TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

84
--—. -. TECHNICAL NOTE 4308 DISTNMYTION TRANSIENT TEMPEIWTURE TWO-COMPONENT SEMI-INFINITE COMPOSITE SLAB OF ARBITRARY MATERIALS SUBJECTED TO AERODYNAMIC HEATING WITH A DISCONTINUOUS CHANGE IN EQUILIBRIUM TEMPERATURE OR HEAT-TRANSFER COEFFICIENT By Robert L. Trimpi and Robert A. Jones Langley Aeronautical Laboratory Langley Field, Va. Washington September 1958 .— -— ——

Transcript of TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

Page 1: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

--—.-.

TECHNICAL NOTE 4308

DISTNMYTIONTRANSIENT TEMPEIWTURE

TWO-COMPONENT SEMI-INFINITE COMPOSITE SLAB OF ARBITRARY

MATERIALS SUBJECTED TO AERODYNAMIC HEATING WITH A

DISCONTINUOUS CHANGE IN EQUILIBRIUM TEMPERATURE

OR HEAT-TRANSFER COEFFICIENT

By Robert L. Trimpi and Robert A. Jones

Langley Aeronautical LaboratoryLangley Field, Va.

Washington

September 1958

.—-———

Page 2: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

TECHLIBRARYKAFB,NM

iB

.NATIONAL ADVISORY COMMITTEE FOR AERONAUTL. ClfJb7)203

TECHNICAL NOTE 4x8.

TRANSIENT TEMPERATURE DISTRIBUTION IN A

TWO-COMPONENT SEMI-INFINITE COMPOSITE SLAB OF ARBITRARY

MATERIALS SUBJECTED TO AERODYNAMIC HEATING WITH A

DISCONTINUOUS CHANGE IN EQUILIBRIUM TEMPERATURE

OR HEAT-TRANSFER COEFFICIENT

By Robert L. Trimpi and Robert A. Jones

suMMARY

A solution is obtained to the transient temperature distributionin a semi-infinite two-component composite slab of arbitrary materialssubjected to an instantaneous application of aerodynamic heating withconstant equilibrium temperature and heat-transfer coefficient. Thenumerical results are tabulated in a form to permit easy computation ofheat-transfer problems typical of aerodynamic testing. ‘Ihesolutionsare valid for finite two-component slabs as long as the times consideredare small compared with the diffusion time of the backing material.

Analytical results obtained from these solutions can be used todetermine (a) the heat-transfer testing time for which the outer skinmay be assumed to act as a calorimeter without exceeding a given erroror (b) correction curves by which the indicated calorimeter heat-transfercoefficient may be multiplied to obtain the true heat-transfer coeffi-cient. For such a correction curve to be valid, the bond between thetwo materials must have negligible thermal resistance, a condition dif-ficult to attain if the slab is not composed of two metals.

Since the differential equation for the temperature distribution islinear, the principle of superposition is valid. Consequently, the wOb-lem of continuously varying equilibrium temperatures and heat-transfercoefficients may be treated by using the tabulated solutions and con-sidering the continuous variation as a series of superimposed stepfunctions.

.

Page 3: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

2 NAC!.ATN 4308

INTRODUCTION ‘-

.

Themissilesinvolved

increase in flight speeds for both operational and experimentaland airplanes has resulted in renewed interest in the problemsin fluid- and solid-state heat conduction. The two problems of

transient behavior of a two-component slab, consisting of an outer skinwith a backing material, exposed to aerodynamic heating that have becomeof prime importance are: (1) the performance of the surface as measuredby the ability of the material to withstand extreme heating rates on thefull-scale vehicle during the course of its mission and (2) the transienttesting techniques presently in wide use wherein the aerod~amic heatingis varied and the resultant time-wise variation of the temperature of askin, either with or without a backing, is then used to obtain heat-transfer rates and coefficients. For example, these transient testingtechniques are used for shock tubes, free-flight pilotless rocket-propelled models, the sudden insertion of a Dodel into a wind tunnel, orthe rapid variation of the stagnation conditions in wind tunnels.

In the interest of simplicity, these techniques, except that usedfor the shock tube, customarily assume that the outer skin of the slabacts as a calorimeter and absorbs all the aerodynamic heat with negli-gible loss to the backing material. However, even when the backingmaterial has very low conductivity; heat is continually being transferredacross the interface and this heat transfer may introduce large errors inthe answers obtained by the calorimeter assumption.

Two recent papers (refs. 1 and 2) treat the heat transfer to such asemi-infinite composite slab. Reference 1 is applicable to shock-tubetesting wherein a very thin metal plating is formed on an insulator andthe temperature response of the metal is used to determine the heattransfer. This study is applicable to arbitrary heat flux ratesbutassumes the plating to have such negligible thickness that the interface-temperature solution may be found as a perturbation to the surface solu-tion in the absence of the plating. The solutions obtained are valid for

times much greater than the diffusion time in the plating.l Reference 2considers the case of the heating of a composite slab in which the heattransfer is proportional to the difference between wall and equilibrium

1In the discussion of transient heating problems it is convenient to

have reference values of time such as “diffusion time” and “relaxationtime” for comparison purposes. The diffusion time is the quotient of the _ _square of a typical length (for example, the thickness of a slab) dividedby the thermal diffusivity of the material. The relaxation time, appli-cable in exponential decay behavior, is also called the time constant andis that value of time which makes the absolute value of the exponent ofe unity.

.

.

.

.

Page 4: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

W(X m 4308 3

.

.

.

.

.

temperatures. The equilibrium temperature is a step function. The outerskin has finite thickness but infinite conductivity; thus, the temperaturein the skin is uniform at any given time. A solution is presented for theheat conduction to the backing n.u%terial,no coupling between this loss ofheat to the backing and the temperature distribution in the outer skinbeing asmuned. This solution is valid for times that are small comparedwith the relaxation time of the outer skin. Reference 2 shows that con-duction even to relatively good insulators introduces appreciable error.

The present investigation was initiated to obtain solutions for theheat transfer to the composite slab without these restrictions. The mag-nitude of the errors arising from the calorimetric assumption and pos-sible correction factors were to be determined. When the thickness of thebacking material is such that the diffusion time for the backing materialis much larger than any of the testing times, the backing material thenacts as if it were of infinite extent during the test. Consequently, solu-tions to the problem of a semi-infinite composite slab would apply underthis condition. The problem considered in this report is the transienttemperature distribution in a semi-infinite two-ccmponent slab subjectedto aerodynamic heating at a rate equal to the product of a constant heat-transfer coefficient and the difference between surface and equilibriumtemperatures. The equilibrium temperature is assumed to be a step functionand the outer skin is assumed to have both finite conductivity and thick-ness. Solutions are found which are applicable for times varying frommuch less than to much greater than the skin diffusion time. The super-position principle permits extension of the results to arbitrary timetisevariation in heat-transfer coefficient and equilibrium temperature. Theinvestigation reported herein was conducted in the Gas Dynamics branch ofthe Langley Aeronautical Laboratory.

SYMBOLS

a,b constants

A,B,C,D constants

c specific heat

Gn functions definedby equation (23)

H= h/k

h

G

A‘o

heat-transfer coefficient

indicated heat-transfer coefficient

indicated heat-transfer coefficient at E = O; PCZ(dT/dt)o

Te - To

Page 5: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

4 NACA TN 4308

iil indicated heat-transfer coefficient at E =1

J coefficient of ~ in expression for P and equal to +1or -1

k thermal conductivity

L=~=2E7‘1

h

1

m,n

P

P

Q

r~=P~

s = p/4a2

T

T=

To

Trelsx

trelax

t,t’,u

x

a

13=~

-L

Laguerre polynomials (see appendix A)—

distance from surface to interface

integers

parameter in inverse Nlace transform

variable of the Laplace transform

heat flux to surface per unit area

temperature

equilibrium temperature

temperature at ~ = O

relaxation temperature

relaxation time

time variables

per unit time

coordinate measured normal to surface exposed to heating

thermal diffusivity, k/pc

.

.

.

.

Page 6: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN 4300

r~ solutions to r~ tan rs = L

P density of material

q,x,T dummy variables

.

.

.

.

-1-r inverse Laplace transform

A bar over a symbol denotes the Laplace transform. Except as desig-nated in the preceding list, the subscripts 1 or 2 refer to evaluation inregion 1 or 2.

TEE(3RY

tureface

General Solution

The problem to be solved is the one-dimensional transient tempera-distribution in a semi-infinite two-component slab which has onesuddenly exposed to a fluid. This fluid till transfer heat to the

exposed face at a rate proportional to the difference between the constantequilibrium temperature of the fluid and the outer smface temperature ofthe slab. In the interval O < x< Z, the slab is composed of a materialwith properties P1~ cl} kl, and ~; and, in the interval Z < x< co,

it is composed of a material with pr&perties P2, C2, ~, and ~. NO

Page 7: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

6 NACA TN 43o8

thermal resistance is assumed at the interface in the slab. The mathe-matical formulation of this problem is given in terms of the followinggoverning differential eqyations and boundex’yconditions (see fig. 1):

b2T2 1 ~T2 o—-. —=

ax2 a2 aT

‘1 =T2=0

bT1kl —

ax ( )+hTe-T1 =0

‘1 = T2

(t >0, Z<x<m)

(t <0, all x)

(t> o, X+m)

(X=o, t>o)

(x=2, t>o)

(x=2, t>o)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

.

.

.

.

.

/ ‘ptT (t)dt and the definitionsThe MPlace transforms ?(p) = ‘--eJ()

of q= np CL are then employed to reduce equations (1) to (7) to the fol- :“lowing forms:

g2 - @2= o

(O< X<2) (la)

(2< x < I=) (2a)

.

Page 8: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN 4308.

I&o (x +=)

d?l hTe—.

‘1 & h?l+Y=O (x = o)

51 = ?2 (x = 2)

kl ~’%> (x = z)

The general solutions to equations l(a) and 2(a) are:

T1 = Ae-qlx + Beqlx

?2 = Cc-%? + Deqa

7

(4a)

(5a)

(6a)

(7a)

(8)

(9)

The value of D must be identically zero to satisfy equation h(a).Application of the boundary conditions (eqs. 6(a) and T(a)) yields “

(lo)

C = (1 + ~)Ae-q12+qJ

(11)

The remaining constant A is then found from equation 5(a) to be

(-1

A=Hfiql - *1 e-2q1z

PA1‘Pql+H1

)(12)

The solutions to the differential equations in the transformed planebecome

fil H1 1 1

[

e-lq~x—.= — 1+~e-ql(=-x)Te

(o<x<z)n.l+*ll&l-*l e-2qlz

ql + H1 (13)

Page 9: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

8 NACA TN 4308

[- 1

kl 1-B ~-~)-ql z+~+

e (x> z)

—(i4)

.

.-.

-1 ~1Z()The inverse LaPlace transform~

of equation (13) is known

for the special case a = 0, ~ = 1 which corresponds to a perfect insu-lator as the backing material. If the expc.mentialsof equation (13) areexpressed in hyperbolic form, the inversion on page 259 of reference 3applies.

.

/.\

.=

(15) - -

where 17s are the roots of the equation

rs tan rs =

If the slab is composed entirely of

‘1 = k2)~ equations (13) and (14) become

transform

L (16) “-

the same material(P

= 0; .

identical and have as their

(17).-

For the general case of u # O, f3# 1, the inverse transform ofi \Te as expressed in the form of equations (13)and (14) is neither

known nor easily determined. Recourse is then made to expansion of theright-hand side of these equations. (Note that I~I~ 1.) An e~ansionof this ty-pegenerally results in solutions which will converge morerapidly for small values of time.

.

Page 10: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN4308 9

.

substitution of eqyation (18) into eqyations (13) and (14) yields

Z1I f (q-l- %)n-Q(a+g)+ ~n+l (ql -Hl)n -q1Z[2(n+l)-~]

—=Te ‘1

;0 p (qI+ H1~+lsT P’ ‘ ‘l)n+’

.

(19)

If the orders of summation and integration of the inversion processare assumed to be interchangeable, then

-1 -

Z( )‘2~

=Hl(l+ ~)

Pn+l

(1 Hl)n e-qlz[2(n+l)-~]

y (q: +-%)n+’ tJ

(ql - H1 )n

n+l(% + ‘1)

(a)

(22)

Let the function Gn(P,u,L) be defined as follows:.

Page 11: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

10 NACA TN 43o8

@@J)

In appendix Athe series has the

it is shown that the inversion of the general term offOrm .-.

.

.

(24)~-l~:+-H~jle-qlzp] =Gn(p,u,L) ,

Substitution of equation (24) into

m

J

equations (21) end (22) produces —

~n+1C#n[2(n+l)-~,m,L] (25)

n=O

(26) .

The formal integrations required for the evaluation of Gn for a4

range of values of n from O to 5 are @ven in appendix B. The

(&n ahassociated ttiewise and spacewise derivatives

)~ and — are also

at

presented. These derivatives permit the evaluation of both the correc-tion curves to the indicated calorimetric heat-transfer coefficient andthe amount of heat-crossing a given station, in order that estimate ofthe flux through the backing material may be obtained.

Significance of parameters L, h, and B

The physical significance of the nondimensional parameters L, 1,

and j3 wilJ.be briefly discussed at this point. The param?ter L = ~kl

is proportional to the ratio of the temperature difference required totransport a given amount-of heat per unit area across the slab to thetemperature difference required to transport the same amount of heat per,.

.-

.

Page 12: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN 4308 11

unit area from the fluid to the slab. This may be illustrated for thesteady-flow case as follows:

Q=h~e -T(o)] =~T(0) jT(l)

Therefore,

T(0) - T(1) =hz _ ~ ‘

Te - T(0) 5

Now if L is small, a small temperature difference across the outerskin is indicated; thus, the surface temperature and heat transfer whenT(0) +Te will be sensitive to changes in the temperature at the inter-

face. Since the interface temperature is in turn influenced stronglybythe backing material, the relative influence of the backing materialincreases with a decrease in L“ for times of the order of the relaxationtime. (For very large times the backing material must always be thedominating factor.) The significance of L may be realized in an alter-nate way by considering that, when L is small owing to a thin skin, highthermal conductivity, or a low heat-transfer coefficient, a greater por-tion of the heat transferred to the surface is available for transfer tothe backing material and the backing rmterial can exert a larger influ-ence on the temperature time history of the skin for finite times. Aplot of the parameter L obtained for various skin thiclmess and materialcombinations with h = 0.1 Btu/sq ft-sec-% is shown h figure 2. A rangeof L from 0,001 to 0.5 appears to cover practical outer skins whichmight be used for high-speed vehicles.

The significance of the parameter A =r

fi.=w is most easilypcl

described from consideration of the aerodynamic heating of a slab ofthickness 1 having itiinite conductivity (~T/& . O). The slab acts

as a calorimeter absorbing all the heat input. This slab is initiallyat T = O and is subjected to a step input in equilibrium temperature att = o. The temperature of

T—=Te

the slab at time t &y be expressed as

. !z&1 -ez2=l-

Thus, the value A = 1 corresponds to theslab calorimeter.

For a perfectly insulated skin havingness, the temperature distribution departs

-12e

relaxation time in such a

finite conductivity and thick-from that of the calorimeter

Page 13: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

12

as L increases from

ture is approximately

NACA TN 4308

.zero. However, at the value X = 1, the tempera.

-,

the relaxation value given by()Trela=Tel-~*

.

Since t a A2, the ratio of any time t to the relaxation time trehx

is simply 72.—

The parameter ~ denotes the relative insulating perfection of thebacking material. A value of ~ = 1 applies to a perfect insulator;~ = O describes the homogeneouscomposite slab constructed of the samematerial throughout; and ~ = -1 describes a perfect conductor whichmaintains a constant temperature at the interface at ~ = 1.

—Values of

~ appropriate to various combinations of outer skin and backing materialare shown in figure 3. The outer skin materials have common abscissas —and the intersection of these vertical lines with the curves for thebacking materials determine the appropriate value of ~. If the materialsfor skin and backing are interchanged, the sign of ~ is reversed.

Particular Solutions .—

Since many aerodynamic heat-transfer experiments are performed witha model which has a skin of high conductivity and density compared withthat of the backing material, it is desirable to have a form of solutionapplicable to these circumstances. The solution for a perfect insulatorbacking material is either the series given in equation (15) or that .

given in equation (25) when a value of f3= 1 is used. These alternatesolutions converge most rapidly at opposite lilmes, The number of terms .-required to express the timewise derivative for equation (15) is large

.

as t +0 and decreases rapidly with an increase in time; thus for values “-of t greater than about one-half the remtion time, only one or twoterms are required to give the value of ‘1lTe and its timewise and

spacewise derivatives with acceptable accu&cy. Conversely, althoughone term is sufficient for equation (25) when t +0, the number of termsreqyired increases with time. A series thalrwill converge rapidly forthe times of interest for aerodynamic testing purpose’swhen p $=1 may

be obtained by applying the solution of equation (25) as a perturbationtO the solution of equation (15). If T1/Te for ~ = 1.0 is added and .—

.—subtracted to the right-hand side of equation (25), the resulting equa-tion is

?=(3),=J$-‘n)GJa+E20)L)+! - ‘n+l)’nE(n+’)-~~Ll)=(27)

.,

Page 14: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

13NACA TN 4308

.

()

T1where

~ ~=1is evaluated from equation (15) for the appropriate

.values of L, m, and ~.

Of particular interest is the temperature history on the surfaceexposed to the transferring fluid (~between the two different materials.tion (27) produces the following set

.

= O) and thatSubstitutionof equations:

m

on the interface (~ = 1)of k = O into equa-

1

A correspondingby substituting ~ =

L

set of eq.tions1 into equation

(28)

(29)

(30)

may be obtained for the interface(27):

- 13n(l+ B)]Gn(2n+@L) (31)

The evaluation of the terms of equations (25) and (26) becomesprogressively more difficult as n increases. Consequently, if the

Page 15: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

14

temperature at the interface (~ = 1) has to be evaluated

NACA TN 4308

.for any reason

or if the values tabulated in-this report are to be used, then the tem-perature distribution in the backing material can advantageously be .obtained by Duhamel’s method.

Since the temperature distribution in a semi-infinite slab (2 < x< w)when one surface at x = 2 undergoes a ugit-s@p-function increase In tem~ -perature is (ref. 3)

Duhamd’s

*(xJt) =e

T2(x)t) = erfc ~

r (34)2 a2t

technique yields

~~:j$)[~BnGn[~+l,~,$ld. (35’](X-t) (l+p) ‘t

F2 a2

RESULTS AND DISCUSSION

General Results

The values of Gn and its derivatives for n = O to 5 and

E = O and 1 were computed on a card-progamed calculator. Details ofthis procedure are discussed in appendix C. The results of these cmn-putations are given in table I for values of L between 0.001 and 0.5with 0.02~ As 8. Table I is arranged for ,futurecomputing convenience.Values on the left for E = O are alined so that pairs in G or itsderivatives on the ssme horizontal line are operated on by the sam? powerof ~ as prescribed by equations (28)to (,30).

.

.

As discussed in appendix C the computing procedure at times involvedthe subtraction of two large and nearly equal numbers obtained by approxi-mations. Certain voids appear in table I where an inspection of themachine results indicated insufficient accuracy. There was no rigorousrule for determining which answers to discard, but all answers with lessthan foux significant figures were usually eliminated. Those with lessthan three significant figures were always eliminated.

Typical Values of Gn and its associated derivatives which are

required at ~ =The values shownin the braces of

O are plotted against -L for A = 1.0. (See fig. 4.)are those needed in.the evaluation of the first seriesequations (28) to (3o). It is immediately obvious that .

Page 16: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN 4308 15

.the convergence of the series is much more rapid for large values of Lthan for small values of L. For example, at L = 0.5 the ratio of ~to Go is of the order of 10-6 whereas at L = 0.001 the ratio is of

the order of one.

An indication of the accuracy which results from consideration of afinite number of terms to represent the infinite series of eqyation (25)may be obtained frcm figure 5. In this figuxe are plotted the values ofthe ratio of T1/Te for j3= 1 when the upper limit of sunmation in

equation (~) is reduced from infinity to OJ 1, 2, 3, 4, or 5 to thatobtained from table II. (Tkble II contains the values of T1/Te as

determined from equation

)

15) by using a sufficient nuniberof terms toget the desired accuracy. The ratio for values of L = 0.001, 0.1,and 0.5 is plotted as a function of X. The number of terms requiredto reduce the error to a given limit is seen to increase with an increasein A at a constant L and to increase with a decrease in L at a con-stant h. For a constant L, the behavior of TllTe for any finite num-

ber of terms becomes osci~atory as A increases: The errors forOs~<l at a given A and L shouldbe less than those indicated in.figure 5 for j3= 1 since the terms neglected contain ~n or ~*l.In other words, the neglected terms for 0~~<1 haveasmallercon-tribution than those for P = 1.0.

.

Illustrative Example.

The effects of the backing material in a composite slab under typicaltransient test conditions will be illustratedby the following study. Thenumerical results obtained are found by using the values of table I forOS n= 5 and those of table 110 The mathematical assumption of an infi-nite extent of backing material to represent the finite backing of the testis valid for values of ~ near unity as long as the times considered aremuch less than the diffusion time of the backing. The”diffusion times,which are equal to the square of the thickness of the backing materialdivided by the diffusivity of the backing material, for l/&-inch-thickbalsa and mahogany are approximately 120 and 170 seconds, respectively.Consider two stainless-steel outer skins (k = 0.0028 Btu/sec-ft-OF,a = 5.2x 10-5 sqft/see) with thicknesses of 0.060 inch and 0.030 inchbacked by either a perfect insulator (~ =1.(XO), balsa (~s O.975), ormahogany (~ = O.~0). These composite slabs are subjected to a stepinput in equilibrium temperature (for example, by sudden exposure to theairstream of a wind tunnel) and the heat-transfer coefficient h is0.056 Btu/sq ft-sec-9F. The values of L me then 0.10 and O.~ for the0.060- and O.On-inch thicknesses, respectively.

.

Page 17: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

16 NACA TN 43o8

The resulting behavior of the outer skin is illustrated in figure 6which shows the temperature distribution at the outer face (g = O) as afunction of time. The effect of the heat lost to the backing material isevident in a lower temperature in the outer.skin at a given time> a largereffect being observed for the thinner skin.

An indicated heat-transfer coefficient is often obtained from thetemperature-time history of such an experiment. This heat-transfer coef-ficient is determined by assuming that the slab acts as a calorimeter withan infinite value of k; that is,

fhPc,*Te-T

Since the value of ~ depends on the value of 5 at which T is meas-

ured for finite k, the term to or ;I will be used to designate the

values of ; which would be found when T and dT/dt are evaluated at

k =Oorl.

The ratio of the indicated heat-transfer coefficient to the trueheat-transfer coefficient ~/h is plotted as a function of time in fig-ures 7 and 8. Figure 7 shows the ratio at ~ = O and 1.0 for the0.030-inch-thick skin. Except for the initial discrepancy at early times

the values of fio and ~1 are nearly equal. At t = O, to iS infinite

while ~1 is zero, but after about 0.1 second the difference is minor.

Figure 8 shows the ratio ~olh as a function of time for both the

0.030-inch and O.~0-inch s~n. It is evident that ho = h on@ at a

single discrete point for each combinationof skin thickness and backingmaterial. Furthermore, even the perfect insulator does not give a ratio

of unity for ~/h except at one value of time. It may be shown for the

perfect insulator that the asymptotic value of ;/h iS

~ r12Mm -=—t+mh L

~+$L1~=1--3

+...

1+ 2 L2~L+y

(L<< 1)

.

.

.J

.

.

.

.

Page 18: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

3B

.

.

NACA TN 4308 17

Thus even the perfect insulator gives errors of 5/3 and 10/3 percentfor the cases considered (0.030-inch and O.@O-inch-thick skins). Thelarge increase with time of the deviation of fi/h from unity for theimperfect insulators is striking. This error increases with time because,as the heat transferred into the skin at ~ = O decreases monotonicallywith time, the heat transferred out at ~ = 1 first rises with time to amaximum (at approximately h = 1.0) and then subsequently decreases butat a rate slower than that at ~ = O. An approximate method for esti-mating the amount of heat conducted across the interface for the condi-tions of A<< 1 and k + m was also presented in reference 2.

If an error of 10 percent were set on the deviation of indicated totrue heat-transfer coefficient, the time limit for useful data with therespective backings composed of mahogany and balsa would be about 1 sec-ond and 2.5 seconds When Z = 0.030 inch and 2.4 seconds and 5.7 secondswhen Z = 0.C60 inch. If, instead of using a time limit, a temperaturerise limit for a 10-percent error were desired, it may be obtained froma plot similar to that of figure 9. For 2 = 0.030 inch, temperaturerises greater than 30 percent of Te for a mahogany backing or 65 percent

of Te for a balsa backing would give”values of ~/h deviating from

unity by more than 10 percent. Approximately the same limits also applyfor 2 = 0.060 inch.

CONCLUDING RIMARKS

A solution has been obtained to the transient temperature distribu-tion in a semi-infinite two-component composite slab of arbitrary mate-rials subjected to an instantaneous application of aerod-ic heating.with constant equilibrium temperature and heat-transfer coefficient. Thenumerical results are tabulated in a form to permit easy computation ofheat-transfer problems typical of aerodynamic testing. The solutions mevalid for finite two-c~onent slabs as long as the times considered aresmll compared with the diffusion the of the backing material.

Analytical results obtained from these solutions can be used todetermine (a) the heat-transfer testing time for which the outer skin maybe assumed to act as a calorimeter without exceeding a given error or(b) correction curves by which the indicated calorimeter heat-transfercoefficient may be multiplied to obtain the true heat-transfer coefficient.For such a correction curve to be valid, the bond between the two mate-rials must have negligible thermal resistance, a condition difficult toattain if the slab is not composed of two metals.

Since the differential equation for the temperature distribution islinear, the principle of superposition”is valid. Consequently, the problem

Page 19: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

18 NACA TN 4w8

.

of continuously varying equilibrium temperatures and heat-transfer coef-ficients may be treated by using the tabulated solutions and consideringthe continuous variation as a series of superposed step functions.

Langley Aeronautical.Laboratory,National Advisory Committee for Aeronautics,

Langley Field, Vs., June 4, 1958.

.

Page 20: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN 43o8 19

APPENDIX A

INVERSION OF ‘I!KEIAPJACE TRANSFORM

The steps reqyiredequations (21) and (22)sion of the expression

.-

to invert the general terms of the series ofwill be deteti-ned in this section. The inver-

1- - 7

will first be found and then the constants a and b will he assignedpertinent values.

Let s =+. It is then necessary to find the inversion for4-at

-1

e2-[-%b F (2@-l)n 14a2s(2G+l)n+1

(2&- l)n1(26+1)*‘A2)The square-root image rehtion (see page 123 of ref. 4) can be used toevaluate eqyation (A2). Thus if

f(t’) =~-l[.(s)]

then

coU2

1

-— -1

4t’ f(u)du=&oe z *

g(w)

and the evaluation of the following expression is reqtired:

(A3)

-1

Z[ e-2abs (2s - l)n

s 1(2s +“l)n+l

Page 21: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

20

The term

NACA TN 4308

.

and

-1

Z[1

(2s - l)n =

(2s + l)n+l

(seepage 298 of ref. 5 and pwe 1-29of

o

1

(o< T< @b)

1(A4)

ref. 4.) The

designates Laguerre polynomi~ls of the following form:

(2ab < T)

J

nn (.’r)rn

Ln(T) =

u )n-m ~:

m=o

n

Ln(T) =I

1

(-T)m

(n ~!’m)! (m!)2m=O

.-

(A5)

symbol %(T)

(A6)

Application of the convolution theorem to equations (Ah) and (A5) resultsin:

Z’-’[--]=*L“-%b“’’~(’)‘l)dT+

J /1 u ~-z %(T) (0)dT

u-2ab

J’u-2ab

~ e-T/2 L (T)dT=-2 ,~ n (A7)

.

.

Page 22: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN 4308 21

Combination of

.-1 -2ab&

z{ [$’6

L

For S = Cp,

equation (A7) and the image formula (A3) yields

(2G - l)n

1}(2G + l)n+l

wU2

J

:=

I

& 12u-2ab -T

‘& 2ab 2Ln(T)dT du

o

(A8)

Ct ‘ = t, it may be shown that, if

z-~(sj=f(t’)then

Consequently,

-1

zor

since c 1= ~, equation (A8) may be operated on to yield:

(A9)

4ac

(A1O)

Ifar

=H a and b=~,&

equation (A1O) becomes

Page 23: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

22 NACA TN 4308.

. .

and

are substituted inequations result:

xu=— --

r4?X ~

X2

‘T%

the right-hand side of equation (All), the following

- Gn(P,u,L) (A12) .

.

.

Page 24: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

.

.

NACA TN 4308

APPENDIX B

23

.

.

ZIG aGnEXPRESSIONS FOR THE VARIOUS Gn, ~, AND —

&2 ae

FOR VALUES OF n FROM O TO 5

Formal integration of the eqyations for the Gn for values of n

from O to 5 and subsequent partial differentiation with respect to 02and ~ produced the following expressions:

‘o= erfc * - e“erfc @

G2 = erfc ~ - (1+ 8.2@2 )+ 4A2L enerfc $ + ($ A%@)&-$

*2

)8J ~3/2(1 + A@)e-*2—=

ae-Lj(l+ 8A@ + 8A%@2+ 4A*L e“erfc $+z

Page 25: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

G4 = erfc $ - e~erfc

36~L512 + 40A2L3@ + 32T

NACA TN 4308.

~ A3L3/2@3 +

)~3L3/2 e -@

36AL5/2$ + 4012L3@2 + ‘20A2L3+ ~ A3L7~2#3 +

.

!( 6433/2@3 +324241 + 16A2L#2 + 8A2L; ~ h L ~AL@ +

.

3 3/2@)+ ;F~48fL@ + 64A3L3/2@2 + 64A3L3/2 ,32A4L2$2+ 8h4L2 + 32A L

423

)32A L@ + 80A4L2@ e

-F—

~G4

(

‘+2 j 4.8hL3/2~=e + 144A2L2@ + U8A3L5/2 + 128X3L5/2@2 + 32A4L3@3 +

36

)80A4L3# -

(

3/2enerfc $ j + 16AL $ + 48A2L2(? i-24h2L2 + ~ A3L5/2@3 +

3 3/2 3243#

432 4364AL @+@L +32AL@+8hL+L

).-

.

/’,-

Page 26: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

.

NACA ‘INL308 25

( 3/2$+ 240~2L2fj2“+-e~erfc @ $ 60AL

480h3fi/2@ + 1601.4L3~ + 480X4L3@2

35~2$3+120A2L2 + 320A L

+ 120A4L3 + :8 ~5L7/2@ +/

)( J ~U3/2 + 2401%2$ + 320A3$/2 +128A5L7/2ff3+ 96A5L7/2@+ 3L + —3G

320h3L5’2$ -i-160A4L3$3+ kOOA4L3#-i-~A5L7/2$4 + ~A5L7/2@2 +

)256 ~5L7/2e-@T

Page 27: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

26

%=(

-eQerfc @ llL2 +z

320A3L7/2@+ ~

.

.

.

.

.#f

Page 28: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN 4308 27

APPENDIX C

& aGnNUMERICAL COMPUTATIONS FOR TKE VARIOUS Gn, ~, ANDj —

&2 ak

The computations necessary to evaluate the eqpatiortsof appendix Bwere carried out on a card-programed calculator. On this machine, thenumber of significant figures in any computational step was limited toeight, a limitation which resulted in a pr~essive d~inishing of thesignificant figures in the answers as the value of n increased at agiven A and L. The reason for the loss of significant figures is the

fact that each answer(except for a

*)Eis the difference between two

numbers; thus, when th~se numbers be~ornelarge and near~ equa~~ theresultant difference has few significant figures.

It was also found that the complimentary error functions had to becomputed to within a very small fraction of a percent of the correctvalue in order to obtain usable accuracy. The above-mentioned subtractionof two large but nearly equal numbers, one of which contains the compli-mentary error function.as a multiplier, is the reason fm the particularaccuracy required. The following expressions were used to compute thecomplimentary error function of @ and V in the ranges of the argu-ments listed (~ is taken as the illustrative argument):

. erfc#=~e -P(alq + a2q2 + a3q3 + ahqk + a~rj3fi )

where

1n =,

1+ 0.3275911@

al = 0.22583685

a2 = -0.25212867

a3 = 1.2596951

a~ = -1.2878225

= 0.94064607a5

Page 29: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

28 NACA TN 43o8

(erfc @=o. oo@069z02-o:oo21782842E 1-2.5E+3.8333333E2-3.9583333E3+

2.8083333E4-1.2847222E5+ 0.24w07$Jw6+ 0.v66766G7 -

)O.U4g0024e8+ 0.03617587U9 (2S @ ~ 2.8) (C2)

where e =@ -2.5 and

76.331

T + 10;~18 )]

where X = 2#2.

(2.8 < @< M) (C3)

..”

the approximation found on page 169 of reference 6.by this approximation became unacceptable in this .

Eqwtion (Cl) isThe errors Introducedapplication above a value of the argument of 2. Equation (C!3)was orig-inally thought to be useful in the range of arguments from 2 to co since

1 ed2the product of the first bracketed expression and ——Gfl

represent the

first eight terms of the semiconvergent series for erfc @ valid forlarge @ and the constants of the second bracketed expression are chosento give true answers at @ = 2, 2.5, and 3. However, it was discoveredthat this eqpation was also unacceptable in.the range. 2<~< 2.8. Ausable equation (eq. (C2)) for this range was found by employing the first10 terms of the Taylor expansion of erfc @ about the point @ = 2.5.

--

,/

Page 30: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN 43o8 29

REFERENCES

1. Vidal, R. J.: Model Instrumentation Techniques for Heat Transferand Force Measurements in a Hypersonic Shock Tunnel. Rep.No. AD-917-A-1 (Contract No. AF33(616)-2387), Cornell AeronauticalLab., kc., Feb. 1%6.

2. Cooper, Morton, and Mayo, Edward E.: Normal Conduction Effects onHeat-Transfer Data During Transient Heating of !Ihti-SkinModels.Jour. of the Aero. Sci. (Readers’ Forum), vol. 24, no. 6, June 1957,pp. 461-462.

3. Carslaw, H. S., and Jaeger, J. C.: Conduction of Heat in Solids.The Clarendon Press (Herd), 1947.

4. Magnus, Wilhelm, and Oberhettinger, Fritz: Formulas and Theoremsfor the Special Functions of Mathematical Physics. Chelsea Pub.Co. (New York), 1949.

5. Churchill, RuelV.: Modern Operational hkthematics in Engineering.McGraw-Hill Book Co., Inc., 1X.

6. Hastings, Cecil, Jr.: Approximations for Digital Computers.

Page 31: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

. .-

m r.. — m-w%, $im$mn. .om,mmm=

-R PIUi-TNJE3WL AQA

(.] L . O.COl

x - O.&

0 0 0. W367M x ka~ -o.99733@ x 10+O.*W % 10-3 1 0

2 1 .U653$l x IO-3 -.tim

0JssriQ3xti 4.?mm=6 , ld o~xm

=3$7063 e 0 O+lrkuc x MI-3 -o.bw*m x 1o-3 .3.22+- x 1o-3

b a .159!31@3 x M-3 .~

3 1 .- x U-3 -.$fkwm

.mxd b 1 .lml.l!m

.mm

-.umm

6 3 .2m3m x ld -.awma x d A2m61

.9P7353Q x K+ 5 2 .wO#6X+ -.LaE=ea x L+ .Yz$e#ax10

6 2 .Z7yj44@xld -.~ x d .@@l@@i

a 4 .Zlw x M-Y --m x m+ .~ x U-3 8 3 .&l’wX.) x &

‘f 3 .i%m%m x m5 -.Ke4am x 10+ .mxlu

-.~x la+ .W13+3X1 x m+ 9 ~ .YX=m x IG-J -.me4&6 x IL-6 J%3s@

0 5 Lm6wxlo-$ .Js?mE7xld .Ifbm x MA 10 k .-XI?A -~xd .gl?qmxd 11 y *M$O x 10-? duks+gl )( IO-7 .&ej@Xti

In 5 .imcf?mxl@ -.- x l!+ .@14~ x W=7

x - O.la

o 0 o.~ x 111~ 4.y#uJ3n x B-3 O,lmlwl x M-3

2 1 .15UU3%

1 0 o.~ x N. -0.&OwA x M-3 O.lmleqtm x 30

-.t%?m .l.wm .lww34 e ~ x IO-3 ..~

2 0 O.Is@* x Id -wme.%n x In-3 0.16Y@l x M-> 3 1 .W33w -.W3%Q3

.W3%m k 1 .-x ID-3 -.~ .U%w9

6 3 .%733W

3 2 .3!&X6 x IO-3 ..efc+s&s7

-.1- .7JSB*.X d 6 e .3650%m

.3+10imlxlw

..rm3316 .nmm x d 1 3 .~

8 b .~-.um3’ia

..TWW9 x + .x?&Ma 8 > .azew’o

o 3 .XfwX.3xld ..ew63@

-.’l%i%w2 x d .35Ym1 9 $ .mwoxd -.wwtiu x d t%%

JW635% la b .m+ x d -.*ggi6$0 .Wlw3 11 9 .l%&Oo -.136?m9 .amma x m

34 5 .*lXQo x d -.llOl@a x 10+ .b~ x 10->

rODO.7c$f&mxl#

al .~

bn .-

63 .3.6u910B k .1-0> .u3%m

JI

-0.99?3WS x ID-3 0.w13X x d

-.’mTaEa .W6f33+a.633367U .T#lM.- .6Tm636

-.3w3m .Y6zw=l-exam .W=m’7 rQoo.@.?mxlG+

41 .336_YY@

,62 ,~

83 .1=

104 Jm3im

L?5 ,nmcmxlc+

W5f!am x M-:-.e’mQu-.rP.3me

-.mcm-.5s33%3

-.Y-wmL3

,Lq6rra6 x d.Wr-ul.3tmmsa.$3-2@m

.WrPW

.92m131

a - O.m

-?.-0.40

cu~ x u

-.7m135=-.&ma%-.-*

-.4MUS7

T“0.@@lp x M-3 0.- x la

--- .e@333#1

--- .-

-.4L5%61T .Wra

-.ms?m% .31cauf3

-.@3331m .3?uvm

0.s+2@3 x X3-3 0.wsm168 x 10

-Am93X .kM3@6

-.’7zmm .59=%7

-&m@ .X6mx4

-.mu6?31 .--.mae= .mv.m

uo

,

Page 32: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

t

X.c..m I-o.$w%n x

---

---

-.-*W

-.*W

-.m

-.meml .U4bsl

.-7 ammd

-- -

--- .wR=3

k-x.

. mum

.W5xd-.Q?%-

---

-.$wnl

a-u

m.wxlbwxu~o-,ld-.eam

-.’rm095 am

---

-6n’?XM

-.5mnJ

m-c.Wllw x O+mlx lo-$

-.e#P57

--- .-

-.isea Jam

-.fawm .-

-.!?mm9 .-xld

UIP

Page 33: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

10 0 .G5k6a%m

E 1 auamxl

b e .M@7x&

6 5 .03Ds19m

8 k .03?J$pM

a 5 .C@$?P6m

-----.mx-ra

-.wf5%6

-.tacaw

---

----

IFlL+0x07wax16

.wWxxl

.7mcm

.Wmaxa

.mm

,

II

J___0 .aQm9?l

1 .Wmm

2 .G+u3r#n

3 .W333W

h.om-i%m

5.um3ww

A- 1.6

I

--L-0.W3% x lo+ o.uuam x 10

-.ae@5m .m’mo x M

-.m .m%m-.6i35mo .mlnm

-.3- A-

--- .-

O.mxa%Y)

a693xaa

.’3s-5361

.R=vaM

- , i

mI I

0 .05f6xa0

I 1

-.m=%m

-.6-

-.i16i6ul

-Ac&ao

0.15ta6w x 10+

.@Ym3

-4Eow3

.-

.a’DF=-3

,.~

II I I

TI%mm3se x ki=~ 0m74* x L+

-.7+* .-

-. f.ltfen .muxa

-w=-!= .-

-.YBxmm .-

-.z-misd .’n@Mxll#

I I

,

Page 34: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

, ,

0 0 Wlm?a4 -0.6xMafa x 10+ O.heluenx I@

2 1 .Wklnha -.m .=-3m3 e 0 O,llxwm

b s .Ommp -.x4wm .13nm 4 1 .~

6 3 ~ -.nmf-a .6.%5a30xld 6 n .07a6z=s

8 6 .dw6w.$ --- Lrmolm x u-l 8 s .Wws4

M y .0331@Xa -.w’n?s +m5wa x d m k .c+!3X@

la 5 .033155m

D 0 O.mfwa?a -o.up3@4 # la+ O.zsws x d

e 1 .lDX.+@ -.6Y4s@ .- n 0 0.M439K7

$ a .Oi-lBw6 -.WM3U .-m h 1 .c9YfmM

6 3 .~ -.md?w .Em%m x + 6 * .CmcA$i5

8 b ,~ -mf$ma -.~ 8 > .-O

10 5 .03imXaL1 -Jmm -.~ 10 b .~

m 3 .—

. - . ..1 0 -0. EA%A6 x M-3 O.-9 x E-5

AMrrf@9 “ lo+ 0.M9KU! x la+ “3 1 .6#ls=0

--- .Ew3m 5 e .C@diw

--- 7

-.3P35W 9

-S?3!lm U

-.u?mfm

-A - b,o

rmiikZx=:z i :’”’ :;

0 0 0.- -0.fz5LwaY.1# Clm36mxd

t L .M561a -.* -S-slSm x =7 e 0 O.?Lnl!Is

b a .@4wm Jm61cu x d -.~ x + b 1 .WYlual

6 3 .m39i-Km .3u5m -.eiwm 6 a .U+6ceW

e * ..- x I@ .w!OJD1 .~ 8 3 .M4013im

10 5 +awum Am%um -.- x Id w b -mum x 10-a

u > .Sbm

Page 35: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

.-

VAUQSWPWV--~ LAMA— —

(b) L - O.W

. %(P) ‘? 3 P n Q7) J?’ 3 II‘1+ ‘@) J$ 3

i - O.u?0 o.l$$5$Qm x h+ -0.$$9JZK6 x U-Qo.%wMrJ x I@

1 .a3s2w x k+ ..23s3

o~)d

.3712X&+ x In-? 2 0 0.!a379X4 x M-9 -o.mm? x d o.37133%1 x M-7

e O(@) O(lcrq h 1 +=6) C&w+

1 ; O.TCUOX1~ a.y~ d ..b?dy

O(M+3)

-A - O.&

0 0 0.W95WI x + a.wr5w2 x IO+ 0. E9563?4 x K+ 1 0 O.lm x IO-2 a.~ x & O.*= x d

e 1 .e63Qs30 x M-Y -.6*343X? x M-3 &L93m7xd e o O.zmolm x 10+ -0.wP619 x m+ 0J!amYfJxllr3 3 1 .~ x U+ -.G37W x K+ .3mht67Xad

4 2 .L33vn63 x m+ -.tmu3+ x 30-3 JZP3XQXld h 1 .~ x U-5 -.wm-$u x u-> .lxmhoxd !! 2 .401e4J x M-7 -.~~u . d .~xl,#

6 3 .6W x KF9 .J3?Am x d ~ x 10-7 6 2 .~xlc+ -S?Wla x d .19mw x U-7 7 3

8 k

o@) O(lww)

0@) o (K+ 0 k+) 8 5 O(lmu ) o k=+) I&=)

.Vwlm x IO-$

a . O.ILI

o 0 o.7se91rm x @ -0.wu3%3 x m= 0.19%Q35 x U& 1 0 o.3g3?$ml x lo+ -o.~ x & 0.1144s91 x d

e 1 .Imm.l -.u=wm .Um=m e 0 O.w%-iw x lo~ 4.15W x M= 0mn5&6xti 3 1 .YE8?5W3 x M-3 -.~~ x 10+ .- ~ jQ-:

k 2 .I@3k(3 x U-3 -~xd .&m x U-3 k 1 .16swno x K-3 -.e.wm x K-3 .@@ x IO-3 7 z .~xk+ -.6ullZXe x I& .e6mm9Xd

6 3 .EQrmm x M -. W.3WM x d Jm9m?6x@ 6 2 .=XKH -.wm?m x d .msiwaxld 7 3 .UX.6Joxm+ -.=im=5 x m+ .~ x ID-Y

.9 b .141me3? x d - .3103m? x d .63Xh433x& e 3 .lmwa x d -Zufr#6 x d .mJm3xlf+ 9 h .- x X-7 ..m~ x ID-7 .~ x ml

4 Y .W61mxd -.~ x d .~xd 10 b .103fm3x@ .. C61ETW x d .75X&3mxlL+ II 5 O@) ..3M3WI x 10+ .32SIW7 x M

= 2 O(IA ok+ O(ICJ)

A - 0.=

0 0 o.~ -0.%msm3x& O.mmla x U+ 1 0 0.mu3149 -3.3%%W2 x k+ 0. SM3%W x M-3

a 1 .X&3wJ x M= -. E569F67 .wmn7 2 0 0.- x aG’Q -0.3m&eJ2xti 0.6%UW x Id 3 1 .~*a& -.w.em* .713+9w

k a .31.w&3 --- .S3Z765 4 1 .*5WI -.1337ma > Q .lsuE-m

-.-9 x lR3 :%

-.lcOs!Zs .k3=Yw

6 3 ~ -.6af4$s x w+ .7m=%e 6 e .3M7wm

8 b .?JSW-P x IG-3 -.msmY .3SX6%3

T 3 .61k61m *IO-3 ..~ x D-3 .~

8 3 .*35 x M-3 -.aam+llm .- 9 b .= -.3-IWW3 .7WSXXUP

m 9 .3X5WIXIK+ -.>- x d .-%9 x ld m 4 .mMlmxld -.%3?WW7 x K+ .UlOiw x ld n Y .5379WU x M+ -Srw-3pxld .mkt%$6

E 5 .- .-.la6m53 .~

i . OM

o 0 o.~ -9.4W* x K+ 0. W45$J6 x 1o-3 1 0 0.OXce#a -0. ES?2R3 x ti O.kmwu x W3

a 1 .~ --- .~ 2 0 o.~ 4.3?K5939 x W e O.Mmm x W-3 3 1 .m73wwt9 -.5m5m3 ~

k a .M&Z+m -.mctrs? .Wif=33 k 1 miiwlul -~ .m .5 e .W?!33 --m=nm .-

6 3 .9w13mx Jr-Q -.lmmw .X%M31 6 a .-XM -.zu16ew .-

8 4 .-

7 5 .7366am xlc-Q ..163swm

.Q3mm

=%-

-J.31mm 8 3 .Wm -*W .Z%%rl 9 k .M6%rX4 -.K&w .slwc=l

10 > .X3?mM -.mX& x 30- 3 .mm31 M 4 .5$*X9 -.~ x m 3 .Wusel u 5 .$59mw ..- x 30+ 4m7calh

W 3 .Wmm --- .~

✎✌✎

L

.-

Page 36: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

-.

● ✌ , .

VJDmmrm-uunw LJmx. —

(b) L - O.(W - bti

-A - 0.6Q

0 0 o.dQs?9w a.bm II @ o,3c&m3 x I@ 10 C..c+aw??o -o.4Mra x ti (I.M x w>

z 1 .a3i6Ymm -.3m$m .36?3ml a 0 .mmmm -o.umaa x d o. X71vm x M-3 3 1 .~ -.3X5%4 .-50

k e .m9cA19 -.**8 .- b 1 m13nlbE

6 3 .Me$WE6

-.?$mt-cl .Smml 5 a .~ --- .-

-. E3WZQ .W% 6 n .C6cGfm9 -.mm$l .-T 7 5 .~ - .awlm .lmW5

8 4 ..cw%.m ..JhLE6M .-3 8 3 .mM!mw ..19X6ZJ .IiWcm b .~ -Jm33P .ImLVh9

O 9 .9m6mx@ -.a333m4 .1466m an k tim -.lWGmi .X.363m : 5 .mWPxlc-Q -JQWW .lXmWm

le 9 .m936Mx@ -.lucmo Jfmm3

a . O.m

0 0 o.c&fmml a.i&lmB s N O.- x M-5 1 0 O.@* -9.M99mx19+ O.- x M-3

t L ,C4wcam -.3Q9Z% .MQ161s B 0 O.lnlmmm -OA?wmrl x * 0.eas61cu x IL+ > 1

b e .0ss6aW -.s5+83s7

.W3Z#a

.W3s$$f

-.~ .Uilcem

b 1 .Omm -. M%55U .3=n91a 5 a --- .15#319

6 3 .~ --- .X=Wrl 6 a .Q3%c5m - -W .Umm=2

0 k .CQmma

7 3 .~

-.WW>

-.==%W

.-

.W39m

8 3 .W3$363 --- .166%M 9 ~ .mTtm9

0 7 .MJ3Wm

-.MSWG

-.r.ulm

JE6=P

.93fWpxd lo k .W6aWm -JmiZa .US3m3 u 5 .oLWSjp --- .*xld

u 5 .Cu43%?m --- .Wm$Jxd3

-c. U+49x M-@ O.liswfnx u+2

b

0 0 o.ce993ma -c.bm?%xti 0.143W6 x K-3

e 1 .~ -.Zmm3e Jm31k= E 0 0.@3xWAa

b * .03Mmm -.mmWJ .rmmx+ h 1 .~

6 5 .CM63cm -.mmcu? .%$&Am 6 e .~

0 b .IZa+ram -*m .MC337-9U 8 3 .03rJmm

LO7 .Wmm -.Wmm .3UW3M 10 b .msi+33w

12 3 .Ce21mm

-A .1.0

o.b97m5e x m

-.33mm----.aumm-.M’W373-.lmaw

x.Ln

4.W7LW x 10

-.9%@J’m----.-we-. IE?.W!4

a . l.h

. .. .--P

-.i4i3i0 .AWa

-0.Um x lo

-.3xwJm

-.*

-.17w+i

0.1Z+13W x K.-:

.lm%?u

.*

.e-%m%a”d

.’m’3x’P

1

4. Mua30x19

-.-a-.ti3vn

..161mm

-.m

I

-a.wlt?a x In

-.mfam

-.@m9

-Jwwa

O.lawa x 10+

.WQh4m x ad

.m39P

.3B.W7W

.VswO

Ml$mI

Page 37: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

.— -. —

b) L- D.W— —

!ll__0 .U%-m

1 .COlnmIo

z .’%a519&

.C%cm91

b.m’m455 .U=63m0

0 0 o~ -0.v3yu7a x lC= 0..9mJM x dP 1 .C%&cm -.3G9il%a .mm z 0 o.~

b 2 .UmQj@ -.alaw .~ h L .@v5g43

6 > .C9ZmX9 -.a3s9654 .mslm 6 E .C6Wfm

0 k .C?ss+m -. UW3+6Y .3sWcc0*ld 8 3 .~

m 3 .mM?sW -.l=mw s M-3 --- ~ 4 .C%mm

Iz 5 .G7nw111

m mmI -.agmm” U-31 .6-&M03X IOql

II

roO.lwam

1 .I@nl%

e .UQelw

3 .a39wM

b .C#ee4-3

5 .L=mlbO

I I I II IIIs 5 .*?SWO I -.3W-M -Am x m+

I

m

mam- x o.~ x lcr3

-.nm.m mum x Id

--- .*-

- .um%91 .Wlm

-.le4am9 .-

-.-xlu .mmixti

J 1I

ao.H@u x a.~ x x+-.w- .**’im

-.m%ml .X61ma

-Jam331) .W&im

-. WMM13 .4Y?J9=cl. lc-l

-.m5mo x U-3 ..l%349m

a.421is%a x 10+ *lM*Wrx IQ+

-.~ .U3W

-.wmml .~

--1.vm$5 .i%+cemxti

-. fmkWx 14+ -Jam

--- -mm

[email protected]

-.~ =mImc4

-.r43Q .i’Ex6xax3b+

-.%-9$U x 10+-Jmwm

-A5m5m -.~

-.fa-w -.m6%ws Id

● ✎. .

Page 38: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

● ☛ , t , *

(b) L .0.03- -W

40o.u&463

al .-

kn .$wmvx@

63 -. QM31m —

b ..olmacm —

!3 -.&a5uw x3&

EO,xpm

HIWI

-.msYmOl

-~

4-,mJLvDxl#

.*X.mc.a

ro.x67m6

.L3ma

.C+m133m

.63’7i%cmxd

-A51ma-.%a’ham

.emc9t0 x 30->..?.9wa

Jlbll9 & ..~

I

.- -.m

.ZXmc.I -.mu?m 5 -.9wRm .rlwuo -.!78kmx104

.L- --- x

i .8.6 I

X.M.O

Cw#wG7 x ID+O, bEAua x X-9.- x la+-A56mfm n o 0,*75X ---3738 x

.-%e= -.m=m b 1 ,@16?ll

.Cc%m9.mxln-$ .f&wa3Xti 6 2 -. QmWLc

--- .73mX0 n 3 -.~

--- .XWiXO u b -,~ x M

36 5 .-

Page 39: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

,.. . .- . .-

-1.- C--W ~, J g%m~?m.om,mm!mm

(.)L .0.01

a .O.ce

0 0a5mu4 x WQ 4.9?7’ia’lu x ma o.canOs@ o O.&?s%x.l x # a,4c46@5 x W-30.WJ7 x M-4

x . O.&

o 0 o.67jwm x II@ -0.%3s3*x * 0.W5333 x d .1 00.9311uImx 10->-omp x d 0.4@l~7x &

z 1 .331@ln x l+ ..~ x IJ3-3 .mm33T x IO-3 R o o.~ x d -0.l&mz6 x 10+ 0.?&?4?Jm x 233-5 3 1 .6- x d -J9Wi-1= x @ .IBXrm Qxll+

4 e .Wo3Mxd -AumEA x m? .A3%6Mex 10-$ 4 1 .4aalcaxd -*7X4 x 10+ .1599W3x 10-6 ~ z O(KA) O(@) O(W-9)

6+ Y 0 w) O(IQ+) O(lo=) 6 2 O&) oh-+ O(JRW

a-ala

0 Q.cmla.- J -1-.ao . ,.+ n *.m L. . ,(+ I II I I III 11016.?&mlrr91 Ill-f I-a.mmbw x lAO.4- x ID+

L .$W233

. ——.,. . . -... .—.. -— .. . ..— ---- -Imx lo+ -.z3w&5 Sank&

. . . . . .

Q 0 o.5.Zk5Ku x U-3 4.r&W33 x M+ 0.w3W7a $ & 3 1 .1Fu71&a x M-3 --- x U-5 .*x lk3

..45?093h9 x d ~xlr3 h 1 .M31m0xlL+ -.wMm x d .lm.$um x ID-3 5 Q ~xd -.3m5wl x 10+ .lc6Wi39xll+

-.Wu&?3 x d .-. ~ 6 e .W0i6313 x W-7 ..em2fc.3 x M+ .-x+ T 3 .M=Wx~ -. Esifm x ~ .=amm x u-l

0(l&9) dti) B 3 ,&lfl) o(ur9) o(w9) 9 k O(IJ+) O@) O(loq

1 .0.20 I

I A .0.40 I

-o.sxAl* x W-Qo.l?JM3=xld

--- .~

I2 0 O.ozp’Pm

-.km9’m .6mm0 x M-3 b .0Ms166e

Qm1613 .6Q3m.33 6 .I%em5 x

-.IA-WB3 .- 8 3 .3k?6ma

--- x=3 .- m k .ti*Wg

u? 3 .YX61mx

● ✎

I

1 0 0.c3i6msu -0.m5mw x 16- o.lx41mxl#

-o.&63mx & O“lwmnxld 3 2 .o16zLE5q --- .14369m

--- .-x IO-3 5 e .~ -.3$=Jml .lec&sm X U-3

lC= -.-m .6%* T 3 .is573xw x we -.lFTUM .-

-An313X .*- 9 4 .22X+&M -~ x lD-3 .~

-.felma x E+ .R%s% 1 5 -WT&OXti -.W=3m .Il%Ziu

10+ ..eFAcee .UmA57

. .

Page 40: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

9 * , .

-A . O.ta

0 0 O.cavmm -03mwP x lc-O.W.W x ID-3 ! 1 0 o.~

a 1 .amiE13Y -.6t3=aY .- * 0 .3.CA7C+W .a.76?4QR0 x + O.mWuxu# 3 1 .Wm407J

h a .cumQ.u --- .9WW b 1 .0X61LM30 -.*7 ~w 5 e .m35W5

6 3 .Wmcta -.*W Am 6 n .Lu3mllj ..- .W3m5 1 3 .01M31m

B b .-7 -,tilW3 .3W9W B 3 .M193m --- .- 9 b .i3WE4mxl#

10 5 .6s7%73 x u+ -JAmOn .E4cai-m m b .-xti ..lfA+&f6 .?240s U Y .W3WR’

= 9 .bWE970 --- .mm

a - O.m

m.o.m93@X o.Mma x lo+-.ma’m

-.wwfm .*M5

-5w3333i .=6%5-J5n3na .mm-.wu3m

-.mma-.3W32M .WmX9

Illn.Ok%nM-~ .- 3.0s9rPa-.1- .Inucmb.C=mm

a .1.0

1 0 o.cw@m “&e45mfa x 10+ D.’am x K-3

-9.9. x 10+0A*F3Mx 30+ 3 1 .C.%WW --- .-

.Mw 5 1 .cWm67 -.vm .~

-.iM%Yn .- 1 9 .~ --- .-

-.m-mm .1633mu 9 b .~ -.=%lm .WPlm

-.msnm .~ u 5 .0Kc+wB3 -.m3f69J .~

-W5?397a .=

-h . 1.s

I ‘A . I.&

.a.035ma x d O.miml x d

-.5um3- 11.anwD6--- .Yzzml-.zf+J@G II.M#M9

-.zmQL= .mx~-.M6m-P

II.-

m4.- x M+ O.- x M-3

-mm -1

-.373$-

-. S31-W .fcci6mx!&

-.muw .~

-Jlm39J

Page 41: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

.-

E00 0.@Mea

a .Wrm’i

4 .CfWm3a

3 .~

b .Ou.?mln

3 .- XYR$

, .

‘A.** I

1 i, 1, .,

Page 42: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

, . *

ll_-00 O.$mel ,IL@&cl

k2 .-X*

65-.016uwm —

84 -.CU33WI --

10 ..isWbXm x IO-Q

E

000.-

RI .C!A36MM

b e -.~

63 -.mmiqm

6 ..33WCW x ma

105 A%XvXlxti

-99XK4 O.’mmm x d-.mm3301 x d

..l$#Trmx Kr+-.a’?3M6w x U+.53.K69M .Awl)l@

.- -WmxQ1

.33mm -.7?%P x E-5131 .~ -.017aE11 dfqmca . u+>a .~ -.llu$-pJ x 10+ ..0e4va3 X“ld

3 .’we4K0 .Wwx -.e4!JwMgb .~xm~ .b6s-rfm -W9WQ3

113 -.6- .- -.’fkX!s.3M x @

a ..9.0

zdw3x7 x 10+ o. Ea3!an x m’

.Y3m#a x M-9 .,l%maa

.- ..m’mm x m

.’amlma

-.3Tmua x .~——. .——.

m,

!3s’

Page 43: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

-. . mm I

o 0 o.5&3ua x W-Q -3.0wlbw3 0.3ErA14e 1 ——— . .. —-— —- e 0 —— ——-

b 1 ___ _—— —

>. “.* I,.—..—

0 0 o.01k#Q9n J3.cA?6s.5a 0.KG56W 1 0 O.kziw.ca x x+ 4.tl-@3n x W-S0.x4315mx m-eP 1 .Iz x 10+ -.@7mE39 x d X6-me x WI 2 0 o.w3u0m x I&9 &%ac!co x d o.9T333ka x 10+ 3 1 +w ++) 0(4)

b e O(llr=) o(lcr=) OK) $ 1 ok-=) O(W4 C&-83)

-.. o.in I,. . .

a 0 0.c2klzm3 4.cw76?m9 0.c6%i0i3 1 0 O.lxfzc.n x ld -o.~ x

z 1 .l?wzaxlL+ -.73?7P19 x Id

ti O.mrimblfl

.4mM.39 x U-3 z 0 0.a3m&Mxd a.rls=m x W+ o.~ x 10+ 3 1 .W7m x m? -.lcm4h20 x d

b e O@) O(lo-q o(M=9) 4 , oh+

.WW9 x d

.&+) .lmei33 x U-9 > 2 Ow) O(u+) 0 (UN)

6 e ——— —— o(lli-+

a - O.w

0 0 O.memfam -3.c%m39! O.wleal-l 1 0 O.w.%uwl -0.=VF9739 0.a?2c3sw

2 1 .sm%mxlO- -.3a5w16 x + .&as+M x M-e 2 0 0.3CUYHUI x H a>m x U@ ME?M31xlv= 3 1 .3%13W1 x U-3 -.eXems3 x lm3 .1* x d

b 2 S632710xlc+ -.-pllKaO x IL+ .iysE.M x 10+ b L .mxlc+ -.3WKm x & =lW#6Xld ? e .103s15mx 10-3 -.~~ x 10+ .u&A?mxll#

6 5 .3$WX9 x m-l ..%3%?XI x W-7 .3- x d 6 e .eM%40 x m-? -.sFmEa x IL-7 .*Es* x ~-6 7 s .mx~ ---- x ma -mJf9%x+

8 b C&+ 0@) C&+ 0 3 O@) ‘ O@) C&0-u) 9 5 oh-+ &+3)0 k+)

h - O.ho

0 0 0.03v3m0 -o.~ o.~ 1 0 0.@2&%al -o.~ 0.0u%936e 1 .mmxm -.mm=z .m33-axul* e o~-~ -o.~ 0.mm71M 5 1 .Mz&?Eta

b E

-.9rim3!m x 19+ .Qce&axll@

.4e6393Xw= -.w-5t$m x 10-Q .??nwa 4 1 .Zu9k3P x 10-e -. WCC6C6 x 10-Q .37%X537 x m-e s 2 .Je4WR4xfl ..~~ . ~* .1*

6 3 .%?%5m x M-3 -.~ x lu3 .6i?mcm x ur5 6 2 .6m33M x IO-3 -.l13v6m x d .W3w x ~3 T 5 .W33X@ x m+ -. WU6?9 x XI-3 .e&3s33 x 10-3

n $ .WWm x IL+ ..nE9vi0xld .rivllmxlc=$ 8 > .Mf.TIWxti -.~ x @ .m56-&O x & 9 h .E?X9rmx* ..lmrp?mxllp .Rfi31Wxti

10 5 .JsWmxd -=3GlGlPx 10+ .W395mxti m k .173W00 x 10+ -.19#m x 10+ .KWs+n x M+ U > .EW3im Jx+ -.3u35ka x Id .3u3e-90xld

la 5 .-x IO-7 -.?99mca x my .13tYKm x M-e

-r=it)

r . . .1,

Page 44: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

. . , ,

Page 45: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

. .-. -.

l“I 1

T-’1~ .It9dw.ld

.Cdmiw6 ..lm?wn , d

.IYn7’M.ld-.mmmXU-:

.IDnm x la+-.21zc9n

.* -Jmma

.3m5m -W#QW

.

.!=

4=

. .

Page 46: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

,

.

. P

Wmm 1.- Cum?51vulm.., ,~, Am!!?&m “.0., m- Es

“-m PmlvAmamvN.w5m Lm h-—

(d) L - 0.c9. -M L?&

om

II

a .3.>

I-5 Jn3mm2 o.m43m3 x lo+

.Icawfa x [email protected]

.e@wa -.’a?wuto

.Wwm -.mw.m x MA

.&lmxu x ld .mmm’m

-.m3xc.xl x IO-J .S73i0m3

Q.G?4W 0.59UWU x 10+.IMx45a x Id Lknq63.3

.e7?Jmca -.mm’m

.Ufwm -.’=’7WUIx dauxm x 10+ .Zi-fmm

-.631cvx.3xh# .e%wxa

I I

a - Lo

0 0 O.w’mjlo -o.@mlzms o.b319fm x 10+ 1 0 o.yl%c0$3 4.-* o, W2?m0 x U-3

n 1 .Ue&5cc ,JI’I’3XQ X@ --- a 0 O.kmn -uEf=ma 0.m61m x lo+ > 1 .Wpml

b 2 -.@,3sm

.3?.WPJ x @ -AM&=0

.qmeoa -.W?rm k 1 .~ .a93W-p x ma -.mfa 5 e ..m3#03 .E+e3?Xo -JJ.m

6 5 -. M3Wcm ‘.3WXm x W-3 .31mX01 x K+ 6 e ..aM.9nca .2h9mW --- 7 3 -m?m$cca .&wXm x la+ .A5uX00 x U*

8 b ..~ x d ..U,W .MKuX1 ~ 5 -.@lm5Qn .%3CCQI x U# .1153m11 x lc+ 9 b -.WJam x U-Q ..~ .-

10 7 - - ---. — _________ In h ..~ x U-Q .-.6fkQXmxl# .%nom u 5 .—-- .—.-.—— ----

12 5 --— -—-—-- ~-——-

?. .6.0

0 0 O.QWA% -mmmfe 0.17-pWo x U-3 1 0 0.6XC6T4 .4.017QE.wl

a 1 -.123B3rM

o,lMJfmo * m+

.-x ma -.9i3%Bb3 e 0 O.’Q* -o.o173.cm?3 CI.W393M x IO-3 3 L -.U%%O .Itu65W x U* -.s==530

k e .. CQSIWXU .E.MlucI x la+ .fism x ld b 1 ..~ J6?Xlm x M-Q ---

6 5 .-xti -.mlxal

? e -.a?6%4ml .1- x U-3 ..smmmxh+

.k&QXm 6 2 -.025rQ5m .Ei&&llx& .WypX1 x ul~ 1 3 .%3i+Xm x k+ -.mKtca2 .ioEaX9

8 b -.—— ——. -.—— a 3 .%mmox3.o-Q -.6u&Kca .M7ium

u 5

9 k --—--—-- -—---—- ------

—-—— -——— -- —-—m 4 -—--- ——— -—— u 3 —--——

--—— .----— —

= 9 —-——-——- — .—-— —

Page 47: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

-. . .

(.) L .0.1

-A . “.,m I..—0 0 o.7c933xm x U@ ..o.~ 0. SW33X 10 @l O(lo-q

z 1 —— . . z 0 .—-_ —..-— .—. 5 1 _

b 1 .—. -.—

A . O.ti I

-A . 0.=

0 0 OJ%-EAmm ~.wQw=J 0.uf5e3m9 Y. 0 o.cax9Eln -o.mmmm 0.cwe?c9

t 1 .- x IO-3 ..eaJea$y x m-a .6%.?9E9 x L@ 2 0 0.i&@.Xl x la+ -nwK&% x IN O.M.W% x @ 3 1 .a735wm x d

k x JXcqiOx+ -. R.946?U x + .36WS35 x 10+ b 1 .U433P x d

-.7WIEQ x d .mm x @

-.73@a2 x IG-6 .@24??m x 10+ y e .@lkm x W9 dlc3&rA x d .135H3ah x Is#

6 3 O(@) d+) &@n) ~ , C.@+ O[lo-w Q@@) T 3 dd ) Q@J*) O(N)

h - da

0 00.3Qm36a 4.mn&5’5n o.@sBw?a L o 0.w3m@a 4.mri-a?6 O.mtmm

e 1 .mm36a52 -.~ .WJm 2 0 0. cqf#3ca -a.mlxnm o.cGlw!k3 3 1 .%WP x lo~ ..?wmlo x + JmOGmx10-Q

k 2 .Us311Euxti -.l&s5mI x ti ZYm5%x.ti b 1 .13m2el xl& -.ulqlx3M x d .WTF4x+ 5 a .a53&lf9 x 10-~ -.%950P x W+ .6mJ3m x u+

6 5 .E-7WYn x d -.mJm.50 x ~~ .WW33 x 10-3 6 2 .@wP x + -.6- X + .lwMm x M-3

.3 k .E%pm x 20-6 -.Y3mlm3 x d .W=tW x k+

7 3 .mcesOO x 30+ -.6SC%%I x 10-> .-XIC+

8 > .uxuOYOxlc# -.~ x d ~xd 9 k .lZtoWa x w-l -.3633Mm u m-l .lcJLxfmxllr6

w 5 .W-s%OJxti -.*B3 x d .SlEJm3 x d 10 4 .~xm -.W-PM4 x d .mtlmll xl!+ .J ,Ow) 0 (lo-~)

la, 5

.~xti

O(IO= ) Ov) O(lrq

-Pm.

. . , . . .

Page 48: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

, ,

I U5 .5.awm x IO-J

Page 49: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

. ,

(.) l.. oJ. —

EII I I

E0 CvlC4al

bl .G-m@am

6a .ofo%uM

83 .k36mu0x@

10 b .Irpica

2 .W7LuOa x 1#

Ee o o.~

+L .@mam

E.a%65m

3 .-x@t ———-

5 —.

1a e.wa!m

b l.~.

6 Q.~.l@

0 3 -.hmzcta

II

,I

X.1.s I

x - Lo

I

..wcc++lk 4“o.x@xf?.?x u-f-.-$ -JuxPmxti

.-x K.-3l-.n54im

7-1.~ 0.44WQM* 10-

-.wma x la- -~ x U-3

-.945$CCC x W -~. W3

.- -.mzOxO

.W5uW -.8?5m

.mEOW ..mJc.x.3 x d

I

-.9m.Qxm

:= -.inx64m

- ---.—

I 1i -2.5

.—. ..I

1 1 I Ii

Page 50: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

. ,

m5z1.. mQeDlm66m $J$%Aw~?m ..0l07Nm3-3

-m Pmv#DIam-m Lm a-—

(*) L-o.l. cGmJdDi

-A .>.5

0 0 o.~ -&dmlw OJo%iYM x ~1

1 0 W=W49 -O@a%ltsa

* 1 - .~ .Olc&MM -.mu33a e 0 O.%=wti

O.laum x u+-3@lfara O.lemssf x IO-Q 5 1 -.~ .54?mo0x

4 2 ..oxalm .WwQxd -.’tmom x + k 1 -.019M33a

@ -J!wma

.@zu9m x 5 E

6 3 -.&mXcrm x X+

I@ -.lfmwo -.=ia’71@

-.~ x d .l?&wa x m+

J133?m -.llc.amx lo+

‘1 5

8 4

6 a -.0i&2a0 .- -.1413?Qm x lo+ -.616Mtal x 10+ .mmmxd .KT3?aa

..— . .—— — 8 3 -.6wOXa x ti .~ x ~~ .~ 9 ~ -

w Y —

- —.. ____

. ———-. —_____ w 4 - . - u $ —--—. ____,

32 9 —. —--— ——---—

A.b.o

0 0 0.6ze6-@ -o.r@m O.imsmo x I@ 1 0 0:- 4.q56wJ10 0.- x 10+

2 1 ..~ .’wmm ..U* x Ic+ O.wm x U-5 3 L -.~ .ml?2meJ

k Q -.wmmm .Whc.Xmxld .lwwl x Id b 1 ..~

-.~ x U-Q

.WITem -.~ x N

6 3 -——

5 e -.cuzwcQJ .1Ta3wil x @ .S’li@XOxd

-.mzc.m x ln”~ J61Wm 6 Q -mm

8 b ——-

.179WM x 10= .~ x Id 7 > -.mmloo x 10+ ..6j6$ox93 X ti .lbl$saa x 10+

—. -— --c . 8 3 .. WKCC9 x wa -.~ x W3 .~ x ~> 9 ~ -—--—— -.——

m 9 —— .—— -- .- —.. 10 k ———— --.-—— .-—. — -.u 9 --- __ —-

19 Y ----—— ----- —-- --——- .

a .6.0

~

Page 51: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

vmw PFavlaru#vmm3m Lm x-—

(f) L -0.2

1. O.ca

0 0 O.mml* 4.WW733 e.kamm 1R 1

—- .-— —. —— --— _. e 0 —--—— ———— -——— 3 : . ———- ___

1 —. .—. .—.

a - 0.C6

1 0 o.~ x m+ -Q@m3k2 x In-l 0.llQm2 x #

: ; ““T=, 4“T@ ““T*, , . O(lvq 0(ll@5) C@) , , —— –—– --—

b 1 —. —.——

?.-omI

o 0 0.m331c0 +lm3@J 0.ac7m51 1 0 0.le.feEm x @ .o,~

2 1 .W-f9mxld -~ x ~3 ----

O.c.sm%am

e 0 O.mm x l!+ -0.3?2#ak x 10-3 0.l&A3g x @ 3 1 .4mc.3cm x 10+ -.3pw313 x ,Xiwlmrxti

4 a 0(1+ O(lcao) .473&Ym x 10+ k 1 O(ls+ O&lo) .~ x l&9 5 Q O(lml’) O@-lq N .+@)

6 Q . --—. 0 (lV@:,.

a. 0.4U I

I

. *

“,

. .I .,

t .,,,

Page 52: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

* . .

Page 53: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

.-

VIi-o

X.L6

0 0 Q.kmom a~ hmmi 1 0 O,%lMWj -a.mmm 0

2 L .&mm -.6s%=3 x U-@ -.59mmx@ a 0 o.w3%eQl -.UWC%J o .0m2Q761 ..mllEcox If@ .:=x +> 1 .Wmc+n

4 * .9331W x M* <m --- h 1 ,~ -mm -.*5?4a x w+ , a

.6 > .lmam .lygDxcl XIO+ -.lwmol x M+

.9$WW. + -.%#x4 x U-3 .-

6 a .mHmxti -.le?#Oax d -.6c65m0 7 s .llciE-n .a7&u9

e b UILuqxu+ .- -.~ n > .mm -.~x M-3 ..~

-.bWxWxlO+

9 b .-XM+ --- x E-$ -X-%cce3

u 5 .—— . —.—— ——— - U b .paull x M-3 ..- x d -.~ * IL+ b > ——- .—. _ _,-

y 5 -— ——— -—

h.1.B

0 0 O.lmwm a.~ %8B93ULI x + 1 0 O.wmo .&n* ..- x d

z 1 — .Mmc.W x u-> ..wmi53u z 0 ClsWi3 -0. Grr13z@ Ommmel 3 1 m- ..%*XS.I x 10+ -.303bm

4 n -x@ .z63?lmxl# -.amm 4 1 .CMur5m -.* x @ --- x @ y ~ ‘~x~* - ---

6 5 -.uuma .M?9m9 ..~x lc+ 6 1 .%Wcmxti .Wmtmxm -.uwm= ‘1 > .=x d .ee.Xmxl@ -.m66t0m x id

8 b -.* x m+ <~ x W-3 -— 0 3 .QIKml Xlc+ .393mlm

m 5 – —._ 10 b —-—-— .lg3mcQ1

-.56%=CU x M-3 9 b -MRcc@x LO-5 .W3k.lrn -.lswcaa

——— —-—— --- 31 5 . — ———

u 3 r-—-——— —— .———————

1.%0

0 0 0,am3’P 4~ bmmxti -cLCW13M1 0.e@m40 xl@a 1 ~ .64wnXle+-.~ e 0 o.5nm6p -o.olmx61k .M.mQX la-$ -.mam

h a .Sw4w.lxti .Neixm ..- b 1 .ecesm -Jk5nsmxd --- 5 r -.UZ%9 x + 3m-Km -kE#w6 > -.z9nma .Ma66m -.w%om x 10+ 6 e .L+mon. w .- --- , 3 ..lW .uswn .-xda b --- .-x 103 -axecwJ1 8 3 -.feumo x lo+ 2Jmmx l-’ -.3mawx => 9 b --- wucm. ti --

In 5 - —.— _____ ——.— lo 4 -— ____ _. P ‘—. —- —.—

u 5 —— -—-— ——

. . . .

, .1,

. . *

Page 54: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

, 0

TmIx 1.. mKafavmBsah J$Am2?Jm D- OmY Am-

-V?rmvmam-w I. Nm?. —QmMmml

b) L- O.e-—

E00 S39’neme 1 .Swiamke .D4%xcl153——

8k—

WY—.

L00 o.~

e 1 -# Kmm30

h a .almmmXld

6 5 -—–—

8 lb —.

m 9 -—

4.C%9934XI

i IUw3-P x K@

.=3WW -.elef+fm n 0 .f.31Qm

-.mxml x .W55m k 1 .J.xawJ

---—— ___ .- 6 2 .Wam x 10+

-- —— ---- “ __ B 5 —-—

.- —--- -.. _____ w 4 _______

u 3—

—— __

a .Lo

4wu4m?6

L I0.qzMOxti 51 -.mazm

.Lwmw -.Oi@m pa .-xl@

-.mum3xl@ .c4Wcmx lo+ 3 -—--—-

—----- -——_ - 94 -———-.

5 ————-— -—-—.

.—— -- ——.

I A .6.0I

..O.l%ue3#A o.p3!ml%! x Id.WwmO -.3ewmm

-.3&7L’0mxlcr3 .C?.3mmlxld

-.lv3aMo x @ .PXa’Xca

______ . .

m.qwxax 0.3.Ka%10 x d

.:=x J&-2 -:=

- ,IlOmm

,------ ____

.——--— -.—.

100 O.-m

1-.m.u#3ka A3mcm63 -——

8b .

> -–—

.ao~ o.44w3?ao x 10+.~

I.X%30 x 10* x 0 .7s3658a

“mhmwm .Uk-tma L 1 .Bw

.. —— -- _______ 6 2 .lLlm6m

—— ____ ———- 8 3 -——

.—— -- ———---- lo b .—

= > —-— 1I>0 .76m3@

-o.03w9w o.6y99mn x lu3 3 1 .-

.~ -.ue&E.m x Id 5 Q .-cm

-.cm9=wJ .Ima31 7 3 --—-

—. _____ 9 b —-

5 ————_. _

—-— _____

--— l-—-–— I—— ___

I

I

Page 55: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

I

-m PKx71MmmmuIt3 mLA8Da-Qm$w

(8)L -0.5

P n O@) ~~~

aJP) ~$a am’) ~$n 3a . O.c@

0 0 O.oral%m -o.a%me L* 1 0 ---—--— ____— -—---—

2 1 ---—--- —— ---— 2 0 -— -——-------- —- —-. 5 1 -—-—— -----—- .—. —

h 1 ---—-— ——— .—

A .0.6

0 0 0.lTJ6@9m -n.mwah> M?mmE 1 0 (U-q +’-) O(lu-?l * o L+@’) O(lo-q O(lc+

h 1 --——-. -———- --——

I a . O.la

I

J 1 I I

0 0 O.m?ram -0.aes93 0.w3m9 1 0 0.le36mm x W+ .0.- x d o.~ x W-3

E 1 0 w)o(ldy o(loq 2 0 O(W+ O(luq O&-q , 1 ++ O(K+ 0(+

i

h 1 —---— _____ ____

h . O,ml

o 0 O.ll?ygn 4.iwm&3 0.- : 1 0 o~xl@ d).~ o.~

Q 1 .3kfrmm x 10+ -.2mcJB x d .~ x MI-3 Q 0 0.3’EQ9rm x # 4.p9c93 x U+ O.*- x W-3 B 1

k a O(W+ 44 .&-u) , 1 ++) “= O@+

.~m x ~ -.lmlm x d .Emm”la x M-1

O(lo+” 5 P+-=) !&-q O(m-?o)

-A - 0.43

ll_-10 O.**’#p

>1 .@61cmxw+ye .Yimsmxd

73 O(M-)

94 —-——

-3.Mm!21e3 O.u%m!xl-.&wfEa x 10-3 .-1 x U+

.mmima x LO-3 .E&l.9% x m+

++C&-lo)

- —.

1 J

U‘1=

-.

.

Page 56: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

1 ,

o a O.-m — c.— L 0 idm!ma

* 1 .Wm -.mlmm Jas93ua a 0 c.& a~ o~

.-x d --- x Id .Iuymoxti

, 1 .-.JH

b n b 1 .9mbc4xur3 .,lmga~ x d .mla x Id

6 ,

> E .W7Xt0xld

.mt7ac.m x d .mmlml x la-$ .5M733M x d 6 a .6K.B3c0x Lo+ -.!41-m5Y , Id .KmsDxlH T > .~kd

a b ,9pac0xld .,mXc.m x 10-1 .U3@0xld 3 .lwcm x M-T -.ba?c&.l x U-7 .13%mpxl#

10 y .3@)

9 k .e’%ma x U-9

?W 0(+ : , a(d) C@-q 44 u , +-V]

If > —--— ——. — ..—. —

1-L* I-a.~ O..mwm 1 D.*W J=Yl@Jo

*

.aJa?W?3

.$wamxl@ -swaOxti c 0 -’U9mm9 O.w 31 .— -.’am-%@ .-x@

Page 57: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

-.

t .

—.7

* .5=famxl.v$ -aW?@. * 2 6 0.-1 -mu 0.arlm3’m > 1 .Qaa5w

k .-x K- -x@ -- b 1 .Cmmlm -.’E?X+X x x- -Jammmxti > x .?lzu.mxd6 .- Y.+ -~xp -Lw4bcaxti ? 5 .X6mm x W-3

B .— .- -- 8 3 .-x @ -—-- -Jk7c0x 9 4 ———

w

E0.$s5%4

n.uwmm--- x &

9 -.lixww-S6’mmxxa

5 .—

T-0. IKt=3Y La.?3um--- x -u%=! =.-x -JmW’m

.1- ~x——— -——

—. .—

--4.6 O.aom$%!eII II I I Ill 4 o~,w I -o.- 10-7M

Page 58: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

, ,

(d L-0. Y-~

a -3.>

0 0 0,- 4.Q7936TLTI 0.s677&0 x m-~ 1 0 o.65jt!4ff9

E 1 -.- .CWc%m

-o.*mp o. YEW$ll x L&

-.3WWQ e 0 0.- ~.~

k 2 ,l!.uJ6pLw

0.- x + 5 1 -.lm@O

-.m%mm x +

.Cmmml

.QrMOYI

-m=35m

& 1 --- .Cm3moo -A3w@J s a J?mX.mxld

6 3 ------- —.... -- .---- .-—---.@mcu x m- .17w&co

6 e .eo3Kccqxl# -Jm.OCmx U-Q .13%7c01 1 3 —— ———- —-——--

8 h ------ --—--—. ---— ----- 8 > .-—.. —.. ——-. ——-. -—-- 9 4 ----—--- ---—. -–——--

D 5 -—— m k.----- —-. .- —------ -. - u 5 -—-—--- .--- —— - .- —--... ——

U 5 —-—-— --——--= —--—---

1 1 11

0 0 O.@@m -o.a’mamm 0.18g13m x l!i~2 1 -,ai3#p .0w6’pI -.* s 0 0.-

b 2 .Ck8’mm -.ow%am .e$wm k 1 ..~

6 3 ---—- —--- ---—- --— - 6 e .Wm3!Xm

a k -----— —---- -. 8 3 -.-—-

—— -——— .—-.. lo h ---A—

u > -----

1

E00 .0m6xa

e 1 ---

e .wqm

65—~ , .—---

Q 9 --——

4.W93D37.ce3iaTm

-.mxlzum

.U&03M-- —----——

o.6z63po x w:

-.= x d.lst9m

———

.—— ---

_____ -.

7

0.--.371mm

.-

——--—-—

A . Lo

1 0 0.6$36?OX

[email protected] 0.&m9m x @ J 1 ---

.~ -~5 ‘2 .-

-.’mtumxl@ Am6rm 7 3 -—--—

-—-—— .-- —---— 9 4 -------

.— ----- .---.. -——. — u 5 -----—

------.—- .-__-_-

A -6.0

-a&i-mm.’zM39m-.WW.- —-- --——

.C!.63W

1.*wm x d

.03ZWM -w-m-ml.fmmx L8-Q .Imkxml

—-— --—--—.--

——– 1--1.-.. -----— -- —---

1 0 0. ffmiv19 -o.~ O..mpmmx M+L5%8m x M-3 3 1 -.kwml .@%Qm .J87?Qkm x +

..~x L@ 5 e .lsmao -OM%W9 .Wimm

.~- 1 3 -—--— .W’itao .. ——--— -—---_-—. ~ ~ ___ ___ --- —--

——— u 7 —— -—--— ——— -—-

-— ______ &

1

u--l

Page 59: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

v-m P mvAmum mumm Lmh-Gm5imd

(h)L -O.*

i . o.c@

0 0 O.omukxm a.m 6.9@I%9 1 0 -– —-— ———. _____1

i? 1 —- —— —-- e 0 - —---- _ —-— —---—- 3 1 —-——- -——. ———

h 1 ——--- ——--- _

I x. 0.C6

o 0 0.cA14&m -vr93@x 2.- 1 0 O(lo-q O(m-q &+l)

2 1 -— ——— —- 2 0 —-—— —.— 3 1 ---—–-— —--—-— —

k 1 --——— -—— -—-—-—

A .0.-

0 0 0.c6mlal . L+mJm 100+9M40 XL+ -&mm x llrs 0.= x lo-

2 1 0 (lo-q 4-@ 0(wJ7) z o O(M=) O(@) C&+ 3 1 C@-@) O(*) ‘&q,:

I ‘1””II k f — ‘----- ___ ,

,, ,,.

E00 o.malw

al .zacumxl#

42 .3%n300 x10-6

6 C@=)

a - O.lcl

0. WIS9S9 0.- 1 0 0.q#3mlfa

-.’69mma x Iu-ff.Cw291m3

aws.a3m O.xmw

e o o.sz6iua x + -o.31@1641 x d 0.c@9@y 3 1 .%s33kmxd —.2umloxl!J+ .~ x W.

-SIAusm x la? .m*y x d b 1 .k6’3mM x lo~ -.~ x M+ .U8su0 x U+

O(@)

5 2 .lcWfc.Jxlcl’$ ..6m13km x U+ .Ww” x m’

O(lly) 6 z L+&) .++) O(M-) 7 3 O(ID+ &+ O(@

, . . ●

Page 60: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

,‘all

,* 1,- —-w% JgAlm$?mn.0m9 mnlmua

VNA3SUP FM-- WLAFDA— —

(h) L.O.i. u4M-

P n %s0 J$? ?$J , * aJP) J? 3 pn ‘(” ‘? sa - O.ta

0 0 O.pb?.wju ~.wm [email protected] L i O. U-m’f’@ 4.- 0.wl!m7

2 1 .cait337m -.’=wm .Wta3160 e 0 0.lwm6E& -3.C4- o.~ 3 1 .e3yJc&l x U-Q ..&no x ld .~~

h Q .PllmXm x 10+ -.3M33W) x 30+ .Uws@a x d $ 1 .etwlol x 10+ -. P7316D x 10-3 .rlcmnln x @ > n .~~ x d+ ..4c&33m )1 ma .U- ~ ~>

6 3 .W.%m x Id --- x U* .~- x ~ ~ Q .~ x ~~ -.wwr30 x w+ .mmm x 10+ 1 y .~ x d .-, m-7 .- .# J#

8 & OQL+) -.4567jcca x I@ .i?A3sm x LL+ a 5 .WwXm x @ -.%mm x 10+ .L?kiXEw x + g b O(ldfj

O(m+)

0(11+) O(llrq

m 9 —— O(M+) M k .&m) O(M+) C&+) u , .—— ———. ——.

= 9 ——-—- ——. -.— —----—.

A . O.&l

0 0 O.msm -’J-a O.mtma 1 0 O,l@X# *m

e 1 .~

O.wul*

-J%i33mm .L=6%m e 0 0.wp7@ia -o.cmmm U.M3W39 5 1 .3J23w3p -. O1-

k e .l.H3%0x K# +?r&3#I x + .- x I&

.~lw=

k 1 .B~p x k+ -.4* x ~~ .-xti 5 2 .369U?LQXIO+ J#?3ul x 10+ .lqlm x M4

6 3 .M%m x Id ..emum x d .lLwi%ml x ICI-3 6 2 .6%3XQI x d -.~ x U-5 .~ x IG-3 T 3 .M3$&cOxm+ -.ualOsca x d .a@llca x Id

8 k .313%cm x d ..wb30m x lo~ .W6’jwm x 10+ ‘9 3 .klmm x 1# --- x lc+ .2p?Qmxlrr5

~ 5 .*x@ -.m?mm x IL@ .’lemcca x Ir@ 10 b .—-

? k .mlf.wm x lo+ -.?mcam JO-7 .m~m x d

-.nwm x la~ .9+- x d u 5’ 0(1.u’q ++ .m.swxlo+

u 5 —-—— O(loq O@)

i .1.0

0 0 0.4M#l 4mlua47 0.@qE?.M 10 0 .*l@m -0.lW o.~

2 1 .C+m -.O=%’rro .-x L@ 2 0 O.l=O$ca 4uQr19w 0.cmm@7 31 .Cq4.5m3 -.mwlPm .~

$ a .U.Xe3m x lo* -J5@XW x I@ .E+3mi b a .?ie4P7m x K!* -.gpm3’um x + .W14p x N 52 .limfrm x d ..u6#ml x I@ .W6E+m x 10+?

6 > .-x @ -.mlk’m x 10-3 .3mcca x M+ 6 2 .ZcasaO x M* ..wsmm x IO-3 .ILM66KI x 10+ ~~ .- x MA .,~ ~ @ .fi~&Q ~ ~3

8 k .I!ks.m x MA ..166Kum x M+ .uiEmX1 x d 8 3 .161ymoo x Id -. E”#Xm x If+ .kE=?m x Id 9! .lgcum x 10+ -35&Xm x @ .+x lo+,

D 5 —--—-- —--— .~ x lo~ 10 b’ .- x M14 -.33WWJ x @ .-x m+ U? — .—.. ———. pc@&wXOxl#

u? p .3McOXQxl# -.341cmm,x d .Ismum x W-T1

a .1.2

0 0 0.q.533@ 4.- O.@mm 10 0 .ll!sm~ ~.vP9m

e 1 .mi#lRa -.~

o.~

-.~ x U@ a 0 0. MC33W . 4.lm20m o.~ jil .q@6@3

k 2 .%wcOO x lo~ -.~ x lo~ --- x U-3

-.*7W .mns?coxld

4 1 .Mm -.~ .-xl@ 92 .3saXho0xld -.~, x I& .Ev3m x llr3

6 3 .61hmm x I!@ --- x ~+ .- 6 2 .lvsmm x L& -.~ x d .mm x U+ 73 .mm x d -.ewaccil x 10+ .lT?+XO

8 4 .&xlf# +&m x d .h~ .x IL+ 8 3 .lceXmaxlc+ -.103mK?3 x 10-3 .lrK,5um gk .l#aJml x d ..W x I.1# .ir&cm Xld

~ > ————. - —— - —— In k .ZmcoO x 1$1+ ..6B33mo x 10+ .~ x In+ U5 .16f2wa .5?&Q%a x 10+ .K4Emm X.ld

- 3 -——- . ..— —. ———

A-M

0 0 0.7X!5QM 4. J&414e6 0 .Cs&%?p 10 0. ~

-.37mko x ma - .3mmxl@ e o lJ-

4.- 0 .C#mY3!

al .mm31w illkaM%’ o&lw%33 31 ‘. On6qc4 --- x ~-@ - .*3=W+I x +

$2 .3’lr%#mxl# .337tOm x IO-3 - .~ k 1 .rm6W30 -.5@WmQ x + .15371mo x M* ~a .33MccOxl# ..5gmW0 x IO-3 - .-x 34-3

63 .WIOm x 1o-3 .43’Pxm x d - .aalxm x 10+ 6 E .QlgemOxl# -.llsmca .-x~ 73 .53W.m x ID-3 -.1- - .QlE0m3xlr#

ab—— --—-. -.—— 83 .~ x m-3 ..lwium x M-3 .- x U* 94 ——- -.-——-—

05

—---

—-— — 10 b —— -.13unm x d .l19mc0Xlc+ 115 ——- —— —-—-

= 3- —-—— —---— - --—-——

Page 61: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

t , ,

(n0

Page 62: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

,#

E00 O.lwwu21 -.2h&acfa

4 a .Lw9mcm

63-—.94 ---—-

lo ? ——-

Jm55Pms V=3i%m x @

.’m$mz.m ..*mm e 0 0..w.me46

-.ww@ .- b 1 -Ji+ema-— ___ . __— 6 e Luewm.—. - .— -----B5--—.- ._——-— m 4 ——..

u 7 --—— {

1 0 0.673@8 -0.@3$w&m 0.4!Jlm01 x lo-f

Ww161slt ‘a.mm!m x u+ 3 1 -.lwmn .Cw+lm -.’PWW

,03T?AlQm -Jr++ 5 e .C@ulm ..qyxonx U-* .mm.m

-;6ti9xi0 x .’=fJm 1 ? --—--- —-.——- —--——-

.-- —--- -———. 9 k ------ —- —----- -—=.

_—--— .-—-—-. = 3 -----—- ——-—- -——-—’

—---—— -----—--

I A=4.0

0 0 0, 7W.99W

z L -.x.n63m

b e .Cdai-pm

6 3 ———

0 b —----

In 5 -—---

-o.m3w’m 0.- x 10-f.~ ---

-.wmm .mm—--- —- —-----—. —-. . . ...—-- —--- ------- .—. !

s 0 Am

k 1 -.2n3A?m

6e .C#WCW

~ ---——b -——--

J -. —-—

IL00 O. fcaeacl

a 1 4caqc&

ke .~

63 —-—~ ~ --—

lo2— ———

x -6.0

~.~

.C&lwic4

-.O@+lmO

---

--——

—-—. 10 o.ntem~

Wf+caxd 1 -.4@[email protected] 2 .~

.Z+a5cma 3 ——.

.- —--—- k ——

9——.

-ica%m% 0.3wf9xl x la-f.CAa5ea0 -.?rimm

-.~ .?sflmm

———-—

----— ---—-—.

—-- -—--— --

-.~ .emmm-——- ———.—-—- ——..—-— .— -,

I

mP

Page 63: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

n 0 o:u5m9w -&4$Elam. 9.mlwr 1 ~ ——— .—-— —.— ——- .

E 1 —- ——. .—-. 2 0 - _— - ——-——- -—- — . 5 1 — .—— -...m-

4 1 — ———— —_— _— --

h .0.6

0 0 a.~ -0.bms 3.@=z3 1 0++

O(W+ !&+)

P 1 -—— —-— —-- * o —-— ——- ———- 5 1 -—-–— — ----- —-———

4 1 --- -–—.——- -———-

*.OJO

0 0 o.~ -0.wwf@ 1.%*IQ

e L ‘++ Qk+ +-q P o ‘+-+o .lc5mm x UT7 4.s6w?#ax d 0.32#sli x la+

0(w) J@) ; A “– —— -—–-b 1 -—— _—-— L_.—..— ---—-

,

A . O.za

o 0 0.594?P -m’?&7pl O.$lxw=

Q 1 .I.mlm Oxti -.islm692x + mwm 2 0 O.lwsml x 10+

2 Si9i=QXwl -J9ui=+0xd .lflwm x d b 1 .314m9m x m+

: 5 D(I.l@)+@)

O@) 6 2 ++)

,1

A - OAO

1 0 0.03kzsM -o.@mm O.mkm.3.WMrm x I@ 0.mtzJ6xQ 3 1 .Ife&wlOxu+ . ..%mm x w-$ .?++639 x w+

-.22ml+17 x d .*’@@u x 10+ > n0 k’+ -J.w%rJx lo+ J=f13mxld

Ow) O@)

,

Cnru

Page 64: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

, , , I

(i)L.0.3. — s

II

. . L* I

Page 65: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

(,) L.04-—

To O.camm

2 .?iH-mx K+b ..-

6 -nxs~

lL-8—-—0 -—--—--~ =Tl

-xJmF6% o—03neim

.~nla -A%nmxld

.~ x Id -Ju3wm

.’mlmmxti..l=awxld——

—.

, IA-M

0 0 0.6W .a.m..55m 0$.&.?mm 1 0 o~ -0. Lmb%6 n.~

z 1 -.mpE9m .~ -.m$m a 0 0.%WZ4 4.- o.~ 5 1 ~xl@ .OllMmm -.QIMWIW

b 2 -.weD1 x + .uuL9w0x@ .+RVX.IXH 4 1 .m9awx+ .-x M-n --- x d 5 a -.l&zcw .-xl# -am x +

~ , ._— .-—.- 6 s .lwtmn x M+ .- x 10+ -.m.wX@ T , ..-- x u+ .rfs.X.mxll@ --- x d

8 b ——- —— —— 8 > —— .- ..lrOfaOl x 10+ 9 b — . ~ —— —

0 -— .—. —_ If , —— —— —.—— u L—. — —.— .—

as 5 —-— ——

a . *.O

o 0 o.64579m .0 .lf.wlba o~ 1 0 0 .*73W3 4aM9?w o~

2 > -4A3%51c0 ~ -.~ a 0 O.m=am 4.- o.~ , 1 . .Wnlfu.I .m2+l%a -.mmY!Iw

b * -.wnmm x & .4#muQx@ -.lw%=O1 x U-* b 1 -~.ld .-x In- -~.~ ? n -.blammx I’# JXwcOax- -~su+

6 3 ——. .—— — —._. 6 * .Jw .lms$cm -Jm!ltw 7 Y ——J--

8 b —— .—— 8 3 ——— 9 b ——

~ —— . —— — — M —— ——— .— . ~ —— .—I— — . _—

u 5 * .—. —- ——--— —— 1“

i - %5

0 0 O.nmsm a.l+un36 O.w * # 1 0 0.&M 4.DX59@ O.ulw%ca

n 1 -.llsMw .~ -.— s 0 O.w=em -o.Wm 0 .Cwzn13A 3 1 - ..3mQ&a .V#.=7m

k e -.~ , M+ -.64auaxl@ .Kh9%c0x X-@

-—

b 1 -.C4W .mmm -.— Y e --- x +

6 3

.~ x w> -XW3

——— ——- .- 6 a -h-x @ .-xlO- ~xm3 T 3 —-— —— -—

a b — — - — 8 3 - — —— —— 9 b .— - .——

m 5 - —. ——- lo —— —-— —- U Y ——— —-- -—u p ——

E0 c..a970D

Q .2@at!a

b .mwmxa

6 ——

8 —-

.—

Cn4=

. . 1

i .,

Page 66: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

, .

.—m“,

(i) L -0.5. cmmlwki

b e .CwQyflm

63—

e*——

‘1’1

E00 0.mw$5a

21 -.5m5%T1

42 .mnc.ml

6 ~ w..

84 ——

o!J——

-o.lc6*p3

.C&uz+m

-.mbm3c91—..

-

.~-.walcm

-OS#nvam

.mswm-.mwom

--

Omls’l%a x U-Q-.!MC3Q31 e 0 0.m.5x7 .O.c9!a9M

.- h 1 .X2L4m .~- -.m%xo.—-— 6 2 JN&?Lmm ..@v x 10= .WCOX 7 3 ——-.

-— 0 3 —— - .- —.- — ____

.—. m J — :—— - -— ~ 9 -——

= 5 --—. ——

-A .4.0

o,eL%m x U@ 10 0.lL2@v3

-.12i9m e 0 Wai%’m -o.~ a.5m7!c30 x U@ 3 1 -Sm3um

.MJml b 1 ..6%mm .O$i+wm -.mwm 3 2 .C6n3sm

6 2 .014mfxm -.~ .5i%mX 7 3 ,.-

-— .0 3 ‘ -—-—— 9 b -——

—. 10 k — ——- D. 9 -—--—--

u 7 —— “—— ——-

O.tsmm x JO-5

-. Kwuam x 1O-E e 0 O.mw%?

.~

I& 1 ..UW

—-—. 6 a .lm-#.nl

—-— 8 3 —-

l--— la h —-

-o.ldlcl% 0.- x K@.@r’i-rm -S.mm

-.qaJm .M4cm7.- -.-—

—- I -—-—

l“—-—

1=-0.wuas’iw WsQmla x U@

@@5al -.ia%=a-.al&wxa J48wQn

‘L--— .. ——-.

----- ---——

—.-—

I

A -6.0

1 0 0. WJ6MS -9. M3Tlsm O.msln x d

-0.&240335 o.~ x 19Q 3 1 ..k.m&l .~ -.3mlcm

.W1.591m -.srac-m $ a .21W.m -.o~ .3uc’mll

--- mom 1 3 ——— .-.

.— ——9 + _--— -—— . .---—

—— —— n , A--., -—. — --

-

Page 67: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

66 NACA TN 4308

.

f-o ~ -1.0

A T1q

& T1~ &

~~

F &2a.i+

L = O.001

0.1 0.olce6 -9.897k x ld+ 9.8938 X 10& o.oOg@ 9.8X% x lo~

.2 .039W -9.6950 9.6014 .03902 9.6062

.4 .14808 -8.3192 8. 51ECJ .14@ 8.5202

.6 .yl%adl -6.9736 6.9730 .30210 6.9764

.8 .47274 -3.2726 5.2706 ,, .47248 5.2732

1.0 .632KI -3 .67sQ 3.6776 .63192 3.6794

1.2 .76302 -2.3698 2.3690 . 762sQ 2.3702

1.4 .85% -1.4092 1.4086 . yJ91 1.40~

1.6 .9226!3 -7.7330 x 10+ 7.- x 10+ .-1 7.7360 x 10+

1.8 .%080 -3.9198 3.9184 .@78 3.9204

2.0 .98L66 a. 8337 1.8330 .98163 1.8yio

2.5 .99W7 -1.9343 X 10J5 1.9336 x LO-6 .gg8c6 1.9347 x ld

3.0 .W88 -1.2378 X 10-7 1.2374 x U-7 .99876 l.qti x 10-7

3.5 1.0 -4. ed76 x U-9 4. 80* x 10-9 1.0 k.8oe2 x IO-9

4.0 1.0 -1.1317 x 1O-1Q 1.1313 x K@ 1.0 1.1319 x 10-10

L = O.~

0.1 0.OI.U544.9418 X 10-3 4.9337 x 10-3 0.00919 4.9459 x“10-3

.2 .04076 -4.7s62 4.78@ .03s38 4.8002

.J+ .14s07 -4 .25b6 k.2477 < J46gb 4.25&

.6 .30308 -3.4&.6 3.4789 .30135 3.4875

.8 .47304 -2.6348 2.6305 1 .k~~ 2.6370

1.0 .6z4 -1.8393 L 8363 .63u23 1.8408

1.2 .76290 -LU355 L 1836 .76231 1.1855

1.4 .85893 -7.0535 x 1o-4 7.0419 x lo~ .83er8 7.059k x 10-4

1.6 .s=50 -3. m 3.87X .52231 3.8782

1.8 .*9 -1.9653 1.g621I

.s6%0 L9669

2.0 .98+5$” -9.20W X 10-5 9.M79 x 10+ .98155 9.2K9 x 10-5

2.5 . 9m5 -9.7345 x d 9.7185 x 10-6 .9305 9.7430 x 10-6

3.0 .99987 -6.2520 x 10-7 6.2417 X 10-7 .99387 6.2372 x M-7

3.5 1.0 -2.4568 X Ii@ 2.4328X 104 1.0 2.4* X 104

4.0 1.0 ..5.7665 x 10-10 5.7570 x 1O-1Q 1.0 5.7710 x 1O-1Q

.

,

.

Page 68: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN 4308 .

IMUMTED-ATVARIW9VMIUQS W L AND A-Continued

E-O I ~ = 1.0

0.1

..2

A

.6

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.5

3.0

3.5

4.0

0.1

.2

.4

.6

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.5

3.0

3-5

4.0—

0.03472

.06!%%

.11CL42

.31720

.47924

.63242

.75986

.W

.91875

.957%

.97983

.597P

.mEJk

.5%99

1.0

0.04852

.09356

.19k28

.33192

.4%38

.634r2

.75708

.85a76

.91493

.~~l

.97792

.59732

.ma3

.%599

1.0

-9.6528 X 10-2

-9.3094-8.2858

-6.8280

-5.2076

-3.6758

-2.4014

-1.4519

-8.u50 X 10-3

-4.2078

-2.0170

-2.2868 x 10A

-1.5983 x 10-5

-6.8846 X 10-7

-1.82e6 x 10-8

-0.19030

-. lm?g

-. 161J.4

-.13362

-.10278

-7.3176 X 104

-4.fyseA

-2.gag

.1.7o14

-o. gga x 1o-3

4.4156

-5.3660 x lc+

-4.0820 x 10-5

-1.9445 x 1o-6

-P.~gy6 X loa

L = 0.1

0.16877

9.3568 x 10-2

8.0172

6.6066

5.038$3

3.5%62.3236

1.4048

7.i%16 X LO-3

k.opk

1.%M5

2.2@ x lo~

1.5465 x 10-5

6.6614 x 10-7

1.7693 x 10-8

L = 0.2

0.465s

.21g21

.15106

.12516

9.6284 x lo-

6.8548

4.55X4

2.7%11.5938

8.4292 x 10-3

4.1364

5.0269 x lo~

3.8237 x 10-s

1.an5 x IO-6

5.4292 x 10-8

0.cQ078

.rE285

.12964

.28278

.45300

.61388

.74~6

.8k75a

.91465

.95*

.g@31

.99760

.S%@

.99%9

1.0

0.CXXQ4

.0U72

.1.E44

.26408

.43*

.595s2

.W40

.63%0

.9c&8

.95044

.97568

.gg-@

.99978

.%s99

1.0

2.1252x ID-2

9.lo5k

8.421.4

6.9396

5.2926

3.-cm2.44C6

1.4756

8.25E!0X 10-3

4.2768

2.0502

2.3242X 104

1.6244 x 10-5

6.9YE X 10-7

1.&l& x 10-8

0.W667

+3594

.16&J7

.13788

● .KEQ7

7.5704 x m-p

5.0U6

3.0831

1.7558

9.2860 x 10-3

4.5%4

5.5372 x ld

4.2120 x 10-5

2.a%5 x 10-6

5.9808 x 10JJ

67

Page 69: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

68 NACA TN 4308

0.1

,2

.4

.6

.8

1.0

1.2

1.4

1.6

1.8

2.0

2.5

3.0

3.5,

4.0

0.1

.2

.4

.6

,8

1.0

1.2

1.4

1.6

1.8

2.0

2.5

3.0

3.5

4.0

3.01326

.04234

.l~p

.30388

.47%4

.63218

.76278

. %&s

.92232

.96056

.9@54

.BE@!

