Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for...

67
MRS Spring Symposium, Tutorial: Advanced CMOS—Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara [email protected] 805-893-3244, 805-893-5705 fax

Transcript of Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for...

Page 1: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

MRS Spring Symposium, Tutorial: Advanced CMOS—Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco

Technology Development for InGaAs/InP-channel MOSFETs

Mark Rodwell University of California, Santa Barbara

[email protected] 805-893-3244, 805-893-5705 fax

Page 2: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Scope of Presentation

Topic of discussion is channel materials for CMOS...the potential use of III-V materials...and their advantages and limitations

To understand this, we must examine in some detailMOSFET scaling limits

Page 3: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Z th O d Zeroth-Order MOSFET O iMOSFET Operation

Page 4: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Bipolar Transistor ~ MOSFET Below Threshold

beV ceV

cI

)/exp(al)(exponenti thermalison distributienergy emitter Because

bec kTqVI ∝

voltagecollector with little variesit through pass base reaching electrons allAlmost

cI→

Page 5: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Field-Effect Transistor Operation

gatesource drain

g

Positive Gate VoltagePositive Gate Voltage→ reduced energy barrier→ increased drain current

Page 6: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FETs: Computing Their Characteristics

chdC /~ DACgs ε chd−

/ where/ electrongd vLQI == ττ

gs

dschdgsgs VCVCQ δδδ −+=

ττδδδ / and / where chdgdgsmdsdsgsmd CGCgVGVgI −==⋅+⋅=

Page 7: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FET Characteristics

ID

increasingVGS

hdC/~ DAC ε

GS

chdC − / DACgs ε

VGVgI δδδ ⋅+⋅=

VDS

dsdsgsmd VGVgI δδδ ⋅+⋅=

LCGC /// electrongchdgdgsm vLCGCg / / / === − τττ

Page 8: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FET Subthreshold Characteristics

kT)()( δδ

s

s

ox

schanneloxgate

Vq

kTqnqn

CqnVVV

ithlinearly wvarieschargechannel:drivegateStrong

)()( ⋅+=+=δδδδδ

gs

gs

VV

lly withexponentia variescharge channel :drive gateWeak ithlinearly wvarieschargechannel :drive gate Strong

Page 9: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Classical Long-Channel MOSFET Theory

:sAssumption

)( .channel in field lateral Moderate1)

:sAssumption

xnE

*/ :channeloff-pinchedofendat city Exit velo3)

)()(usiondrift/diffby modeledTransport )2

mkTvvxxnqDExnqJ

thermalexit

nn

==

∂∂

+= μ

/:c a eop c edoe datc tyt ve o3) mkvv thermalexit

Page 10: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Classic Long-Channel MOSFET Theory

t t t

Idmobility-limited

ID

Ohmi

cconstant-current

velocity-limitedincreasingVGS

VgsVthVDS

c rrentlimitedmobilit ExpressiondGeneralize

:saturation nlarger tha voltagesdrainFor

gthgsgoxD LVVWcI 2/)(current limitedmobility

2, −=

μμ1

ExpressiondGeneralize2

=⎟⎟⎞

⎜⎜⎛

+⎟⎟⎞

⎜⎜⎛

DD

II

II

)(current limitedvelocity

, thgsexitgoxvD VVvWcI −=− ,,

⎟⎠

⎜⎝

⎟⎠

⎜⎝ μDvD II

Page 11: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Classic Long-Channel FET : Far Above Threshold

IdΔVΔV

VgsV gsVth

/h1/)(for )( thgsthgsexitgoxD

LVVVVVVVvWcI

Δ

>>Δ−Δ−−≈

μ/ where gexitLvV =Δ

Page 12: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Exponential, Square-Law, Linear FET Characteristics

Page 13: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Relevance of DC Parameters

Digital circuit speed largely controlled by on-state current

Standby power consumption controlled by off-state current

Dynamic power consumption controlled by supply Voltage

→ Examine VLSI Power & Delay Relationships

Page 14: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Z th O dZeroth-OrderS fVLSI Performance

Analysis

Page 15: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

CMOS Power Dissipation & Gate Delay

delayGateC

dominatesusually ecapacitanc g wirin2/)(2/

delayGate++=≈ onddPFETNFETwireonddtotalgate IVCCCIVCτ

Vdd

Cwire

PFETC

onI

y)probabilitswitching(frequency

: ndissipatiodower Dynamic2

⋅⋅= ddtotald

VCPNFETC y)probabilitswitching(frequency2

=dynamicP

IVdd

thonoff nkTqVII −> )/exp(/current state Off offI dd

ddoffstatic VIP ⋅>on DissipatiStatic

kTqVonddstaticddwiredynamic

theIVPpfVCP /2 ~ ~ :ndissipatio dynamic and static between Tradeoff −⋅

Page 16: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Why Large Current Density is Needed

S D S D S D S

G

Wgg nWW

n widthtotal widthof each

fingers, 6 withFET=→

=

G

Wg

C ,delay at drive To τwireC

Vdd

Cwire

PFETC

onI

.2/current requires τddwired VCI =

NFETC needed. are FETslarge small, is If gd /WI. large wireslong FETsLarge wireC→→

Page 17: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Device Requirements

High on-state current per unit gate width

Low off-state current→ subthreshold slope

Low device capacitance; but only to point where wires dominate

Low supply voltage: probably 0.5 to 0.7 V

Page 18: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

What Are Our Goals ?

Low off state current (10 nA/μm) for low static dissipationLow off-state current (10 nA/μm) for low static dissipation→ good subthreshold slope → minimum Lg / Toxlow gate tunneling, low band-band tunneling

Low delay CFET ΔV/I d in gates wheretransistor capacitances dominate.~1 fF/μm parasitic capacitances→ low Cgs is desirable,

but high Id is imperativeg d p

Low delay C ΔV/I in gates whereLow delay Cwire ΔV/Id in gates wherewiring capacitances dominate.large FET footprint → long wires between gates→ need high Id / Wg ; target ~5 mA/μm @ ΔV= 0.7V

target ~ 3 mA/μm @ ΔV= 0.5V

Page 19: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

I i FETImproving FETsby Scalingby Scaling

Page 20: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Simple FET ScalingGoal double transistor bandwidth when used in any circuit

→ reduce 2:1 all capacitances and all transport delays→ keep constant all resistances, voltages, currents

All lengths, widths, thicknesses reduced 2:1

S/D contact resistivity reduced 4:1

ε~/d WC

oxgm TvWg /~/ ε If Tox cannot scale with gate length, Cparasitic / Cgs increases,

ε/ ggd WC

oxgggs TLWC /~/ ⋅ε

ε~/ gfgs WC

gm / Wg does not increasehence Cparasitic /gm does not scale

, gfgs

subcgsb TLWC /~/ ⋅ε

Page 21: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FET scaling: Output Conductance & DIBLeffects)D.O.S.neglectsexpression( gsC )gp( gs

hd WC ε~/~ TLWC ε gchd WC ε−

dhdd VCVCQQI δδδτ +== where/

/ oxgggs TLWC ε

dschdgsgsd VCVCQQI δδδτ −+== where/

transconductance output conductance

→ Keep Lg / Tox constant as we scale Lg

Page 22: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FET Scaling LawsGL

Changes required to double transistor bandwidth:( )GW widthgate

parameter changegate length decrease 2:1

Changes required to double transistor bandwidth:

gate dielectric capacitance density increase 2:1gate dielectric equivalent thickness decrease 2:1channel electron density increase 2:1channel electron density increase 2:1source & drain contact resistance decrease 4:1current density (mA/μm) increase 2:1

Page 23: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

nm Transistors: it's all about the interfaces

Metal-semiconductor interfaces (Ohmic contacts):very low resistivity

Dielectric-semiconductor interfaces (Gate dielectrics):very high capacitance density

Transistor & IC thermal resistivity.

Page 24: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

FET Scaling LawsGL

Changes required to double transistor bandwidth:( )GW widthgate

parameter changegate length decrease 2:1

Changes required to double transistor bandwidth:

gate dielectric capacitance density increase 2:1gate dielectric equivalent thickness decrease 2:1channel electron density increase 2:1channel electron density increase 2:1source & drain contact resistance decrease 4:1current density (mA/μm) increase 2:1

What do we do if gate dielectric cannot be further scaled ?

Page 25: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Why Consider MOSFETs with III-V Channels ?

If FETs cannot be further scaled, instead increase electron velocity:

III-V materials → lower m*→ higher velocityId / Wg = qnsv Id / Qtransit = v / Lg

III V materials → lower m → higher velocity( need > 1000 cm2 /V-s mobility)

Candidate materials (?) In Ga As InP InAs ( InSb GaAs)

Difficulties:

Candidate materials (?) InxGa1-xAs, InP, InAs ( InSb, GaAs)

High-K dielectricsIII-V growth on Sibuilding MOSFETsbuilding MOSFETslow m* constrains vertical scaling, reduces drive current

Page 26: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

III-V CMOS: The Benefit Is Low Mass, Not High Mobility

h h ldbfdhdiff id ifSi l :thresholdabovefar ate,nondegenertheory,diffusion -drift Simple

)/(~ where 1/2*mkTvv thermalinjection = )( VVVvWcI thgsinjectiongoxD Δ−−≈

Idμ/ginjectionLvV =Δ

thatEnsure )( VVV −<<Δ⇒

VmV700

that Ensure

~

)( thgs VVV <<Δ⇒

VgsVthlow effective mass → high currentslow effective mass high currents

mobilities above ~ 1000 cm2/V-s of little benefit at 22 nm Lg

Page 27: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

III-V MOSFETs for VLSI

Wh t i it ?What is it ?MOSFET with an InGaAs channel

Why do it ?l l t ff ti hi h l t l itlow electron effective mass→ higher electron velocitymore current, less charge at a given insulator thickness & gate lengthvery low access resistance

What are the problems ?low electron effective mass→ constraints on scaling !must grow high-K on InGaAs, must grow InGaAs on Si

Device characteristics must be considered in more detail

Page 28: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

III V MOSFETIII-V MOSFETCharacteristicsCharacteristics

Page 29: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Low Effective Mass Impairs Vertical Scaling

Shallow electron distribution needed for high gm / Gds ratio, l d i i d d b i l ilow drain-induced barrier lowering.

2*2 ./ 2*2wellTmL∝

For thin wells,only 1st state can be populated

Energy of Lth well state

only 1st state can be populated.For very thin wells,

1st state approaches L-valley.

Only one vertical state in well. Minimum ~ 5 nm well thickness.→ Hard to scale below 22 nm Lg.

Page 30: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Semiconductor (Wavefunction Depth) Capacitance

energy state Bound./ 2*2

wellwell TmLE ∝

123

V)

Tsemi

ecapacitanctor Semiconduc

-2-101

Ener

gy(e

VsemiTc /

p

torsemiconduc ε=

-4-3

0 50 100 150 200 250Y (Ang.)

Page 31: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Density-Of-States Capacitance

)//( 2* hπnmnEE swellf =−motion) nalbidirectio(

2*2 /h h

dosswellf cVV /ρ=−

and n is the # of band minima

22 / where hπnmqcdos =

Two implications:- With Ns >1013/cm2, electrons populate satellite valleys

Fischetti et al, IEDM2007

- Transconductance dominated by finite state densitySolomon & Laux , IEDM2001

Page 32: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Current Including Density of States, Wavefunction Depth

h h ldbfdhdiff id ifSi l :thresholdabovefar ate,nondegenertheory,diffusion -drift Simple

)( VVVvWcI thgsthermalgeqD Δ−−≈

IDOSoxeq /c /c /c/c 111 1 where torsemiconduc ++=

Id

VgsVth...but with III-V materials, we must also consider degenerate carrier concentrations.

Page 33: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Current of Degenerate & Ballistic FET ...) Asbeck, , FischettiSolomon, Laux,Natori, , Lundstrom(

dHi hl

motion) ional(unidirect 2//:states ofDensity 2*⋅=fs mndEdN πh

( )/)(l ii

),)(2/( :density electron :degenerateHighly

2/1*

2* −⋅= cfs EEmnn πh

( ).)3/4( : velocityelectron ean M

,/)(2 : velocity ermi F 2/1*

=

−=

f

cff

vvmEEvπ

( ) ( )/)(2

:densityCurrent 2/32/1*2/52/3 −⋅

⎟⎞

⎜⎛ f qEEmnq ( ) ( )

mA

/)(32

2/32/1*

22

⎟⎞

⎜⎛ −

⎟⎞

⎜⎛⎟⎞

⎜⎛

⎟⎟⎠

⎞⎜⎜⎝

⎛==

cf

cfs

EEm

qEEmnqvqnJ

π h

eV 1mmA84

0⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⋅= cf

mmn

μ

Page 34: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

2D vs. 1D Field-Effect Transistors in Ballistic LimitDrain

mAmAmA

)04.0/( channel InGaAs FET;-2D2/32/32/1*

0*

⎞⎛⎞⎛⎞⎛⎞⎛⎞⎛

=

EEEEm

mm

Id

gateE

tor.semiconduc inshift levelFermieV0.3for

m

mA8.2eV 1m

mA17eV 1m

mA840 μμμ

=⎟⎟⎠

⎞⎜⎜⎝

⎛ −⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛ −⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛≅ cfcf EEEE

mmJ

Lg

Wg gate

g

Source

Id

Drains

d

gateE S78/2 eV, 37.0

*2

pitchnm 6@wellsInGaAsnm5 FETs;-1DofArray

2,2

22

μπ==== wellm

wellwell hqg

TmE h

Lg

Wg gate

torsemiconduc inshift level FermieV 0.3for m

mA9.3eV 1m

mA13eV 1nm 6

A 78μμ

μ=⎟⎟

⎞⎜⎜⎝

⎛ −⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛ −⎟⎠⎞

⎜⎝⎛= cfcf EEEE

J

Sources

Page 35: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

2D FET vs. Carbon Nanotube FET

Drain

mA82mA17

)04.0/*( channel InGaAs FET;-2D2/3

0

⎟⎟⎞

⎜⎜⎛ −⎟⎟⎞

⎜⎜⎛

=

cf EEJ

mmId

Drain

gate

tor.semiconduc inshift level FermieV 0.3for

, m

8.2eV 1m

17μμ

=⎟⎟⎠

⎜⎜⎝⎟⎟⎠

⎜⎜⎝

≅ cfJ

L

Wg gate

Lg

Source

Drains

mAmAA78

S78/2 pitch nm 5 nanotubes, carbon ofArray

2,

μ

μ

⎟⎞

⎜⎛ −⎟⎞

⎜⎛

⎟⎞

⎜⎛ −⎟⎞

⎜⎛

==

ff

tubem

EEEE

hqggate

torsemiconduc inshift level FermieV 0.3for m

mA7.4eV 1m

mA5.15eV 1nm 5

A78μμ

μ=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛= cfcf EEEE

J

Lg

Wg

Sources

Page 36: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Ballistic/Degenerate Drive Current vs. Gate Voltage

More careful analyses by Taur & Asbeck Groups, UCSD; Fischetti Group: U-Mass: IEDM2007

Page 37: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Drive Current in the Ballistic & Degenerate Limits

