;107(9):2206-2211.

4. Baxter EJ, Scott LM, Campbell PJ, et al.Acquired

mutation of the tyrosine kinase JAK2 in human

myeloproliferative disorders. Lancet. 2005;

365(9464):1054-1061.

5. James C, Ugo V, Le Couedic JP, et al. A unique

clonal JAK2 mutation leading to constitutive sig-

nalling causes polycythaemia vera. Nature. 2005;

434(7037):1144-1148.

6. Levine RL, Wadleigh M, Cools J, et al. Activating

mutation in the tyrosine kinase JAK2 in polycy-

themia vera, essential thrombocythemia, and my-

eloid metaplasia with myelofibrosis. Cancer Cell.

2005;7(4):387-397.

7. Kralovics R, Passamonti F, Buser AS, et al.

A gain-of-function mutation of JAK2 in myelopro-

liferative disorders. N Engl J Med. 2005;352(17):

1779-1790.

8. Kralovics R, Stockton DW, Prchal JT. Clonal he-

matopoiesis in familial polycythemia vera sug-

gests the involvement of multiple mutational

events in the early pathogenesis of the disease.

Blood. 2003;102(10):3793-3796.

9. Kralovics R, Teo SS, Li S, et al. Acquisition of the

V617F mutation of JAK2 is a late genetic event in

a subset of patients with myeloproliferative disor-

ders. Blood. 2006;108(4):1377-1380.

10. PardananiA, Fridley BL, Lasho TL, Gilliland DG,

Tefferi A. Host genetic variation contributes to

phenotypic diversity in myeloproliferative disor-

ders. Blood. 2008;111(5):2785-2789.

11. Delhommeau F, Dupont S, Della Valle V, et al.

Mutation in TET2 in myeloid cancers. N Engl 

J Med. 2009;360(22):2289-2301.

12. Tefferi A, Vardiman JW. Classification and diagno-

sis of myeloproliferative neoplasms: the 2008

World Health Organization criteria and point-of-

care diagnostic algorithms. Leukemia.

2008;22(1):14-22.

13. Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi

H, Hayashi Y. LCX, leukemia-associated protein

with a CXXC domain, is fused to MLL in acute

myeloid leukemia with trilineage dysplasia having

t(10;11)(q22;q23). Cancer Res. 2002;62(14):

4075-4080.

14. Lorsbach RB, Moore J, Mathew S, Raimondi SC,

Mukatira ST, Downing JR. TET1, a member of anovel protein family, is fused to MLL in acute my-

eloid leukemia containing the t(10;11)(q22;q23).

Leukemia. 2003;17(3):637-641.

15. Tefferi A, Pardanani A, Lim KH, et al. TET2 muta-

tions and their clinical correlates in polycythemia

vera, essential thrombocythemia and myelofibro-

sis. Leukemia. 2009;23(5):905-911.

16. Tefferi A, Levine RL, Lim KH, et al. Frequent

TET2 mutations in systemic mastocytosis: clini-

cal, KITD816V and FIP1L1-PDGFRAcorrelates.

Leukemia. 2009;23(5):900-904.

17. Tefferi A, Lim KH, Abdel-Wahab O, et al. Detec-

tion of mutant TET2 in myeloid malignancies

other than myeloproliferative neoplasms: CMML,

MDS, MDS/MPN and AML. Leukemia . 2009;

23(7):1343-1345.

18. Jankowska AM, Szpurka H, Tiu RV, et al. Loss of

heterozygosity 4q24 and TET2 mutations associ-

ated with myelodysplastic/myeloproliferative neo-

plasms. Blood. 2009;113(25):6403-6410.

19. Abdel-Wahab O, Mullally A, Hedvat C, et al. Ge-

netic characterization of TET1, TET2, and TET3

alterations in myeloid malignancies. Blood . 2009;

114(1):144-147.

20. TheocharidesA, Boissinot M, Girodon F, et al.

Leukemic blasts in transformed JAK2-V617F-

positive myeloproliferative disorders are fre-

quently negative for the JAK2-V617F mutation.

Blood. 2007;110(1):375-379.

21. Schaub FX, Jager R, Looser R, et al. Clonal anal-

ysis of deletions on chromosome 20q and JAK2-

V617F in MPD suggests that del20q acts inde-pendently and is not one of the predisposing

mutations for JAK2-V617F. Blood. 2009;113(9):

2022-2027.

22. Tahiliani M, Koh KP, Shen Y, et al. Conversion of

5-methylcytosine to 5-hydroxymethylcytosine in

mammalian DNA by MLL partner TET1. Science.

2009;324(5929):930-935.

1632 SAINT-MARTIN et al BLOOD, 20 AUGUST 2009 VOLUME 114, NUMBER 8