Teoria do Campo Ligante - Part II

download Teoria do Campo Ligante - Part II

of 25

Transcript of Teoria do Campo Ligante - Part II

  • 8/18/2019 Teoria do Campo Ligante - Part II

    1/25

    Electronic spectra of transition metal complexes 

  • 8/18/2019 Teoria do Campo Ligante - Part II

    2/25

    Characteristics of electronic spectra 

    a) Wavelength  Energy of electronic transition

     b) Shape. Gaussian Band Shape - coupling of electronic and

    vibrational states

    c) Intensity.  Molar absorptivity, ε   (M − 1cm− 1 ) due to probability

    of electronic transitions 

    d)  Number of bands !ransitions bet"een States of given d n configuration

  • 8/18/2019 Teoria do Campo Ligante - Part II

    3/25

  • 8/18/2019 Teoria do Campo Ligante - Part II

    4/25

    Electronic transitions are controlled by quantum mechanical selection rules hich determine the probability !intensity) of the transition.

    "ransition

    #max !$−%cm−%)

    Spin and Symmetry  forbidden  &d-d & bands '.'( %

    Spin allo"ed  and Symmetry  forbidden  &d-d & bands !*h) % %'

      !"d) %' + %',

    Spin and Symmetry allo"ed  -$C" and $-C" bands %',  x %'/

    0and intensity in electronic spectra !ε)

  • 8/18/2019 Teoria do Campo Ligante - Part II

    5/25

    Spin Selection #ule$ !here must be no change in the spin multiplicity ( (S % % )

    during the transition

    ie the spin of the electron must not change during the transition.

    Symmetry (&aporte) Selection #ule$ !here must be a change in parity (g ' u) 

    during the transition

    Since s and d  orbitals are g  !gerade) and p orbitals are u!ungerade)1 only

     s ' p and p ' d transitions are alloed and d  2 d   transition are formally

    forbidden. 3ie only transitions for hich 4l  5 6 % are alloed7.

     

    d  2 d   bands are alloed to the extent that the starting or terminal level ofthe transition is not a pure d orbital. !ie it is a molecular orbital  of the

    complex ith both metal and ligand character).

  • 8/18/2019 Teoria do Campo Ligante - Part II

    6/25

    States for d n configurations

    8usselSaunders Coupling

    •  9ngular momentum of individual electrons couple to give total angular

    momentum for d n configuration $-  5 ∑ml 

    •  Spin momentum of individual electron spins couple together to give total

    spin1 S 5 ∑s

    •  Interelectronic repulsions beteen the electrons in the d orbitals give rise to

      ground state and excited states for d n configurations.

    •  States are labeled ith "ern Symbols

    •  Electonic transitions beteen ground and excited states are summari:ed in*rgel and "anabeSugano diagrams .

    •  Term Symbols !labels for states) contain information about - and S for state

      ;undor states of same spin1 ground state has maximum -.

  • 8/18/2019 Teoria do Campo Ligante - Part II

    7/25

    Triple degeneracy of a d 2 ion’s 3T2gground state due to three possible sites

    for hole in t 2g level

    Singly degenerate 3T2g ground state.

    Only one possible arrangement for

    three electrons in t 2g level

    Singly degenerate 3T2g ground state.Only one possible arrangement for

    six t 2g electrons.

    Triple degenerate ground state for d  

    Three possible sites for hole in t 2g level

    eg

    t (g

    =round State Excited States

    eg

    t (g

    eg

    t (g

    eg

    t (g

    d 2

    d 3

    d 7

    d 8

    !umber of d"d bands in electronic spectrum

    #xcitation from ground state to excited stated of dn configuration

  • 8/18/2019 Teoria do Campo Ligante - Part II

    8/25

    $abeling of d"d bands in electronic spectrum.

    • %onsider states of dn configuration

    • &etermine free ion ground state Term Symbol  'labels for

    states(

    •  )ssign splitting of states in ligand field

    • Spectroscopic labeling of bands.

    • Orgel diagrams 'high"spin(

    • Tanabe"Sugano diagrams 'high"spin and lo*"spin(

  • 8/18/2019 Teoria do Campo Ligante - Part II

    9/25

    Individual electron l = 2, ml = 2, 1, 0,

    -1, -2

    Maximum ml  = l

      l = 0, 1, 2, 3,Orbital: s, p, d , f

     _______________________________ 

    dn con!uration, " = 0, 1, 2, 3, # $erm %&mbol %, ', (, ), *

    M"

      = + ml

    , maximum M"

      = "

    %pin Multiplicit& = 2 % 1

  • 8/18/2019 Teoria do Campo Ligante - Part II

    10/25

      +ree ion ground state Term Symbols for d n configurations

    Term Symbols 'labels for states( contain information about $ and S for ground state

    ,und’s -ules. i( round state has maximum spin/ S

      ii( +or states of same spin/ ground state has maximum $2 1 0 -1 -2ml =l =2,SL 2S + 1