( ) 2/1*2/3⎞⎛⎞⎛ ( )

( ) 2/3*,

2/1*2/3

)/()/(1 where,

V 1mmA84

ooxodos

othgs

mmnccmmnK

VVKJ

⋅⋅+

⋅=⎟⎟

⎞⎜⎜⎝

⎛ −⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

μ

0 25

0.2

0.250.7 nm, n=6 0.4 nm, n=6

Error bars on Si data points correct for (Ef-Ec)>> kT

0.15

K

0.8 nm, n=1 n = # band minimacdos,o = density of

(Ef Ec) kT approximation

0 0

0.11.0 nm, n=1

,states capacitance for m*=mo & n=1

0

0.05

EOT includes wavefunction depth (0.5 nm for 3.5 nm InGaAs well)

0.01 0.1 1m*/m

o

Page 38: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

High Drive Current Requires Low Access Resistance

sidewall

metal gategate dielectric

source contact drain contact

barrier

quantum well / channelN+ source N+ drain

source contact drain contact

current, drive onimpact 10% For <

substrate

1.0)/( <− thDDSD VVRI

V 5.0)( @ mmA/ 3~/Target V3.0)(@mmA/5.1~/Target

μ

μ

=−

=−

thDDgD

thDDgD

VVWIVVWI

m 2015 μ−Ω−<→ gsWR

Page 39: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

M i l S l iMaterials Selection;What channel material What channel material

should we use ?should we use ?

Page 40: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET
Page 41: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Common III-V Semiconductors B. Brar

1350

450

GaSb770

AlSb1550

1350 200

500450

250

InGaP1900InSb

AlAs2170

InAs

770GaAs1420 InGaAs

760

InAlAs1460 InP

1350200

1900220

2170

360

200

150

550170

200

6.48 A lattice constant

6.48 A lattice constant 5.65 A lattice constant;grown on GaAs

5.87 A lattice constant;grown on InP

Page 42: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Semiconductor & Metal Band Alignments M. Wistey

Page 43: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Materials of Interest

Source: Ioffe Institutehttp://www.ioffe.rssi.ru/SVA/NSM/Semicondrough #s only

material Si Ge GaAs InP In0.53Ga0.47As InAs

n 6 6 1 1 1 1

m*/m0 0.98 ml 1.6 ml 0.063 0.08 0.04 0.023m /m0 0.98 ml 1.6 ml 0.063 0.08 0.04 0.0230.19 mt 0.08 mt

Γ-(L/X) separation, eV -- -- 0.29 ~0.5 0.5 0.73( ) p ,

bandgap, eV 1.12 0.66 1.42 1.34 0.74 0.35

mobility, cm2/V-s 1000 2000 5000 3000 10,000 25,000

high-field velocity 1E7 1E7 1-2E7 3.5E7 3.5E7 ???

Page 44: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Drive Current in the Ballistic & Degenerate Limits

( ) 2/1*2/3⎞⎛⎞⎛ ( )

( ) 2/3*,

2/1*2/3

)/()/(1 where,

V 1mmA84

ooxodos

othgs

mmnccmmnK

VVKJ

⋅⋅+

⋅=⎟⎟

⎞⎜⎜⎝

⎛ −⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

μ

0 25

0.2

0.250.7 nm, n=6 0.4 nm, n=6

Error bars on Si data points correct for (Ef-Ec)>> kT

0.15

K

0.8 nm, n=1 n = # band minimacdos,o = density of

(Ef Ec) kT approximation

SiGe

0 0

0.11.0 nm, n=1

,states capacitance for m*=mo & n=1InPInGaAs

0

0.05

EOT includes wavefunction depth (0.5 nm for 3.5 nm InGaAs well)

0.01 0.1 1m*/m

o

Page 45: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Intervalley Separation Source: Ioffe Institutehttp://www.ioffe.rssi.ru/SVA/NSM/Semicond

Intervalley separation sets:-high-field velocity throughhigh field velocity throughintervalley scattering-maximum electron density in channel without increased carrier effective mass

Page 46: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Choosing Channel Material: Other Considerations

Ge: low bandgap

G A l i t ll tiGaAs: low intervalley separation

InP: good intervalley separationGood contacts only via InGaAs→ band offsetsmoderate mass→ better vertical scaling

InGaAs good intervalley separationbandgap too low ? → quantizationl hi h ll ti l lilow mass→ high well energy→ poor vertical scaling

InAs: good intervalley separationbandgap too lowvery low mass→ high well energy→ poor vertical scaling

Page 47: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Non-Parabolic Bands

zero.near for only parabolic~ are Bands

k

hyperbolicnearlybecomebands energies, highAt

velocitygroupAsyptotic

.hyperbolicnearly become

→tors.semiconducmost inSimilar

velocity.group Asyptotic→

c.pessimistigenerally aresexpression FETband-Parabolic

pg y

Page 48: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Non-Parabolic Bands

T. Ishibashi, IEEE Transactions on Electron Devices, 48,11 , Nov. 2001,

Page 49: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

MOSFET D iMOSFET DesignA i Assuming

G CIn0.5Ga0.5As Channel

Page 50: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Device Design / Fabrication Goalssidewall

metal gate

quantum well / channel

gate dielectric

N+ source N+ drain

source contact drain contact

substrate

barrier

quantum well / channel

DeviceDevicegate overdrive 700 500 300 mVdrive current 5 3 1.4 mA/μmN 6*1012 4*1012 2.5*1012 1/cm2Ns 6 10 4 10 2.5 10 1/cm

Dielectric: EOT 0.6 nm target, ~1.5 nm short term

Channel : 5 nm thickμ > 1000 cm2/V-s @ 5 nm, 6*1012 /cm2

S/D access resistance: 20 Ω-μm resistivity→ 0.5 Ω-μm2 contacts , ~2*1013 /cm2 , ~4*1019 /cm3 , 5 nm depth

Page 51: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Target Device Parameters

sidewall

gate dielectricmetal gate

quantum well / channelN+ source N+ drain

source contact drain contact

substrate

barrier

thicknm5cm/105~:well 212⋅n thicknm5,cm/105~ :well ⋅sn

213319 cm1052 thicknm 5 , cm105 /./ ⋅=→⋅ sn

m 10contact widenm 25 )m 250 2 μμ −Ω=−Ω )/(.(

Page 52: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Device StructureDevice Structure& &

P FlProcess Flow

Page 53: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Device Fabrication: Goals & Challenges

III-V HEMTs are built like this→ Source Drain

GateSource Drain

K Shinohara

and most ....and most III-V MOSFETs are built like this→

Page 54: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Device Fabrication: Goals & Challenges

εr

TiWN+ drainregrowth

N+ sourceregrowth

Yet, we are developing,at great effort,

εr

InGaAs wellInP well

at great effort,a structure like this →

barrierInP well

Why ?Why ?

So rce DrainGate

Source Drain

K Shinohara

Page 55: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Why not just build HEMTs ? Gate Barrier is Low !

Gate

Gate barrier is low: ~0.6 eV

Source DrainGate

K Shinohara

Tunneling through barrier Emission over barrier

K Shinohara

g g→ sets minimum thickness

Ec EcEF

→ limits 2D carrier density

Ewell-Γ

EF

Ewell-Γ

EF

eV 6.0~)( ,cm/10At 213cfs EEN −=

Page 56: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Why not just build HEMTs ? Gate barrier also lies under source / drain contacts

Gate

Gate barrier also lies under source / drain contacts

Source DrainGate

widegap barrier layer

N+ layer

K Shinohara

low leakage: low resistance:

K Shinohara

EcEF

gneed high barrier under gate

Ec

need low barrier under contacts

Ewell-ΓN+ caplayerEwell-Γ

EF

Page 57: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

sidewall

The Structure We Need -- is Much Like a Si MOSFET sidewall

metal gategate dielectric

source contact drain contact

barrier

quantum well / channelN+ source N+ drain

substrate

no gate barrier under S/D contacts

high-K gatebarrier

Overlap between gateand N+ source/drain

How do we make this device ?

Page 58: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

S/D RegrowthS/D Regrowth Process Flow

Page 59: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Regrown S/D FETs: VersionsWistey et al2008 MBE conference

planar regrowthregrowth under sidewalls

need thin sidewalls(now ~20-30 nm)

..or doping under sidewalls

Page 60: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

S/D Regrowth by Migration-Enhanced Epitaxy Wistey et al2008 MBE conference

MBE growth is line-of-sight → gaps in regrowth near gate edges

MEE pro ides s rface migration d ring regro th eliminates gapsMEE provides surface migration during regrowth→ eliminates gaps

SEM Cross Section SEM Side View (Oblique)

SiO2 dummy t

SiO2 dummy t

Top of gate

Side of gate

Original InterfaceInGaAs Regrowth

gate

InGaAs Regrowth

gate

g

SEM: Greg Burek

No gapsSEM: Uttam Singisetti

High Si activation (4x1019 cm-3)

60

g pSmooth surfaces.

High Si activation (4x10 cm ). Quasi-selective: no growth on sidewalls

Page 61: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Self-Aligned Planar III-V MOSFETs by RegrowthWistey Singisetti BurekLee

N+ InGaAs regrowth, Mo contact metal

Mo contact metal

gate

Page 62: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Self-Aligned Planar III-V MOSFETs by RegrowthWistey Singisetti BurekLee

Page 63: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Regrown S/D FETs: Images

Page 64: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

Regrown S/D FETs: Images

Page 65: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

III-V MOSIII V MOS

Page 66: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

InGaAs / InP MOSFETs: Why and Why Not

lo m*/m high more c rrent

0.250.7 nm, n=6 0 4 nm n=6

low m*/m0 → high vcarrier → more currentlow m*/m0 → low density of states → less current

ballistic / degenerate

0.15

0.2

K

0.8 nm, n=1

0.7 nm, n 6 0.4 nm, n=6

( ) 2/1*

2/3

where

, V 1m

mA84

⋅=

⎟⎟⎠

⎞⎜⎜⎝

⎛ −⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=

o

thgs

mmnK

VVKJ

μError bars on Si data points correct for (Ef-Ec)>> kT approximation

calculation

0.05

0.1

K

1.0 nm, n=1

( )2/3*

,1

where

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⋅⋅⎟⎟

⎞⎜⎜⎝

⎛+

=

oox

odos

mmn

cc

Kn = # band minimacdos,o = density of states capacitance for m*=mo & n=1

00.01 0.1 1

m*/mo

EOT includes wavefunction depth (0.5 nm for 3.5 nm InGaAs well)

Low m* impairs vertical (hence L ) scaling ;Low m impairs vertical (hence Lg ) scaling ;InGaAs no good below 22-nm.

InGaAs allows very low access resistance

Si wins if high-K scales below 0.6 nm EOT; otherwise, III-V has a chance

InGaAs allows very low access resistance

Page 67: Technology Development for InGaAs/InP-channel MOSFETs · Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of California, Santa Barbara ... Simple FET

InGaAs/InP Channel MOSFETs for VLSI

Low-m* materials are beneficial only if EOT cannot scale below ~1/2 nm

Devices cannot scale much below 22 nm Lg→ limits IC density

Little CV/I benefit in gate lengths below 22 nm LgLittle CV/I benefit in gate lengths below 22 nm Lg

Need device structure with very low access resistanceNeed device structure with very low access resistanceradical re-work of device structure & process flow

Gate dielectrics, III-V growth on Si: also under intensive development