.999m

L.o

1.0

0.02484

.05446

.15972

.30976

.47593

.63219

.76140

.85692

.g2070

.95937

.9&76

.9979

.9%X%

.WEJ9

1.0

-9. Wp! x 10-3

-9.5766-8.4970

-6.S6U2

+.2136

-3.6782

-2.3722

-1. 4Y27

-7.7678 X I.C@

-3.?4W-1. %59

-1.9628 X 10-5

-1.2659 x 10-6

-4.95&5 x lo~

-1.lea5 x 10-9

-4.8738 x 10=’

-4.7277

-4.2o14

-3.4512

-2.6204

-1 .Q$w

-1.1930

-7.1540 x 10-3

-3.9548

-2. G313

.9.6193 x II@

-Lop

-7.0375 x 10-6

-2.8798 x 1o-7

-7.2015 x 10-9

L = O.01”

9.8358 X 10-3

9.54608.4698

6.9390

5.1970

3.6664

2.3664

1. 4oee

7.7430 x lo~

3.933-4l.&cO

1.9566 X 10-5

1.2Q8 x M+

4.9428 x m-a

1.1767 X 10-9

L = O.m

6.u36 x 10-2

4.6533

4.1322

3.3944

2.5772

1.&88

1.1734

7.0362x 10-3

3. 89s76

1.9979

9.4607 x 10-4

1.0349

6.9a7 X 104

2.8324 X 10-7

7.0830 x 10-9

0.00834

.03756

.I-46c%

.30040

.476434

.6x34

.76163

. em

.ZJ-93

.sk4336

.9~2

.99803

.99987

1.0

1.0

0. W308

.03070

. 13%0

.2w41

.46276

.62294

.75540

.5333

.91871

.55@5

.98328

.99784

.9%E6

.59399

1.0

9.8248 X 10-3

9.59368.5120

6.9736

5.2228

3.6848

2.3764

1.4152

7.7816 X 10A

3.9510

1.-1:9633 x 10-5

1.26& x 1o-6

4.9674 x lo~

1.IIQ6 X 10-9

3. 5%!4 x 1O-Q

4.7633

4.2361

3.4794

2.6420

1.8343

1.2029

7.2u28X 10-3

3.9975

2.0481

9.6982X 10-4

1.0608

7.0953x I.&6

2.%36 x 10-7

7.2610 x 10-9

.

—.

,

Page 70: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NAW TN k308 69

INSULATEDPLATEAT VAKKXJSVALUE2Cl?’L AND ?,.Continued

3.0 g = 1.0

A T1 + + T1 &

~>

<~

s #

L = 0.3

0.1 O.@ago -0.2%233 0.84238 0 0.(X)103,

.2 .u48 -.26526 .3m4 .W3% .13318

.4 .2M28 -.23zi2 .21551 .0%34 .2k388

.6 .3469 -.1%04 .1~1 .24622 .ZOw

.8 .49315 -.15205 .13799 .41534 .15918

1.0 .63441 -.10968 9.%s4 x 10-2 .57829 .Klkee

1.2 .75476 -7.3572x 1o-2 6.6768 .71712 7.7016 X 10*

l.k . 8%703 -4.5891 4.1648 .82355 4.&41

~.6 .9u26 -2.6622 2.416iY .89763 2.78P

1.8 .95212 -1.4363 1.3035 .94477 1.5036

2.0 .$JT5g8 -7.2066 x 10-3 6.51MxIx 10-3 .97=9 7.5444x 10-3

2.5 .9ma -9.3516 X 104 8. U.870 x lo~ .99fM 9.7% x lo~3.0 .95974 -7.7094 x 10-5 6.9966 X 10-5 .599P 8.07c% X 10-5

3.5 .99939 -4.0385 x 10-6 3.6650 x 1o-6- .99398 k.gn x 10-6

k.o 1.0 -1.3423 X 10-7 1.2182x 10-7 1.0 l.t!oyx 10-7

L -0.4

0.1 0.06732 -0.372s9 U@l o 0. cm17

.2 .12&8 -.34877 .57422 . OCQ88 .10955

.4 .23690 -.30524 .2-7893 .081iJ :3r266

.6 .36087 -.25$5 .22498 .z?gl~ .27U4

.8 .m3 -. lgg& .l~& .39748 .2E335

1.0 .63@5 -. I.4558 . lag .5a05 ‘.15448

1.2 .m87 -9.88M x 10-2 8.6968 x 1o-2 .70194 .U14su

1.4 . 8b362 -6.2554 5.5036 .8u38 6.63& x m-

1.6 .90775”-3.@9 3.2k65 .88874 3.9154

1.8 .94929 -2.(X2% 1.7848 .g38a3 2.1527

2.0 .Sm@ -1.0394 g.lwlax 10-3 .968% 1.I.OX

2.5 .93541 -U1357 x 10-3 1.2631 .99567 1.5233 x 10-3

3.0 .99968 -1.~ x lo~ Ll@ x ld .*1 1.3554 x K@

3.5 .93998 -7.3174x 1o-6 6.43& X 10A .ggm3 7.7650 X 10&

4.0 1.0 -2.7017 x 10-7 2.3770 x IO-7 1.0 2. %70 x 10-7

Page 71: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

70 NACA TN 4308.

+ +

TABLE II.- VALUES OF ~, ~, AND ~AT~a~

= O AND 1.0 FOR PERFECTLYe &2

INSULATED PLATE N VARIOUS VALUES OF L AND A - Concluded

Eo= k = 1.0

A ‘1 + + T1 q

~$

~s s

L = 0.5

0“1 o ●07504 -0.46248 1.7633 0.000030

.2 .14151 -.42$z4 .78278 .00152 .08179

.4 .25600 -.37200 .3455i .06922 .36890

.6 .37499 -.31250 .26710 .21305 *33547

.8 .50787 -.24606 .21002 .38028 .26447

1.0 .63796 -.18102 .15450 ●54409 .lg4~

1.2 .75139 -.12430 .10610 .68693 .13361

1.4 .&&g -7*9755x 10-2 6.~72 x 10-2 .799148.5719X 10-2

1.6 .90442 -4.7792 4.0791 .87964 5.1365

1.8 .94650 -2.6748 2.2830 .93264 2.8748

2.0 .97204 -1.3982 1.1933 .96479 1.5027

2.5● 99510 -2.0490 x 10-3 1.7488 X 10-3 .99484 2.2022 X1O-3

3.0 ● 99961 -1.9596 “x 10-4 1.6725 x 10-4 .99951 2.1061 x 10-4,

3*5 .99998 -1.2226 X10-5 1.0436 X 10-5 ● 99997 1.3141 x 10-5

4.0 1.0 -4.9836x 10-7 4.2536 X 10-7 1.0 5.3563 X 10-7

Page 72: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN 4308

.

71

TX*C

.

Qih~-[ui,ar)

Boundary condition

t<0:Tl=T2=Te=0

f >0: Te=constant

h =constant

At X=o, (=o●

Q=- + ~

axAt interface, x=J,[<

TI=T2 - -

Figure 1.- Sketch of the composite slab showing pertinent boundaryconditions.

Page 73: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

72 NACA TN 4308

I0°

I6’—

-1.

:+aEo

I 64L.001

\

\

\

\

\

\

uo

:

I I I

\

\

\

\

\

\

E

c..+c

i

Ml.01

Skinhickness,

i n.

\

0.30

\

ao

\

.10

\

.05

\

01

I

\

.00 [“i.<

I

\

\

\

\

\

:aa

:

\

I

Thermal conductivity k, Btu/sec ft “F

\

\

\

\

\

.a)>=0

h

Figure 2.- Plot of the nondimensional parameter L as a functionskin material and thickness for h = O.lBtu/sq ft-~-sec.

.

.of

Page 74: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

, ● t ,

II I I I I I I r

II 1

I :;

I I II Balsa, (pck~~O.00002,II1.0 ,

I 1 Spruce, mahogany, etC., (p Ck)2” o.000157 II A _ ~ ~

1I

+ ~Glriss, (pck)2m 0.0056

.8:; :1

1’ 1 :1(

I /N= 01

1. ml o~I

I ;1 -1 ~1I

:1 .~ I— —

q ,6I I > ~ —

I

L“ ,? I gl I

: 21 al I ImEo

~ — I~ -

/ Ia. I

II I

: 11: I I– Ilro I

I

.2 ,, tI I‘Backing material I

I I‘---Outer skin I

I“ i

II 1

I I I I

Y I I I I Io A .8 1.2 L6 2,0 2.4 2.8 3,2

( ““+ec”’parameter (pck)l, sq ft.

Figure 3.- Variation of the paramter ~ with the parameter (pck) ~ for wious outer sktis

and backing materials. The appropriate value of $ is determined by the intersection of thebacking-material curve with the absclsaa for the outer skin. If the outer skin and backingmaterial. are interchanged, the sign of ~ is reversed.

4w

Page 75: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

74

00 ,.

I 0-?

Gn

,0-3

I 0-4

Id

I 0-6.001

//+——

.

.

5

Figure 4.- Values of

against

\

s2 .0I

(a)

2Gn~ and

L for

/

\

-

L

Gn .

J~ applicable at ~ = O plotted

.

.

.

.

.

Page 76: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

.

.

,..

.001

005 .01L

(b) ~.

.05 .1

.

.

Figure 4.- Continued.

Page 77: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

NACA TN 4308

.

.

,00

n

0/ ‘/ ‘

10-t

/ I-

/ /~O-2 — — — 2

0

10-3 \\

,0-4\

1(3-5 \

10-6.001 .005 .01

L.05 .1 .5

.

-.

(c) j *.

Figure 4.- Concluded.

.

.

Page 78: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

1 , . ,

I

,0 .1

Figure ~.-‘tio ‘f ‘l/Te at g

from equation (15)

Value of upper sutnmat on

limit in equation(2 4

I 0: I

.2 .6 I 2 4

A

(a) L= O.001.

(’

P/

(/

10 20

!ssH

i

= o for a finite number of term in equation (25) to T1/Te ~

plotted against the parameter A. $ = 1. -a

Page 79: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

— .

0 Volue of upper summationLal

limit in equation(251

;

:80;

uA3

lL4

B5

“?01 .1 .2

A

~

\

\

.4 .6 .8 I 2

(b) L = 0.1.

Figure 5.- Continued.

46

)

I

, . .

Page 80: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

1,4

L 20.-+0L

0

; 1.0-1-0Lwn

E

? .8

.6~.01

,

R

Value of upper summation

limit in equation (25)

.1 ‘ .2 .4 ,6 .8 I 2 46

A

(c) L = 0.5.

Figure ~.- Concluded.

Page 81: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

$ 1.0

2nE

5/

.8‘Perfect insulator (/3=1.000)

.6

.4f

!u

Z, in.

0.060

I ––––– .030

.2#

2 4 6 8 10 12 14 [6 18 2

Time, sec

F@ure 6.- l’enrperature distribution at the outer face plottdd against tires for composite slabs , L‘having sta~lew-steel skins suddenly exposed to ae%dynmic-heating at t = O.- The skin ‘Q

thicknesses are O.C@ and O.0~ inch and the insulati~ backing mterials are mhogany, balsa,and a perfect insubtor. h = 0.056Btu/sqft-’%-sec. ~

, . ,,,

, ,

Page 82: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

. . , 1

L 1.3 ‘oac

a

E 1.2 ‘

o (

+-C 0

.% E ––––– 1.0

.:\lcl~u+.o+-OcOal.-

::1.0I

cm00 Perfect insulator (~. 1.000)I-u -- .2. .-

:: ;

**

:’% .9 ‘j ---& --Csc

w? I Balso (@=.975) ‘-a - %~++ Io0 I

.--clc

.8 J a.- Mahogany (/3=.950)

% ;

o:-+ I

z.70

.4 .8 1.2 1.6 2,0 2.4 2.8 3.2 3:6

Figure 7.- Ratio of Indicated heat-tranafer

against time for a composite slab having

insulating backing materials. h = 0.056

Time, sec

coefficient to true heat-transfer coefficient plotteda 0.030-inch-thick stainless-steeL skin and various

Btu/aq ft-%%ec.

Page 83: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

.-

J 1,40

z

a

z1, in.

- 1.2 0.0600 ————— .030

0,,

: 140 -. --- .- ---- .–– ___ _T. —- —.- ----- ----- --- --- --- --- .-

:-J k& > ~ - ‘Perfect insulator (~= 1.000)

.- . \u \

‘.8\ \

EC \-

; ,aJ \ ‘BSSISSJ (8=.975)\00v .- \ \

w- \ i>

:= \ Y ‘

~:.6\ \

Wb. \ i,: u,

u- \ \

;:! \

\x

~ :, \ \ \G+, . 4 \ \u2

~,< \

:\

‘ \’1 Mahogany (/3=.950/~

G .2c \ ,\

\ \.- ---%. . / 1 \..0 < ‘ -- -_

~.

0’.-

&cl 4 8 12 16 20 24 28 32 36Time, sec

Figure 8.- Ratio of imdicated heat-transfer coefficient at E = O to true heat-transfer coeff%cient plotted against the for camposlti slabs bavi.ng stainless-steel skins of thichess z

and various insulating bac.king materials. h = O. 0% Btu/sq ft-%-sec.

. . . .

CDIII

Page 84: TECHNICAL NOTE 4308 TRANSIENT TEMPEIWTURE DISTNMYTION TWO ...

43o8 83

I.4

1.2

1.0

.8

.6

.4

.2

(

\Perfect insulator (~= 1.000)

/ ‘mBalsa (6=.975)

(

–––--– too

.

.2 .4 .6 .8 1.0

Ratio of local temperature to equilibrium temperature, _T,

Tc

Figure 9.- Ratio of indicated heat-transfer coefficient to true heat-transfer coefficient plotted against ratio of local temperature toequilibrium temperature for composite slab having a 0.030-inch-thickstainless-steel.outer skin and various insulating backing materials.h = 0.056 Btu/sq ft-%-sec.

NACA -Langley FteId, V&