TB AC DC fundamentals

download TB AC DC fundamentals

of 47

Transcript of TB AC DC fundamentals

  • 7/30/2019 TB AC DC fundamentals

    1/47

    Fachhochschule Frankfurt am Main

    University of Applied Sciences

    Faculty of Computer Science and Engineering

    Vietnamese German University

    Ho Chi Minh City, Vietnam

    Fundamentals of Electrical Engineering

    DC- and AC-current networks

    Prof. Dr.-Ing. habil. Joachim Lmmel

    Academic Year 2012/2013

  • 7/30/2019 TB AC DC fundamentals

    2/47

  • 7/30/2019 TB AC DC fundamentals

    3/47

    5.2 Resonant circuits

    6 Three-Phase Electric6.1 Generation of a three-

    6.2 Star and delta connecti

    6.3 Power of the three-pha

    1 Electric Field and Imp1.1 Fundamentals of fields

    In common the field describes

    in a space. There are:

    1.2 Electric charge Q

    VGU 2012/3/Lae

    Power Systemshase power system

    on

    se system

    rtant Quantities

    the distribution of a quantity

    [As], [C] (Coulomb)

  • 7/30/2019 TB AC DC fundamentals

    4/47

  • 7/30/2019 TB AC DC fundamentals

    5/47

    1.4 Electric potential an

    dependence between voltage

    common is valid:

    1.5 Electric flux and ele

    The relation between electric

    material equation of the elec

    VGU 2012/5/Lae

    electric voltage U scalars; [

    nd field strength:

    in case of homogeneous

    field is valid:

    tric flux densityD : scalar;[As];

    Demonstrative solution:

    lux densityD and electric field strengthE is

    trostatic field.

    V]

    :vector; [As/m2

    ]

    realized by the

  • 7/30/2019 TB AC DC fundamentals

    6/47

    1.6 Capacitor and capacit

    For the dimensioning of a cap

    we can use the size and the m

    It is valid:

    Features of capacitors: See r

    Calculation of capacitances:

    The capacitor storages electric

    means of varying the voltageThe accumulated electric ener

    VGU 2012/6/Lae

    C [As/V] = [F] (Farad)

    Consequential the equation fot the capacity Cof a capacitor f

    acitor Therefore the design equationterial. a homogeneous field is the fol

    marks page 7

    ee remarks page 8

    energy by charging. We can use the accumu

    between the electrodes. By discharging we cgy can be calculated according to:

    r the definition ofllows:

    of a capacitor with

    lowing.

    lated energy by

    an use the energy.

  • 7/30/2019 TB AC DC fundamentals

    7/47

    Capacitors

    1. Properties of Differentiation of Capacitors:

    Capacitors differ according to the following properties,

    - if there is afixed or variable capacitance

    (e. g. capacitors with variable capacitance are: rotary capacitors, flat trimming capacitors)

    - which kind of dielectric is used between the electrodes

    (e. g. paper and glimmer capacitors, foil capacitors, porcelain and electrolytic capacitors)

    or

    - which kind of construction is used

    (e. g. capacitors with plane electrodes, tube capacitors, cup capacitors, )

    2. Relative Permittivityr of Selected Materials :

    (absolute permittivity 0 = 8.85410-12 As/Vm)

    acetone 21.5 polyethylene 2.3

    barium titanate 1000...2000 polypropylene 2.3

    glass 5...12 polystyrene 2.5

    glimmer 5...8 polyvinyl chloride 3...4

    hard paper 5 porcelain 6cable paper in oil 4.3 sulphur hexafluoride 2.4

    air 1.0006 transformer oil 2.3

    paper, dry 2 water 80.8

    acrylic glass 3 special ceramic for

    hf-technology 10000

    special materials for electrolytic capacitors:

    Al2O3 8

    Ta2O5 26

    3. Standardization of Capacitors:

    Capacitors are produced in classes of capacitance values between 0.6 pF and 10000 F

    resp. for operation voltages from 3V until more than 100 kV.

    There are German DIN-standards: DIN 42007 (variable capacitors), DIN 45910

    (porcelain-, synthetic- and electrolytic capacitors, ...)

    VGU 2012/7/Lae

  • 7/30/2019 TB AC DC fundamentals

    8/47

    Calculation of Capacitances

    1.)

    d

    AC r0=

    0 - absolutepermittivity = 8.86.10-12As/Vm

    r - relativepermittivity

    VGU 2012/8/Lae

    2.)

    20 4

    111

    r

    dr

    A

    dr

    Cd

    r ==

    ==

    =a

    i

    a

    i

    r

    r ai

    r

    rrrr

    dr

    Cd

    C

    11

    4

    1

    4

    1112

    C

    rr

    r rri a

    a i=

    0

    4

    (Vergleich mit 1.)_____________________________________________________________________

    3.) Q C U= , =a

    i

    r

    r

    drrEU )(

    E rD r

    ( )( )

    ,=

    D rQ

    A r

    Q

    rl

    ( )

    ( )

    = =

    2

    ==a

    i

    r

    r i

    a

    r

    r

    l

    Q

    r

    dr

    l

    QU ln

    22

    CQ

    U

    l

    r

    r

    l

    r

    r

    a

    i

    ra

    i

    = = =2 2

    0

    ln ln

    (Vergleiche mit 1.)

    r

    ra

    i

    dr

    Kugelkondensator

    rr

    ia

    l

    Zylinderkondensator

    spheric capacitance

    cylindric capacitance

    compare with 1.

    compare with 1.

    distance darea A

    plate capacitance

  • 7/30/2019 TB AC DC fundamentals

    9/47

    1.7 Parallel and series con

    Using the equation of definiti

    e. g.: C1=100nF; C2=0,1F

    follows

    or

    e. g.: C1=100nF; C2=0,1F

    VGU 2012/9/Lae

    ection of capacitors

    It is valid:

    and

    n of the capacity C=Q/Uresults:

    or common for an arbitr

    number n of capacitors

    It is valid:

    and with

    or common for an arbit

    number m of

    capacitors

    r

    ry

    rary

  • 7/30/2019 TB AC DC fundamentals

    10/47

    1.8 Capacitor with layered

    For the electric flux intensity i

    Therefore the following depen

    The ratios of electric field stre

    2 Electric Flow Field an2.1 Electric currentIand

    The definition of the current I

    To the definition of the Tec

    The current is positive in the

    of moving of negative charges

    VGU 2012/10/Lae

    dielectric

    - The arrangement is identical

    series connection of two capa

    - The electric field strengthEa

    voltage drop Uover the two l

    technical meaning especially i

    arrangements e. g. as cables.

    n both layers is valid:

    dence results:

    ngth and voltage drops over the layers can b

    Resistanceurrent densityJ I scalar;[A];J vector

    is described by:

    generally written:

    resp. in homogeneous fields

    nical current direction

    pposite direction

    .

    ith the

    citors.

    d the

    yers are from

    n case of coaxial

    calculated.

    [A/m]

  • 7/30/2019 TB AC DC fundamentals

    11/47

  • 7/30/2019 TB AC DC fundamentals

    12/47

    In the electric flow field a de

    field strengthEby the materia

    From this equation the dimens

    2.2 Electric resistanceR a

    This results in the definition

    VGU 2012/12/Lae

    endency exist between the current densityJ

    l equation of the electric flow field (compare

    (Kappa) electric co

    ion of the electric conductivity follows:

    d Ohms Law

    quation for resistanceR.

    and the electric

    D = E).

    nductivity

  • 7/30/2019 TB AC DC fundamentals

    13/47

    OHMIC LAW:

    The material and size (length

    resistor. The following relatio

    Features of resistors: See re

    Calculation of resistances: S

    Sometimes it could be easier t

    it the electric conductance G

    2.3 Electrical energy Wan

    We use

    VGU 2012/13/Lae

    nd cross section) can be changed to dimensi

    results:

    arks page 14

    e remarks page 15

    Remark to the notation of the dimen

    o calculate with the reciprocal value of the re

    d powerP W [VAs]; P [VA]; sc

    on the value of a

    sion in the tables:

    sistanceR. We call

    lars

  • 7/30/2019 TB AC DC fundamentals

    14/47

    Resistors

    1. Properties of Differentiation of Resistors:

    Resistors differ according to the following properties and their design. There are

    film resistors, which has a thin conductive layer at a porcelain body,

    fixed wire- or band resistors, where the wire or the band is wound around a porcelain body,

    temperature-dependent resistors(thermistors), changing the resistance with the temperature,

    consisting of sintered ceramic on the basis of semiconductors,

    voltage-dependent resistors (varistors), changing the resistance with the voltage level,

    consisting of sintered ceramic on the basis of SiC (e. g.) and

    adjustable resistors, where the resistance can be changed by a sliding contact.

    2. Resistivity, Conductivity and Cofficient of Temperature of Selected Materials

    in in 20 inmm m2/ m mm/ 2 1/C

    aluminium Al 0,028 36 0,00377

    argent Ag 0,016 63 0,0038

    copper Cu 0,018 56 0,00393

    gold Au 0,023 44 0,004

    platinum Pt 0,11 9 0,002

    iron Fe 0,125 8 0,0046

    manganinNiMn,

    Fe,Cu,0,4 2,5 0,00001

    chromium- FeNi,Cr, 1 1 0,00005

    nickel

    3. Standardization of Resistors:

    Resistors are produced in classes of resistance values between 10-3 and 1014 for different

    voltage and power values

    There are German DIN-standards e.g. DIN 40712 (symbols), DIN 41450 (adjustable

    resistances), DIN 44080 (temperature dependent resistors), DIN 44050...55 ( fixed film

    resistors), DIN 45921 (metallic and nonmetallic fixed resistors),..

    VGU 2012/14/Lae

  • 7/30/2019 TB AC DC fundamentals

    15/47

    Calculation of Resistances

    1.) Rl

    A=

    - conductivity

    --------------------------------------------------------------------------------------------------------------

    2.) ES

    =

    , SI

    A

    I

    r= =

    4 2

    EI

    r=

    4 2

    ==

    ai

    r

    rrr

    I

    r

    drIU

    a

    i

    11

    44

    ==

    airrI

    UR

    11

    4

    1

    --------------------------------------------------------------------------------------------------------------

    3.) dR drA

    drlr

    =

    = 2

    ==a

    i

    r

    r i

    a

    r

    r

    lr

    dr

    lR ln

    2

    1

    2

    1

    VGU 2012/15/Lae

    r

    r

    i

    Widerstand (Kugelfeld)

    a

    rr

    ia

    l

    Widerstand (Zylinderfeld)

    dr

    spheric resistance

    cylindric resistance

    compare with 1.

    compare with 1.

    length l areaA

  • 7/30/2019 TB AC DC fundamentals

    16/47

    respectively considering the r

    The power can be calculated i

    2.4 Temperature depende

    It is valid:

    For the calculation of the tem

    measured at the terminals can

    2.5 Series- and parallel- c

    We know that the voltage dro

    total voltage drop. Using the

    currentI

    VGU 2012/16/Lae

    sistanceR

    fwe divide the energy Wby the time t:

    ncy of the resistance

    (related to 20C

    erature inside of windings out of the changi

    be used the equation:

    nnected resistors

    s in a series connection of components hav

    hmic Law the following derivation results

    Thereby for the ratio o

    results:

    )

    g of the resistance

    to be added to the

    y dividing by the

    the voltage drops

  • 7/30/2019 TB AC DC fundamentals

    17/47

    and expressed by the electric

    The ratio of the parallel curre

    can be formulated by the equa

    3 Analysis of Linear DC3.1 Voltage and current di

    resistive voltage divider

    VGU 2012/17/Lae

    It is valid:

    Using the Ohmic Law follows:

    Finally results:

    onductance G

    ts

    tion:

    Networksvider

    and it follows:

  • 7/30/2019 TB AC DC fundamentals

    18/47

    Loaded Voltage Divider

    For the voltage-divider ratio results from the

    circuit

    )()1( 22

    xxRR

    Rx

    RRxRx

    RRx

    U

    U

    sv

    v

    vss

    vs

    +

    =

    +

    =

    =+

    x

    R

    Rx xs

    v

    1 1( )

    and for the load current follows

    )1(2

    xxRR

    xU

    R

    UI

    svv

    v +==

    With x = 1 the maximum load current results according to the equation V

    VmaxR

    UI =

    and

    damit

    )1(1

    2

    max xxR

    R

    x

    U

    U

    I

    I

    v

    sv

    v

    +==

    Border cases are: Rv (unloaded voltage divider, linear dependency) xU

    U=2

    and Rv = 0 (short circuit at the output, Ux = 0) IU

    R xv

    s

    =( )1

    Beetween the border cases the nonlinarity increases with increasing load or load current.

    Diagram: Related values of

    load voltage U2 (UX) and

    load current IVas function of

    the slider position x

    of the voltage divider

    VGU 2012/18/Lae

    I

    U

    U2

    R1= (1-x)RS

    R2= xRS RV

    I

    U

    U2

    R1= (1-x)RS

    R2= xRS RV

    Circuit of the voltage divider loaded with

    the resistor RV

  • 7/30/2019 TB AC DC fundamentals

    19/47

    r

    3.2 Kirchhoffs equations

    3.2.1 Electric sources

    3.2.2 Kirchhoffs node equa

    3.2.3 Kirchhoffs loop equat

    VGU 2012/19/Lae

    and it follows:

    esistive current divider

    ion

    e can simply conclude:

    nd for the example beside:

    ion

    e can conclude again:

    nd for the circuit on the left:

  • 7/30/2019 TB AC DC fundamentals

    20/47

    3.2.4 Analysis of networks

    Example for solution by Kir

    Result forI3:

    In the following chapters we

    have their distinct advantages

    3.3 Superposition method

    The final result is

    the addition of both currents:

    VGU 2012/20/Lae

    y Kirchhoffs equations

    hoffs equation

    ill introduce more techniques for the analys

    and handicaps.

    I3 : current by means of only Uq1

    I3 : current by means of only Uq2

    s of networks. All

  • 7/30/2019 TB AC DC fundamentals

    21/47

    3.4 Mesh current method

    If you solve the equation syste

    for the unknown mesh current

    e. g. for the currentI3:

    3.5 Real voltage and currereal voltage sour

    precondition for equivalence

    of both sources:

    VGU 2012/21/Lae

    The first step is to find the number of

    currents in. In our case there are two o

    m

    s, we find with:

    nt sourcese real current so

    independent mesh

    f it.

    rce

  • 7/30/2019 TB AC DC fundamentals

    22/47

    3.6 Equivalent circuits of

    network

    a)

    b)

    active t

    Steps of calculation:

    1st step: calculation ofUq ?

    2nd step: calculation ofRi ?

    VGU 2012/22/Lae

    lectric sources

    rminal circuit passive termin l circuit

  • 7/30/2019 TB AC DC fundamentals

    23/47

    3rd step: calculation ofRa ?

    4th step: calculation ofIRa an

    BASIC CURRENT CIRCU

    Example:

    Example:maximum availabl

    mesh equation:

    for the power delivered to the

    Imagine the following: Ra =

    That means, between both the

    By differentiating the power e

    VGU2012/23/Lae

    URa

    T

    power at load resistor Ra

    load Ra is valid:

    or Ra = . In both cases the power at the lo

    power should have a maximum.

    quation we get:

    d resistor is zero.

  • 7/30/2019 TB AC DC fundamentals

    24/47

    The last equation shows that t

    has to have the same value as

    That means, the maximum av

    Example: maximum efficien

    Now we will see the circuit fr

    Due to the internal resistorRi

    load resistorRa. Because of th

    The efficiency of each transfe

    VGU 2012/24/Lae

    Technical meaning:

    Technical meaning:

    e load resistance

    the internal resistance:

    ilable power is:

    y of transmission

    m another point of view.

    ot the total power Pqof the source will find

    currentIRa there will be a dissipation of po

    of energy is defined as

    the way to the

    er P overRi.

  • 7/30/2019 TB AC DC fundamentals

    25/47

    4 Representation of Periodical Quantities4.1 Parameter of periodical quantities

    e. g.: power gridf= 50Hz (USAf= 60Hz; train grid in Germanyf= 16 2/3Hz; example for

    radio frequency f= 107,2MHz

    Therefore we find:

    aufgetragen.

    and

    with the angular frequency

    VGU 2012/25/Lae

    Eine zeitabhngige Gre wird als periodisch bezeichnet, wenn sich ihr zeitlicher Verlauf

    nach einer bestimmten Zeitspanne Periodendauer T wiederholt.

    Nach FOURIER lsst sich eine periodische Funktion durch die Summe bestehend aus einemGleichanteil und Sinusfunktionen unterschiedlicher Frequenz und Amplitude ersetzen.

    Die Grundfunktion aller periodischen Funktionen ist deshalb die Sinusfunktion.

    Die Anzahl der Schwingungen, die eine periodische Funktion in einer Sekunde durchfhrt, ist

    dieFrequenz f.

    [s- ] = [Hz] = [Hertz]

    DiePeriodendauer Tist der Kehrwert der Frequenz f.

  • 7/30/2019 TB AC DC fundamentals

    26/47

    Representation of the sinusoi

    The definition of the phase sh

    between voltage and current i

    by the equation:

    e. g. the characteristic above:

    = u-i = 60-(-30) = 90(We say: The current is laggin

    VGU 2012/26/Lae

    al function

    iftgiven

    u = 60(/3); i = -30(-/6);/2)

    to the voltage with 90.

  • 7/30/2019 TB AC DC fundamentals

    27/47

    More parameter can be calculeted of importance for different technical processes.

    For the description of voltage shapes two further parameter are useful.

    for sinusiodal shape

    for sinusiodal shape

    VGU 2012/27/Lae

    u

  • 7/30/2019 TB AC DC fundamentals

    28/47

    4.2 Current and voltage at the elements R, L and C

    a) resistor preconditionThe voltage over the resistor is calculated:

    The result is a1) current-voltage relation

    a2) phase and phase shift

    a3) impedance (AC resistance)

    (resistance)

    b) Inductivity precondition

    The voltage over the inductivity is calculated:

    The result is a1) current-voltage relation

    a2) phase and phase shift

    a3) impedance (AC resistance)

    VGU 2012/28/Lae (inductive reactance)

    LL

    2

    2

    3 22

    2

    2

    3 22

    2

    2

    3 22

    2

    2

    3 22

  • 7/30/2019 TB AC DC fundamentals

    29/47

    b) capacity

    The voltage over the capacity

    The result is

    The result is

    4.3 Phasor diagrams with p

    a)

    b)

    c)

    d)

    VGU 2012/29/Lae

    ii

    2

    2

    2

    2

    precondition

    is calculated:

    a1) current-voltag

    a2) phase and pha

    a3) impedance (A

    (capacitive reactriodical quantities

    C

    u

    C

    u

    =i

    2

    3 22

    3 2

    relation

    e shift a2)

    resistance)

    nce)

    0,sin i =t

  • 7/30/2019 TB AC DC fundamentals

    30/47

    to the construction of phasors

    a)

    b)

    c)

    d)

    e)

    f)

    g)

    VGU/2012/30/Lae

  • 7/30/2019 TB AC DC fundamentals

    31/47

    4.4 Complex operatorZ

    The definition of the complex

    The exponential form is:

    Written in the Cartesian form:

    The equations for the calculati

    phase shift are:

    Survey over the known depe

    Preconditions:

    Resistor

    VGU/2012/31/Lae

    operator is given by the equation:

    on of the absolute value (length of the phaso

    ndencies for the components R, L and C

    Inductivity Cap

    r) and angle of the

    citor

  • 7/30/2019 TB AC DC fundamentals

    32/47

    Application: Series connecti

    Inserting the given value

    VGU2012/32/Lae

    n ofR,L and C

    uq = 10Vsint, f= 50Hz,R = 1k

    esh equation

    solution of the differential equation

    or direct approach by complex ope

    solution of the algebra

    the current i

    s:

    ,L = 10H, C= 6F

    of the current i

    rators:

    ic equation for

  • 7/30/2019 TB AC DC fundamentals

    33/47

    Solution by phasor diagram

    Solution by means of a quan

    Therefore follows:

    We can measure for the phase

    VGU2012/33/Lae

    steps of construction

    1.)

    2.)

    3.)

    titative phasor diagram

    shift:

  • 7/30/2019 TB AC DC fundamentals

    34/47

    4.4 Power in AC networks

    In DC networks the power is calculated by the formula

    The product of the time-depending voltage and current

    has no practical meaning.

    VGU2012/34/Lae

  • 7/30/2019 TB AC DC fundamentals

    35/47

    Conclusions for the power components and their calculation withR, L and C

    Further on is valid:

    VGU/2012/35/Lae

    Widerstand

    Kapazitt

  • 7/30/2019 TB AC DC fundamentals

    36/47

    Fr die Auswertung von Leistungsmessungen ist die Tatsache wichtig, dasssich in einem beliebigen Netzwerk die Gesamtleistung aus der Summe derTeilleistungen an den einzelnen Bauelementen ergibt. Das gilt fr Wirk-und fr Blindleistungen.

    or

    From the calculation follows: We have always to calculate the total apparent power of anarbitrary network with the following equation.

    Never

    e.g.: Three units with different components of active and reactive power:

    VGU2012/36/Lae

    -j1/Cz.B.

    R1

    R2

    jL

    I1

    I2

    I3

    geg.:R1=R2=1; jL=1; -j1/C=-j1

    I =I =1A I =1,41A

    -j1/Cz.B.

    R1

    R2

    jL

    I1

    I2

    I3

    -j1/Cz.B.

    R1

    R2

    jL

    I1

    I2

    I3

    z.B.

    R1

    R2

    jL

    I1

    I2

    I3

    geg.:R1=R2=1; jL=1; -j1/C=-j1

    I =I =1A I =1,41A

    W2

    1A)1(1A)1(

    Gesamt

    22

    2221

    21Gesamt

    =

    +=

    +=

    P

    RIRIP

    var1

    1)A1(1A)2(

    1

    Gesamt

    22

    22

    23Gesamt

    =

    =

    =

    Q

    CILIQ

    2,24VA

    VA522

    =

    =+=

    S

    QPS

    e.g.

    given:

  • 7/30/2019 TB AC DC fundamentals

    37/47

    5 Analysis of AC Networks5.1 Basic circuits5.1.1 Series connection ofR andL (real coil)Circuit Phasor

    diagram

    There are

    the wellknown equations:

    Further on is valid: complex impedance = resistance + j reactance

    and the impedance (absolute value of the complex impedance)

    In consequence of the both triangles follows for the phase

    After the multiplication of the edges of the impedance triangle with I2, we get the triangle of

    the power components.

    The relations between the power components is described by:

    For the phase follows:

    VGU2012/37/Lae

    R jLR jL

  • 7/30/2019 TB AC DC fundamentals

    38/47

    5.1.2 Parallel connection ofR and C(real capacitor)

    Circuit Phasor diagram

    Again is wellknown:

    Further on is valid: admittance = conductance + j susceptance

    and the conductance (absolute value of complex admittance)

    In consequence of the both triangles follows for the phase

    After the multiplication of the edges of the admittance triangle with U2, we get the triangle of

    the power components.

    The relations between the power components is described by:

    For the phase follows:

    VGU2012/38/Lae

    CGY j+=

    R

    C

    1j

    j

    1

    =

    C

    R

    C

    1j

    j

    1

    =

    C

  • 7/30/2019 TB AC DC fundamentals

    39/47

    5.1.3 Low pass

    circuit phasor diagram

    calculation of the ratio U2/U1

    and the phase 21

    absolute value

    phase shift

    step response u(t)

    amplitude characteristic U2/U1= f() phase characteristic 21= f()

    cutoff frequency:

    VGU2012/39/Lae

    1R

    2j

    1

    C

    1R

    2j

    1

    C

  • 7/30/2019 TB AC DC fundamentals

    40/47

    5.1.4 High pass

    Circuit phasor diagram

    calculation of the ratio U2/U1 and

    the phase 21

    absolute value

    phase shift

    step response u(t)

    amplitude characteristic U2/U1 = f() phase characteristic 21= f()

    cutoff frequency:

    VGU2012/40/Lae

    2R

    1j

    1

    C

    2R

    1j

    1

    C

    fr

  • 7/30/2019 TB AC DC fundamentals

    41/47

    5.1.5 Phase-turn circuit example: double RC precondition

    5.2 Resonant circuits

    VGU2012/41/Lae

    CR

    1=

    R

    Cj1

    R

    Cj1

    R

    Cj1

    R

    Cj1

  • 7/30/2019 TB AC DC fundamentals

    42/47

    circuit phasor diagram impedance

    At the resonance point are UandI in phase. That

    means, only the resistance come into effect for

    the impedance.

    That means

    so the angular resonance frequencyis calculated by

    resp. the resonance frequency is

    In the case of resonance the impedance, its absolute value and the phase angle between

    voltage and current phasor result to

    Fr die Impedanz, deren Betrag und den Phasenwinkel zwischen Spannung und Strom ergibtsich im Zustand der Resonanz

    Phasor diagram ofZ :

    VGU2012/42/Lae

    Cj1

    jLR Cj1

    jLR

    )1

    (jC

    LRZ

    +=

    22 )1(C

    LRZ

    +=

    )

    1

    arctanR

    CL

    =

    Impedanz

    Betrag

    Phasenwinkel

    )1

    (jC

    LRZ

    +=

    22 )1(C

    LRZ

    +=

    )

    1

    arctanR

    CL

    =

    Impedanz

    Betrag

    Phasenwinkel

    Impedance

    absolute value

    phase shift

  • 7/30/2019 TB AC DC fundamentals

    43/47

    Characteristic frequencies for the evaluation of diagrams of resonance networks are the so-

    called 45-frequencies. The name results of the shape of the phasor diagram.

    The following diagrams of the related parameterZ/R =f() and the phase angle=f() showthe dependence from the angular frequency.

    VGU2012/43/Lae

    +45 -45

    1RZ

    0

    L

    1/C

    +45-45

    1RZ

    0

    L

    1/C

    +45-45

    0

    +45

    -45

    90

    -90

    -45

    45

    0

    0

    +45

    -45

    90

    -90

    -45

    45

    0

  • 7/30/2019 TB AC DC fundamentals

    44/47

    From the behaviour of the impedanceZ we are able to conclude the diagram ofI=f().

    Die Teilspannungen eines Reihenschwingkreises knnen die Gesamtspannung Uwesentlich

    bersteigen. Die berhhung im Resonanzpunkt ergibt sich aus derKreisgte Q .

    VGU2012/44/Lae

    1RI

    I

    0+45-45

    0,5

    1

    IR1 = I beiR1 und0

    Z

    UI= bei U= konstant1RI

    I

    0+45-45

    0,5

    1

    IR1 = I beiR1 und0

    Z

    UI= bei U= konstant

    0

    U= konstant

    U

    0

    U= konstant

    U

  • 7/30/2019 TB AC DC fundamentals

    45/47

    Alle imReihenschwingkreis erluterten Zusammenhnge und Formeln ergeben

    sich in analoger Form fr denParallelschwingkreis, in dem man systematisch

    VGU2012/45/Lae

    0

    kapazitivinduktiv

    I= konstant

    I

    ICIL

    IG

    0

    kapazitivinduktiv

    I= konstant

    I

    ICIL

    IG

    Cj

    1jLR

    UR UC

    U

    I

    UL

    Cj

    1jLR

    UR UC

    U

    I

    UL

    Cj1

    jL

    R , GIR

    U

    I

    IL

    IC Cj1

    jL

    R , GIR

    U

    I

    IL

    IC

    0

    kapazitiv induktiv

    U= konstant

    U

    ULUC

    UR

    0

    kapazitiv induktiv

    U= konstant

    U

    ULUC

    UR

  • 7/30/2019 TB AC DC fundamentals

    46/47

    6 Three-Phase Electric Power Systems6.1 Generation of a three-phase power systemIn 1891 the first three-phase power transmission was realized between Lauffen am Neckar

    nach Frankfurt am Main . Three-phase current is the most effective kind to transmit electric

    power over long distances.

    Grundlage ist Bewegungsinduktion und insbesondere die Bewegung einer Leiterschleife imMagnetfeld (siehe Kapitel 5.4.2)

    For the three characteristics we find the equations:

    Aus Leistungsgrnden wird die praktischeAnordnung umgekehrt realisiert.

    Dabei wird das rotierenden Gleichfelddurch den Gleichstrom in einer Wicklungdes sich drehenden Lufers (Rotor)

    hervorgerufen.

    Die drei Wicklungen U, V und W sindfest im Stnder der Maschine angeordnet.In ihnen werden diedrei um 120phasenverschobenen Wechselspannungeninduziert.

    Fr die Energiebertragung vom Kraftwerk (Generator) zum Verbraucher (z.B. Motor)

    FHF 2007/GET/L68_Drehstrom1

    VGU2012/46/Lae

    tUu sin= )120sin( = tUu )240sin( = tUu

    ROTOR

    STNDER

    GENERATOR

    ROTOR

    STNDER

    ROTOR

    STNDER

    GENERATOR

  • 7/30/2019 TB AC DC fundamentals

    47/47

    9.2 Stern- und Dreieckschaltung

    Star connection (Y, y, Y) Delta connection(D, d, )

    9.3 Power of the three-phase system

    The power of the three-phase system must be consider the kind of the internal connections of

    the windings:

    StrNetz

    StrNetz

    3IIUU

    ==

    StrNetz

    StrNetz

    3 IIUU

    ==

    S=3UStrIStr S=3UStrIStr

    Star connection Delta connection

    (3 Strnge) (3 Strnge)

    INetz= IStr UNetz= 3 UStr INetz= 3 IStr UNetz=UStr

    Y

    Stran ren

    Netzgren

    L1 L2 L3L1 L2 L3 L1 L2 L3L1 L2 L3