    2 012 2

    3 0 3

    3 312

    2 2

    4 12 5

    L = ML(max) ML = ml S = s

    Termsymbol

    2&

    3+

    +

    &

    5S

  • 8/18/2019 Teoria do Campo Ligante - Part II

    11/25

  • 8/18/2019 Teoria do Campo Ligante - Part II

    12/25

  • 8/18/2019 Teoria do Campo Ligante - Part II

    13/25

    Splitting of the *ea6 field d n ground state terms in an

    octahedral ligand field

    round state determined by inspection of degeneracy of terms for given dn

  • 8/18/2019 Teoria do Campo Ligante - Part II

    14/25

  • 8/18/2019 Teoria do Campo Ligante - Part II

    15/25

    ∆od % ∆od ( d , ∆od 

    /

    (! (g

    ( E g

    (? />

    , (g

    ,! (g

    ,! %g

    / (g∆o

    /! %g

    /! (g

     E g

    ! (g

    ?,>

    /"%g!@)

    ,@ /@

    ,"%g!@)

    (! (g( E g ,! %g

    ,! (g

    ,! %g

    ,! %g

    , (g

    ,

    "%g!@)

    Orgel &iagrams

    Ti37 827  %r 37  9n

    37 

  • 8/18/2019 Teoria do Campo Ligante - Part II

    16/25

    "he d-d  bands of the d  ion 3A!;(*)B7,

  • 8/18/2019 Teoria do Campo Ligante - Part II

    17/25

    'a( :!i',24(5;27  'b( :!i'!,3(5;

    27

  • 8/18/2019 Teoria do Campo Ligante - Part II

    18/25

    3+

    3<

    0S

    0&

    d2

    #'3+( = ) " >?

    #'0&( = ) " 3? 7 2%

    #'3

  • 8/18/2019 Teoria do Campo Ligante - Part II

    19/25

    The Tanabe"Sugano diagram for the d 2  ion

  • 8/18/2019 Teoria do Campo Ligante - Part II

    20/25

    #vidence for covalent bonding in metal"ligand interactions

    The !ephelauxetic #ffect '@cloud expansionA(

    -eduction in electron"electron repulsion upon complex formation

    Racah Parameter, BB electron"elctronic repulsion parameter 

    Bo is the inter" electronic repulsion in the gaseous 9n7 ion.

    B is the inter" electronic repulsion in the complexed 9$xn7 ion.

    The smaller values for B in the complex compared to free gaseous ion ista6en as evidence of smaller inter"electronic repulsion in the complex due toa larger @molecular orbitalA on account of overlap

    of ligand and metal orbital/ i.e. evidence of covalency 'cloud expansionA(.

    !ephelauxetic -atio/ C = B

      Bo

     

  • 8/18/2019 Teoria do Campo Ligante - Part II

    21/25

    !ephelauxetic #ffect

    !ephelauxetic $igand Series

      D E ?r E %! E %l E !%S E %2O2" E en E !,3 E ,2O E + Small C $arge C

      %ovalent Donic

     

    !ephelauxetic 9etal Series

     

  • 8/18/2019 Teoria do Campo Ligante - Part II

    22/25

    #mpirical -acah parameters/ h/ 6

    C = 0G :h'ligand( x 6'metal(;

     %r'!,3(537   C = 0 Gh6 C = 0 G'0.('4.20(

      = 4.45

    %r'%!(53" C = 0 Gh6

     C = 0 G'2.4('4.20(

      = 4.>4

     Bo " B = hligands  x k metal ion

      Bo

  • 8/18/2019 Teoria do Campo Ligante - Part II

    23/25

  • 8/18/2019 Teoria do Campo Ligante - Part II

    24/25

    "ypical 4o and D 

    max values for octahedral !$-

    B) d bloc metal complexes

     FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 

     F Complex 4

    o cm% G D 

    max !nm) Complex 4

    o cm% D 

    max 

    !nm)

     FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 

    3"i!;(*)

    B7,   ('1,'' /H, 3>e!;

    (*)

    B7(   H1/'' %'B/

    3A!;(*)

    B7, ('1,'' /H, 3>e!;

    (*)

    B7,   %,1'' ,'

    3A!;(*)

    B7(   %(1/'' J'B 3>e!CN)

    B7,   ,1''' (JB

    3Cr>B7, %1''' BB 3>e!CN)B7/   ,,1J'' (HB

    3Co!;(*)

    B7,1 l.s. ('1'' /J, 3>e!C

    (*

    /)

    ,7,   %/1%'' 'H

    3Cr!;(*)

    B7(   %/1%'' 'H 3Co!CN)

    B7, l.s. ,/1J'' (J

    3Cr!;(*)

    B7, %1/'' 3Co!N;

    ,)

    B7, l.s. ((1H'' /,

    3Cr!N;,)

    B7,   (%1B'' /B, 3Ni!;

    (*)

    B7(  J1'' %%B

    3Cr!en),7, (%1H'' / 3Ni!N;

    ,)

    B7(   %'1J'' H(B

    3Cr!CN)B7,   (B1B'' ,B 3Ni!en)

    ,7(   %%1'' J'

     FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 

  • 8/18/2019 Teoria do Campo Ligante - Part II

    25/25

    0. )ssign the metal oxidation state in the follo*ing compounds.

    a. H2: