TENSION, TORSION AND COLUMN PROPERTIES … technical note 60-201 tension, torsion, and column...

30
WADD TECHNICAL NOTE 60-201 CATALOGED BY WWAD 11 4P» tl* ! h TENSION, TORSION AND COLUMN PROPERTIES OF ^ COMMERCIALLY PURE TITANIUM TUBING ^ AT ROOM TEMPERATURE 1 *> Capt. Robert G. Henning Materials Central m 30196a J ; DECEMBER 1960 ** " ' ^ La\^ WRIGHT AIR DEVELOPMENT DIVISION 30

Transcript of TENSION, TORSION AND COLUMN PROPERTIES … technical note 60-201 tension, torsion, and column...

WADD TECHNICAL NOTE 60-201

CATALOGED BY WWAD 11 4P» tl* !

h

TENSION, TORSION AND COLUMN PROPERTIES OF ^ COMMERCIALLY PURE TITANIUM TUBING ^ AT ROOM TEMPERATURE

1 *> Capt. Robert G. Henning

Materials Central

m 30196a J ;

DECEMBER 1960 ** " ' ^ La\^

WRIGHT AIR DEVELOPMENT DIVISION

30

NOTICES

< ,♦ r When Governrsent drawings, specifications, or other date aH used for «ny purpose other

than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

r ■» '»^> f V ,0 *r* <

•J * *****

* . .-■

4v

Qtrafffied requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

This report has been released to the Office of Technical Services, U. S. Department of Com- merce, Washington 25, D. C, for sale to the general public.

Copies of WADD Technical Reports and Technical Notes should not be returned to the Wright Air Development Division unless return is required by security considerations, contractual obliga- tions, or notice on a specific document.

WADD TECHNICAL NOTE 60-201

TENSION, TORSION, AND COLUMN PROPERTIES OF COMMERCIALLY PURE TITANIUM TUBING

AT ROOM TEMPERATURE

('apt. Robert G. Henning

Materials Central

DECEMBER I960

Materials Central

Project No. 7351

WRIGHT AIR DEVELOPMENT DIVISION

AIR RESEARCH AND DEVELOPMENT COMMAND

UNITED STATES AIR FORCE

WRIGHT-PATTERSON AIR FORCE BASE, OHIO

nod - Mav v.m - w-um

WADD TN 60-201

FOREWORD

This report was prepared by the ^rrengrh and Dynamics Branch, Metals and Ceramics Division. The work was initiated under Project No. 7351. "Metallic Materials", Task No. 73521, "Behavior of Metals", it was administered under direction of the Materials Central, Directorate of Advanced Systems Technology, Wright Air Development Division, with Capt. Rober: G. Henning acting as project engineer.

This report covers work conducted from September 1958 to March i960.

ii

WADD TN 60-201

ABSTRACT

Tensile, torsion and column properties were determined at room temperature on one heat of commercially pure titanium A 55 tubing in 1-inch and 3/8-inch outside diameters and varying wall thicknesses.

Typical stress-strain diagrams are presented for torsion and tension. Torsion/tension and column/tension ratios vs diameter/wall thickness graphs are presented.

PUBLICATION REVIEW

This report has been reviewed and is approved,

FOR THE COMMANDER:

W.J. TRAPP Chief, Strength and Dynamics Branch Metals and Ceramics Laboratory Materials Central

in

WADD TN 60-201

LIST OP FIGURES

Figure Page

1. Tension, Torsion, and Column Specimens 14

2. Typical Stress-Strain Curve for one-inch and 3/8-inch Titanium Tubing in Tension 15

3. Tensile Properties vs D/t for 3/8-inch Titanium Tubing 16

4. Tensile Properties vs D/t for one-inch Titanium Tubing 17

5. Typical Stress-Strain Curve in Torsion for one-inch and 3/8-inch Titanium Tubing 18

6. Properties Ratio vs D/t for one-inch O.D. Titanium Tubing, 12-inch Free Twist Length 19

7. Properties Ratio vs D/t for 3/8-inch O.D. Titanium Tubing, 4-inch Free Twist Length 20

8. Properties Ratio vs D/t for 3/8-inch O.D. Titanium Tubing. 10-inch Free Twist Length 21

9. Properties Ratio vs D/t 22

10. Titanium Tubing Column Tests Buckling Stress/Tensile Yield vs Slenderness Ratio 23

iv

W ADD TN 60-201

LIST OF TABLES

Table Page

1. Chemical Composition of A5S Titanium Sheet 4

2. Tensile Results on Titanium Tubing of One-inch and 3/8-inch O.D. 5

3. Torsion Results on Titanium Tubing One-inch O.D. and 12-inch Free Twist Length 7

4. Torsion Results on Titanium Tubing 3/8-inch O.D. and Four-inch and Ten-inch Free Twist Lengths 8

5. Column Results on Titanium Tubing One-inch and 3/8-inch O.D. U

WADD TN 60-201

MATERIALS

The materials tested were type A 55 commercially pure titanium tubing purchased from Superior Tube Company of two outside diameters, one-inch and 3/8-inch and twelve different wall thicknesses. The 3/8-inch diameter tubes had nominal wall thicknesses of 0.006. 0.009. 0.015. 0.020, 0.030. 0.035 and 0.045 inches. The one-inch diameter tubes had nominal wall thicknesses of 0.025, 0.033, 0.040. 0.050 and 0.065 inches. All tubing was processed from one heat. Chemical analysis of the tubing presented in Table 1. is typical of the commercially pure titanium, A 55.

PROCEDURES AND TEST EQUIPMENT

The cross sectional areas were calculated from tubing length, weight and density measurements. The outside diameter of each tube was determined from several mi- crometer measurements.

Tensile testing for the tubes was performed on a 50,000 lb. capacity Baldwin FGT universal testing machine. Strains were measured autographically with an 0. S. Peters SR-4 type extensometer and recorder, except for five one-inch-length specimens (one from each wall thickness). Four were measured with Tuckerman optical extensometers and one with two type A-l SR-4 strain gages, and two Baldwin SR-4 strain meters.

Column testing for all tubes was performed on a 20,000 lb. capacity Tinius-Oisen universal testing machine using a flat compression plate on the stationary head and a spherical seat compression plate on the moving head. Careful alignment of the specimens was made to assure axial loading.

All torsion specimens were tested on a modified 3,000 inch-pound capacity Tinius- Olsen torsion testing machine. Torque was measured from a calibrated SR-4 load cell cantilever beam, and the twist by a mechanical tropiometer.

All tension, torsion, and column specimens were tested by using a strain rate of 0.005 inches/inch/minute to the yield stress, and a crosshead travel rate of 0.05 inches/minute to failure. An exception was made for the one-inch diameter tube tensile tests which were made on the Tuckerman Optical Extensometer; the load was intermittently applied for strain reading purposes. The tension, torsion, and column specimens are snown in Figure 1.

RESULTS AND DISCUSSION

Three specimens were used in each type test and each diameter to thickness (D/t) ratio was tested at room temperature. Results for all tension tests are shown in Table 2. All tensile stress-strain curves were of the same nature; a typically shaped curve is presented in Figure 2. Tensile properties as a function of D/t ratio are presented in

Manuscript released for publication October 1960 as a WADD Technical Note.

WADD TN 60-201

Figures 3 and 4. Tensile and ultimate strengths did not vary significantly with D/t ratio in the 3/8-inch tubing but the elongation decreased linearly when D/t ratio increased.

Tensile data vs D/t ratio for the one-inch tubing were widely scattered. Since the tubing was all processed from one heat of material, processing variables such as strain hardening or insufficient annealing could be responsible for the scatter.

The torsion specimens were tested by using a twelve-inch free twist length for the one- inch diameter tubes, and a lour-and ten-inch free twist length for the 3/8-inch diameter tubes.

Results of torsion tesis on the one-inch diameter tubing are presented in Table 3. and on the 3/8-inch tubing in Table 4, A typically shaped stress-strain curve in torsion is presented in Figure 5. Figures 6. 7 and 8 indicate the relationship of torsional properties, as a ratio of tensile properties, to D/t ratio. All yield ratios showed a slight linear increase with decreasing D/t ratios. One odd point on the curve for the one-inch tubes had a much lower yield ratio at a D/t value of 16 than expected, however, no explanation has been found for this behavior. The modulus of rupture/ultimate tensile strength ratio vs D/t ratio curves showed an increasing slope as the D/t ratio decreased. Figure 9 is a composite graph of the torsional to tensile properties ratio and shows that the slope of the yield ratio curves were approximately equal for the 3/8-inch and one-inch tubes but each at different strength levels. The rate of increase of this moduIi<s of rupture to ultimate ratio curves was greater for the 3/8-inch tubes than for the one-inch tubes.

Results of the column tests are tabulated in Table 5. A graph which shows plots of Buckling stress/tensile yield ratio vs slenderness ratio. V/p, is presented in Figure 10. Each point plotted for the 3/8-inch tubing is an average of seven values, one for each wall thickness. The points for the one-inch tubing are an average of 5 values for ll/p = 20. 4 for L'/ /»= 40 and 60. 3 for L'//» = 80 and 2 for 11/p * 100, 120 and 140. This was necessary because of the limited supply of material available, the length of tubing required for 11/P= 140 was 48 inches for the 0.065-inch wall material. Figure 10 reveals very good correlation between column properties of the one-inch and the 3/8-lnch tubing.

All tensile, torsion, and column failures were of a ductile nature. The tensile specimens were the only tests that failed with an actual rupture of the material. Torsion specimens failed with a tube collapse and column specimens failed by tube collapse or by tube bending.

CONCLUSIONS

The chemical composition of these tubes is typical of A 55 titanium alloy.

The tensile properties of the 3/8-inch diameter tubing were consistent throughout the D/t range with the exception of the elongation which decreased as the D/t ratio increased. The tensile properties of the one-inch diameter tubing were very inconsistent, suggesting a nonconsistent anneal or excessive strain hardening in various tubes. The one-inch tubing properties, however, provided a good basis for correlation with other properties such as torsion,and column properties. It would therefore, be possible reasonably to predict torsion or column stresses from tensile data.

WADD TN 60-201

Torsional yield/tensile yield ratios decreased with increasing D/t ratios for all the tubes. The 3/8-inch tubes with a four-inch free twist length showed a 4 per cent higher yield strength ratio than the 3/8-inch tubes with a 10-inch free twist length based on the average curves.

The modulus of rupture/ultimate tensile strength ratio vs D/t ratio curve increased with decreasing D/t ratios with a greater rate of increase for the 3/8,-inch tubing than the one-inch tubing. The 3/8-inch tubing curves were essentially the same for the 4-inch and 10-inch free twist length specimens.

Column buckling strength/tensile yield strength ratio vs slenderness ratio, \LlP , curves were equal for both one-inch and 3/8-inch tubing.

WADD TN 60-201

9

* 1 lOOOOOOOOOUlOO •Hoio^nwwft-tftt-n f-< f-l V4 <-4 •-•

55

e s yd

rog

ppm

nco u5rtio<n-*oot-Mi-i ■♦■^i US-*««-*«*'*«-*

as

r-iOT-tCTMootOMtousojo -% «^o>rt«o*>-<oiooo»<»

1 r^O«-»0>-«0«-"0»-l>-tOO

5 ««••••«••■••

Ü oooooooooooo

6K

1 H

c rH-((NOO«0«Mr-«CO^-IC4

< 0 MiHeanr^-t^rH^t^HrH^T-i

»H oooooooooooo 1 9 'S «^

■s § H -is

1 £j 09

& g S o | t.r-)t<-r-IC4'4<COO)i-lr-IO<-l

OOOOOOOOOOOO h Ä cd

g

O dddoddoodood «e

V Xi O

« 09 0

lOWOOlOtOOlrCOSOlOlO

S H

NC05flOWOO<H^tCOM5< OOOOOOOOOOOO

d d d d d d d d d d d d n :*

oooooioioinmioinio u OOOOOt-t-t-t-t-t-t-

5 ooooowwwcocococo rHt-HHi-Ir+ddddddd

Q

WADD TN 60-201

1« ^"* ^"^ ^*t ^^ ^^ »H N «H ^ ,-1

5* •m? Ö •»» .w >».

wS 'S x

5 s

mioio^i>H«>-<Ae40tDcoc«e>)^iociOi-i^i '«lon'^'^iciiort'^ionyriotpcoioiotocoio

— a

1 S

a ts r s& » . H ä ooooooccoooooooooooo

it et a

oooooooooooooooooooo • A<4>0'4aoa>t~-4>c4tH^ji<AaoinO<-<w<Or-iio •

5

coioniaooo)(na>iaio-r^ot-o>o>(o<o(0(D c

c 1

90

n

•o c es a- .C

5 Is S3 « i o £ b? « o> co n t- -< o o Oi-iaoT-*e»or-o> « c U N Q S . *. •*»«•»•». ******** *

o M ' N «I OS 00 t- CO 3D ■tHOOrHOCOCOt- ' 08 o

be

2 ^ us «OLOW«nrtT»< laifl««!-«-«^!^'^! ^>

i 5 >«

Ö c C o ••^

11 1^ OOOWOOOMOOOrtOOOWOOOt-

Mt~<-'OWOOO'J'OJ«M«>HO«ONP»i-Ht-< gj nr4>4C4Lotftioio<-<'^noincO'4<n^<^^i<^<

4>k

to §5 3

o u

(0 o

3

a

n >-K NCMM MOM t-t-t- ^H»-4tH lO SO SO

e < •^'•^'•<1< ICOrtM ININM INNN lr-tr^i-1 I S) Q H

go

U 4> ooo IO IO in lOiouj ooo o o o

15 ■«i«'»!'^ NCMN ooaooo ooaooo mmio NMea CTWC^ n n n ^e ^ ^f so so to OOO ,000 ,000 ,000 ooo C Ü

§2 odd ddd ddd odd ddd

«-4

cd ^

c t, «s •§ c c IH N n ^ in

MTJISO Mt-OOOi Mr-IINin Mi-lr^rH tlOT-<f-(t-( hfi

HHH<HHH«>:HHH<!HHH<HHH<:

*

? 3 ll

X!

1 xten

s ag

es

lin

ed

0

03 man

E

raln

C

ot o

bt<

-H 5 « c rt ITI

-o ess V > lH N « n ,0 « < « ♦ 55

WA DC TN 6C-20?.

ü ***

! .

i 1 ! I" 1 o^

1 I' i ^

r" ■ ■

r>oo'->>-i(sr:s!>-<'q><-<r?c0Oora<-*e4iMct><i<'<rc^nc-<rp3io rr^r^oi-TiooTOOcso^-^^riasoioysiöiosCioia^toiiS

? a

2|

II 2

o o o

OOOOOOO 30000000000000000000 oocoooooooooooooooooooooooo oroi-jfc^OMaociossoirjo-q-iot-ioooosoooaoowi- ooo^^^^J^^^^*e>^^^^f«nco«MrtniOuJ^Tr•*^.■s:iil^JU3 0 0!BOSDOOa5000tOtDa»50««>OOtO«»®0«0«eO«5

I f

2 § S o

§ 00

^«Dcooooos-iA^täovi-in^tto^usoiiAceoacoffintotoocs aoaoaooot-<0M>Hr)M'4<n'4<-4>nnnnnneo»Ti<<ir'4<'«

Per

cent

Elo

ngat

ion

In 1 1

/2 i

nche

s

1

CO CO co

OO 000©00000«OOOl>00000000 ) 4) <# ■ l(-t.!Me4CIC4t-t-i0C0C-C-0>t-A<-«|>0)Or-t~00

WN NNeocococowwcocoeococoeocOiiitocOiceoMeo

< a «0

OOOO ^r'^'^>, 000000 Gi <Ji m «CO« ,H,-(.-l O><»3»

10 co 0)

II 1

in

§ • o

us in io m m o o o ooo IAIAIA OOO mmm min aooooo co eo co ooo oooooo ^•^•^ >-IIHT-I OO | O O O iiHrHrH i M M CJ i (M OJ <N iCOCOCO i -^ •* i* i oo 'ooo 'ooo 'ooo 'ooo 'ooo ' o ä o ' oo ooo ooo oo ooo ooo ooo

OrHC4 CO ■* lO SO t- 00 0> O r-T iHMCO äO •« tO CD bfi O 00 0) bSr-lrHi-l bOrHr-liH hfi r-l i-4 iH b£f-INM b0

c ■#-«

J3 3 ** X u c

• r4 •a

in (U

<<1 ^ fc. S o o

t*4

1 1

id rt •o > 0) ^■t

> CO

0 ^ jQ < 1 * SS

WADD TN 60-201

— 'S >>"S 9 « « a

i. "6 «( -• Sl^x

« 8>

1 s 5 §

t "S « oooddooddooooooooo d «0 s 6 e

o

% 1 5 t- « 9 ooooQooooooooooooe o ooooSoooooooooSooo o U U,

5 s> ^<MusMS«Ortcjxao^««rte4t-.rte* ft

JB

1 1 M

odul

ig oT ao oo w ig «* •* ca i-T co of •-? d n »J « u» V

»1 a«

■2 e ■o

Ö S ^

3 5

d

1

•>« J« e4AO>«ooe4C4i-iooaoaiao<-<Aoo«« ■-•

C5 *•* « »4 s

01

O«>(D(0t>t-t-t-<O<O<0Ot-<Ot>t-<O<O , «

dddddddddddddddddd d

| | o H

H o o bo M .g 1 f oooooooooooooooooo o ooooooSooooooooooo o »* -.

i0- WlO<Mt"00'*CI»^OC5l»«iat-r-(iHO«-« US

« to d ■* d t^ i> t^" ^ ^ ^'f d d d d t^ e* «

1 S >«

n j-»

1 §

"v. NC4C4 C4C4C4 I- r- !>• f-(r4i-l (O CD (0 Q ^••*^' IWWrt 1 ca C^ IM ! CS OJ « li-4.-l»H 1

^4 as m m

o o o toioia us ig us ooo ooo •*■*■«*< cm M o ao öS So aoaoco lOioto ooo "ooo "ooo 'ooo 'ooo ' l

H =1 ©dd ddd ddd ddd ddd

^

s

II O r-i N M ^ n r-t M W H^tlOtO bOt-OOOi U)<HiHr-l M .-* ^ rl M

§ | <<<:<<-*i<<<!<;4!<<:<<<<<<-«; s*^

s . i

WADD TN 60-201

H « o a c-t-om^ircoiowaicof-ooot-aoaoaot^w

oo a m o MiflinioiatniaiaMiaioiotoioMiairtioiaio

H S M x

«

1 1 " ■ "

Xi 1 •w*

t ted g ao(ot-r-'Hc9-i»t(0'<tiM^o>oe40oa>oo • o ü ««««^■-.«••««■^••«rusioioinwtosDt-tet-E-.

2 o o o o o o o o o o o o o d o o © o o o

| a 1

H o H a> S o

"8 „ 43 oooooooooooooooooooo

It» oooooooooooooooooooo

| oioconu}^o>e4c4n«i~i^ic*e4n<oo<0'Ti<

•3 3* ^ e O Söl 8 s

•o s ««4 2 J3

1 <w4

0«00000-*C~T|'lONMl-rHU5mtOOOOI>Hr-!r-l <oiam<oioioiOio(owioa>iatoiAiA«>wa><9 dddddddddddddddddddd 3

fa u 0 | 1 H

■* n 4> ja

1 Q t 6 s §§§§§§§§§§§§§s§§§§§§ >4 •«-* ja *» » oiaeon^ooMcoci^^ioMiaooaor-iustot.

| en a 2 C4e<lC4e4C(iC4C4C4C4eV|e4C4e!lC4C4C4Cle4MC4

co 5

f

>

11^ _, PH^S r-iiHrHfHiininu»iou)iomi iiAiAiooioo B

Tw

ist

at

Deg

ree

Len

g rt^rH^t ^T»«©«»©©

%

-H 1H rt

öD ao 33 -* ^< « oo ao ao a> a> at n n & (O (O tO l^"'*'* 1 (M N (N IrtrHr-t Ir-tr-tr-t ! 0Q <

1 Q

S a d a 5 S s» 1 us m iß to in to o©o o o o to ut to «4 to to to 00 00 00 « M CO ©OO 00 00 00 o OOO lOO© |r-(rHi-( . CM N CM i CJ N IN i H oo© 'o©© '©©© '©©© '©©© '

i"i

1 ©do ©©d ddd ddd ddd

ll O iH (M CO ■* in

ll -«•«set^f^n-f^SPwrp-rvTi? <<<<;<-s;<<d<;<;<<<<<<«s;<<<

WADD TN 60-201

**

• •••«•■■• lOlOIOICIOCOlOiO

« ■H i g 0> <S f «D « O 00

i^ t- t-< «ft 00 o> 00 'S o * ••••»•« 1 1

o o o o o o o

s i 'S T, ♦

3 0- g§§s§§g§ 5 E *^

lt& «ncToTcfjo««!^

Ö « eotait<iOiOtats>a S

1

3 S g

s

N a> K ^ C4 «-< o i-: 3 1 aoooeooo

«? £ H

1

Is. •* SSSS8SSS £ 00<«"^!USe-M(»M

t 3 sssssifssf a >*

i* P« t««<s t- « US US to

Deg

ree

Len

g i t> la «e u» i i to ^H »-I »H « M

rH rH rH 0» O» 0> < »H i-l f-< t 1

Q

(B 90 G fl o o o ia ta to | ^! ^! ^! ^ iH iH

H • • • • • • o o © o o o

=3 !*

ii li (0 l> 00 A p H

■<

T3

00

41 V u

U G

•M I

u <s n

4)

3 .5

WADD TN 60-201 or

sio

Mod

ul

)x 1

C r>eoiAiot>ao«o»>iAt-»t.c.coio(or-iaeoiot.f(Dt-t»«r-t- löusiotÄioioiöiaioiaiaioiaMioiäMiÄiaiöujiaiaiäioioinio

H O

9 ® n Si g jj ■v3

« g 'S S « 3 dooddoodoodoooooodooooooddoo a 2 1 S

"8 «

|ll §§§§§§§§§§§§§§§§§§§§§§§§§§§§ cBt-<i>oaoconu3'4<c4au9u)i-i'«i>roooiowaoa><oaon<e40>io

^3 oOf-<>-io>tf>o>o)co«e,5«t^t-r-^'«<-r«eaF^"ddo»«r«><o<o O K s •o 2 ti « ? ? »HI

3 5 toiAioiaioiQioio<ott>tD<e>ioioioin<o<03ocou}miO(a(0<o>A<o 0 •«4

08 dddddddddddddddddddddddddddd

^ a U O

*-» H e o

■"i1 oooooopooooooooooooooooooooo oooooooooooooooooooooooooooo <s> fr» •»-«

-4 m 1 2 0?

ddiH.Hia»owwdiodd^*dM«ddddin^* •**>*« d dd H

>*

»

J •§ r* 5 * « « tt I iN(NW«««ooooooooiflNOe>irtw«e5ooot-iotDn ~~v^, lOiniomoi-jicnosoot-aot- ^^iTit M 0) § rHr-« rHr-lr-lrHc!|(MN

«|^ ^S H

000000 •*■*># CO 00 00 05 OS Ol COCOM rHr-l<H 0> O) Oi «OWtOI^-^^INNNlTHvHTHIiHi-trHliHi-liHI 1 <

a

a 09 « J

w in IO oooooo wrt« ooo oooooo 55ort egNM 1 ooo 'ooo 'ooo 'ooo 'ooo 'ooo 'odd ' H d d d d d d d d d d d d d d d d d d d d d

1 ll OrHN COTJIIA «3 o 00 01 O r-(

I"25 i-ieac<5 hO^lßtO Mt-OOO» MIHIHIH MIHI-IIH bOlHr-lr-l b0>HNN bo

«mffl<Brt«<:ö«ffl<«fflB<;ö«m<ffl«ffl<mm(B<; *

00 c 01

41

u c I

O

a» J3

U

a

10

WADDTN 60-201

Table 5

Column Results on Titanium Tub tag One-Inch and 3/8-tnch O.D.

I

Specimen ; Slenderness Hatio Suckling Buckling / Average Stress /Yield Stress Number L7P Stress

** C-3 20 60,100 1.14 C-4 20 50,500 J.33 C-9 20 66,500 1.33 C-13 20 60, 000 1.39 C-18 20 63,600 1.32 Average 20 i

! 62,100 1.30

c-2 ; 40 56, 000 1.06 C-£ 40 43, 300 1.14 C-10 40 56,900 1.13 014 40 49,400 | 1.15 Average 40 52,100 | 1.12

C-l 60 51,400 0.98 C-6 50 38,400 1.01 C-\5 60 44, 200 1.1)2 C-20 60 47,600 0.99 Average 60 45,400 i J..00

C-7 80 33.600 0.88 C-16 80 38, 000 0.88 Average 80 35, 800 0.88

C-17 100 33,100 0.77 C-19 100 35,500 1 0.73 Average 100 34,300 i 0.75

C-ll 120 35,700 | 0.7J C-21 120 30, 800 0.64 Average 120 33, 300 0.67

C-8 140 20,9C0 0.55 C-12 140 27, 900 0.56 Average 140 24,400 0.55

*** CA-1 20 45, 800 1.19 CB-1 20 32, 200* 0.69* CC-1 ?,0 57,400 1.36 CD-I 20 58,200 1.32 CE-1 20 59,700 1.37 CF-1 20 61, B00 1.43 CG-1 20 65, 000 1.47 Average 20 58,100 1.36

* Not included in average. ** All single letter specimen numbers are 1-inch tubing.

*** All double lette/* specimen numbers are 3/B-inch tubing.

11

WADD TN 60-201

[ Table S (Cont'd)

i : i 1 k Specimen Slettdernesa Ratio Buckling Buckling / Average

Stress / Yield Stress i I

Number L'/P Stress

CA-2 40 40,700 1.05 t CB-2 40 48,500 1.03 t CC-2 40 50,500 1.20

CD-2 40 45.300 1.03 CE-2 40 50.100 1.15 CF-2 40 51.000 1.18

: CG-2 40 47,800 1.07 Average 40 47,700 1.10

CB-3 00 42,100 0.90 CC-3 60 46,000 1.09 CD-3 60 41.500 0.94

: CÄ-3 60 44,700 1.02 : CP-3 60 40,500 0.94 ! CG-3 60 42,600 0.95

; Average 60 42.900 0.97

: CA-3 80 27.800 0.72

i CB-4 80 38,100 0.81 CC-4 80 37,900 0.90 CD-4 80 37,300 0.85 CE-4 80 39.700 0.91

i; CP-4 80 38,000 0.88 CG-4 80 37,100 0.83 Averags 80 36,500 0.84

CA-4 100 30,100 0.78 CB-5 100 34,100 0.73 CC-5 100 35,300 0.84 CD-5 100 33,100 0.75 CE-5 100 34,000 0.78

! CF-5 100 33,500 0.77 CG-5 100 32,400 0.73 Average 100 33,200 0.77

CA-5 120 25,600 0.66 CB-6 120 28,100 0.60

t CC-6 120 30,700 0.73 CD-6 120 28,900 0.66 CE-6 120 29.600 0.68 CF-6 120 30.000 0.69 CG-6 120 27.800 0.62 Average 120 28.700 0.66

CA-6 140 22,400 0.58 CB-7 140 22,400 0.48 CC-7 140 23,000 0.55

12

WADD TN 60-201

1 Table 5 (Cont'd) 1

Specimen j Number

Slendemess Ratio VIP

Buckling Stress

Buckling / Average \ Stress /Yield Stress \

CD-7 CE-7 CF-7 CG-7 Average

140 140 140 140 140

23,000 26,100 23,500 24,100 23,500

0.52 0.60 0.54 0.54 0.54

13

WADD TN 60-201

? 8

w

m z ui s o u a. m

z o M K O

o z <« z o

z Ui

«A

O

M

e o

*

3

t

ri

! I

X O O : eg

£ §

2 S e Q

5 « e ^ • io »- w O O

•V io -

ll i z « —

e

(0

3

UI

3

c _i

o Ou

« c

o o

UI

Ü t- o z

i I

o o

I n O H

I c «

c -I

14

WADD TN 60-201

KC.

j ^^"^

48 —j ̂ i 40

32

1 /

24 1

I 16 -h 8 f~ ■

0 1

0.002 0.004 0.006 0.008 0.010

STRAIN inches/inch

0.012

Figure 2. Typical Stress-Strain Curve for one-inch and 3/8-inch Titanium Tubing in Tension

15

WADD TN 60-201

I

Art] • - -ULTIMATE TENSILE STRENGTH

O --TENSILE YIELD STRENGTH

i i

8\fl

X --PERCENT ELONGATION

1 j , 1

W 1 •. 1 • 1

ST

RE

NG

TH

IN

K

o

• • • 1 1 ■ Al

1 ' 1 i \ ]\

I u ' : if

(0

Ul 1 n^fl o O 1

i 1

5

3

o o o

• 0 1 O z |

o ^ 30 >-

1

OA

h T

zo

—'——-

10

"^ -

^ -1

0

- 50

< o z o _)

20.

u 10 «r

ui a.

20 40 D/t

60

Figure 3. Tensile Properties vs D/t for 3/8-inch Titanium Tubing

16

WADDTN 60-201

90i

30

TO

60 en

X K 50 (9 Z u

»

55 40

U »-

r 30

Q Z

20

10

• - - ULTIMATE TENSILE STREN6TH

O--TENSILE YIELD STIIEN6TH

X --PERCENT ELONGATION

20 D/t

40

50

z 40 2

< O

30 § bl

20 z u U oc

-10 a

»JO 60

Figure 4. Tensile Properties vs D/t for one-Inch Tttaniuta Tubing

17

WADD TN 60-201

0.002 0.004 STRAIN inch/inch

0.006

Figure 5. Typical Stress-Slrain Curve in Torsion for one-inch and 3/8-lnch Titanium Tubing

18

WADD TN 60-201

0.80

0.60

a. o K a.

0.40

0.20

• --MODULUS OF RUPTURE/TENSILE UUIMATE

O-- TORSIONAL YIELD/ TENSILE YIELD

20 ^ 40 D/f

60

Figure 6. Properties Ratio vs D/t for one-inch O. D. Titanium Tubing, 12-inch Free Twist Length

19

WADD TN 60-201 •-00»

0.20

• --TORSIONAL YIELD/TENSILE YIELD

O --MODULUS OF RUPTURE/TENSILE ULTIMATE

w0 20 D/t 40 80 70

Figure 7. Properties Ratio vs D/t for 3/8-inch O.D. Titanium Tubing, 4-inch Free T^vlst Length

20

WADD TN 60-201 i.OQb

<

m hi a. o K 0.

0.40

a. 20

• —T0RSI0NAL YIELD/ TENSILE YIELD

O—MODULUS OF RUPTURE / TENSILE ULTIMATE

20 D/t 40 60

Figure 8. Properties Ratio vs D/t for 3/8-lnch O. D. Titanium Tubing, 10-inch Free Twist Length

21

WADD TN 60-201

o.eo

0J60

o < K.

in u

a. o tc a.

0.40

0.20

0/t

22

Figure 3. Properties Ratio vs D/t

WADDTN 60-201

i

/ o

/

r ■ o

/

tvi

z UJ s ü r

w % Ui UI « s X »- \u o < «r . Ui " > <

(9 ? O S 5

?* O Q «v r K) -

1 ' 1 i

0 x

8

o -Jc\

1

1

7

o

5

y ^

i

o M

o

y

._.._. -4 c J c \ c 0 « » < • f t o

w Si J (S

10

o e I >

«

'S

2 35 00

n OQ

H

o r-l

PM

cnau o

31lSN3i Hi9N3«is sNnxons

23